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Abstract

Concern about malicious contamination of municipal drinking water networks re-
quires us to consider additional protection measures over physical security alone. In
the event of an accidental contamination or malicious attack, knowledge of the time
and location of the contamination source can help infrastructure personnel stop the
contamination and propose control strategies for containment or flushing. In this work,
we develop a large scale, nonlinear program for identifying contamination sources given
concentration measurements from a limited sensor grid installed in the water network.
In a previous work [16], we demonstrated the potential for optimization techniques
on the contamination source determination problem, but showed that the direct se-
quential approach was insufficient to solve the fully time dependent problem. In this
current work, we use a direct simultaneous approach, converging the network model
and optimization problems simultaneously. To obtain reasonable problem sizes, we
present an origin tracking algorithm that reformulates the pipe expressions (partial
differential equations in time and space) into a system of algebraic expressions in time
alone. This algorithm provides a straightforward mathematical representation of the
pipe boundary concentrations and is efficient for large networks with many source and
output nodes. After reformulating the optimization constraints, we can solve the re-
sulting nonlinear programming problem with large scale optimization tools. The fully
time dependent solution gives complete injection profiles, identifying both the time
and location of potential sources of contamination. We demonstrate the effectiveness
of this formulation on a model for a real municipal water network.
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1 Introduction

The threat of accidental drinking water contamination is not new. More recently, how-
ever, concern over intentional contamination of municipal water networks has required us
to consider novel protection measures. Drinking water networks are especially vulnerable to
biological and chemical attack due to the land area encompassed by the network and the
large number of access points. Any water outlet, such as a fire hydrant or even a household
water faucet, can be an access point for backflow contamination into the network. Physical
security can only provide a limited amount of protection. As an alternative to physical se-
curity alone, sensors could be installed in the network to detect contamination and initiate
a means of protection from within the network itself.

It is generally assumed that contaminant sensors would be costly to purchase, install,
and maintain, making it desirable to consider as few sensors as possible. Determining the
optimal placement of a limited number of sensors is an area of current research [2, 10].
Unfortunately, a limited sensor grid alone can only provide a coarse indication of the source
of the contamination. An accurate measure of the contamination source would help utilities
and security personnel stop the contamination as soon as possible and formulate an effective
control strategy. Our proposal is to use the time varying concentration data from an installed
sensor grid and formulate an inverse problem that more accurately estimates the time and
location of the contamination sources.

Inverse problems like this one, are fundamentally different in nature from standard simu-
lation problems. Traditional water quality simulations assume injections of secondary species
are known. They solve forward in time to find the propagation of these species through the
network. Simulation of the output state of a model based on known inputs is referred to as
the forward problem. By contrast, inverse techniques attempt to find the unknown inputs
that give rise to a partially known output state. In the contaminant source determination
problem, injections are unknown. Instead, we wish to calculate them based on concen-
tration measurements from the network. Inverse problems, like this one, are inherently
ill-conditioned and pose unique difficulties not present in the forward problem [1, 17, 6, 11].

Nonlinear programming provides a framework for the inverse problem. In Section 1.1
we formulate an infinite dimensional least squares minimization, subject to the constraints
of the water network model. We make no assumption about the time or location of the
contamination and introduce fully time dependent injection terms at every network node.
The water network model contains algebraic and ordinary differential equations that are a
function of time alone and partial differential equations for network pipes that are a function
of both time and displacement. A naive discretization of this system produces a large scale,
nonlinear math programming problem that is intractable by current solution techniques. To
overcome this difficulty, we consider formulations that remove the need to discretize along
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the length of the pipes.
We present an origin tracking algorithm in Section 2 that reformulates the partial dif-

ferential pipe expressions into algebraic constraints with time delays. This algorithm char-
acterizes the time delay between concentrations at the pipe boundaries, removing the need
to discretize in space. In Section 3, we present the time discretized inverse formulation as a
quadratic programming problem that is tractable for current large scale tools. For reasonable
scenarios, this quadratic program has nonunique solutions and regularization is necessary to
force a unique solution.

In Section 4, we demonstrate the behavior of this formulation on some small numerical
test problems and also demonstrate the effectiveness of this approach on a real municipal
water network model with a variety of contamination locations and sensor configurations.
Section 5 then concludes the paper and outlines areas for future work.

1.1 Problem Formulation

Water distribution systems are often described by a network of links and nodes, where
links represent pipes, pumps, or valves, and nodes represent sources, tanks, or junctions.
Considering every pipe in a large municipal water network is often unreasonable and most
models collapse regions of the network, modeling individual industrial or residential areas
as single network nodes. When simulating these systems, it is usually assumed that the
low concentrations of secondary species in the network do not dramatically affect fluid flow
properties. Therefore, the flow and concentration calculations can be decoupled into two
separate models, the hydraulic model and the water quality model. Generally, algorithms
assume the consumption demands are constant over the hydraulic timestep, and solution of
the hydraulic model gives piecewise constant profiles for the network flow rates. The water
quality solution can then be determined by a variety of existing techniques [7, 14, 13, 19, 15].
In this work, we are concerned only with the water quality analysis and assume that the flow
profiles are known, from flow measurements, hydraulic simulations, historical data, or some
combination.

With known flow rates and velocities as inputs, we develop the water quality model for
the network, using P , J and S to refer to the complete sets of all pipes, junctions, and
storage tanks respectively. We will use c̄i(x, t), i ∈ P to represent the concentration in the
pipes and ĉk(t), k ∈ N to represent the concentration at the nodes, where N = J ∪ S is
the complete set of all nodes, including junctions and storage tanks. Here, t ∈ [0..tf ] is
time, and x ≥ 0 is the displacement along a pipe. In developing the model, we will need
to refer to connections and concentrations at pipe boundaries. Choosing to define these
boundaries based on flow direction, Figure 1 shows the notation used for a flow direction
from left to right. The designation x=Ii(t) refers to the boundary where fluid is entering
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Figure 1: Link Boundary Designation. Ii(t) indicates the inlet of the link, based on the current flow direction,
while Oi(t) indicates the outlet of the link. The index ki(t) always refers to the node connected at the inlet.

the link, and ki(t) is the index of the node connected at this boundary, in this case, node A.
The designation x=Oi(t), refers to the boundary where fluid is leaving the link. Note that
these designations are time dependent and change with the flow direction. In the case of
stagnant flow, the boundary designations are arbitrary with the only restriction that they
refer to opposing ends of the pipe. Pumps and valves are modeled as zero length pipes, and
reservoirs are modeled as junctions with known external sources. We assume there is no
decay reaction for the contaminant, although first order decay can easily be included in the
formulation.

While the outer regions of the network may have low flow rates and stochastic demand
patterns, plug flow is assumed valid along the main distribution lines represented in the col-
lapsed model. The contaminant profiles in pipe i are then governed by the partial differential
equation for advective transport,

∂c̄i(x, t)

∂t
+ ui(t)

∂c̄i(x, t)

∂x
= 0, (1)

with the additional inlet and initial conditions,

c̄i(x=Ii(t), t) = ĉki(t)(t), (2)

c̄i(x, t=0) = 0, (3)

where ui(t) is the known fluid velocity.
Assuming complete mixing, we write the mass balance for junction k as,

ĉk(t) =


 ∑

i∈Γk(t)

Qi(t) c̄i(x=Oi(t), t)


 + mk(t)


 ∑

i∈Γk(t)

Qi(t)


 + Qext

k (t) + Qinj
k (t)

, (4)
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where Γk(t) is the set of all pipes flowing into node k at time t. Qi(t) is the known volumetric
flow rate from pipe i, and Qext

k (t) is the volumetric flow rate for known external sources (e.g.
reservoir flow). In this application, all known sources are assumed to have zero contaminant
concentration. Instead, we model the unknown contaminations as time dependent mass
booster injections [12], mk(t), to every node and assume negligible flow rates. In practice,
the volumetric flow rates of these injections, Qinj

k (t), will not be known and we set them to
a small quantity relative to other network flow rates.

We write the differential mass balance for storage tank k as,

Vk(t)
dĉk(t)

dt
=


 ∑

i∈Γk(t)

Qi(t) c̄i(x=Oi(t), t)


 + mk(t)

−




 ∑

i∈Γk(t)

Qi(t)


 + Qext

k (t) + Qinj
k (t)


 ĉk(t),

(5)

with the initial condition,
ĉk(t=0) = 0. (6)

Here, we assume there is no contaminant present in the system initially, but we could also
formulate (6) to include the initial tank concentration as an unknown.

Since we have assumed that the flow pattern is independent of the composition, the
volumetric flow rates, Qi(t) and Qext

k , and the tank volumes, Vk(t), are predetermined. As a
result, c̄i, ĉk, and mk are the only variables and equations (1-6) form a linear time varying
system. We then write a weighted least squares formulation of the inverse problem using pi

to represent the equations (1-3) for the links, jk to represent equation (4) for the junctions,
and sk to represent equations (5) and (6) for the storage tanks as,

min
m(t),c̄(x,t),ĉ(t)

Ψ =
∑

r∈Θs

∑

k∈Ns

1
2

∫ tf

0
wk(t) (ĉk(t)− ĉ?

k(t))
2 δ(t− tr) dt

s.t. pi( c̄i(x, t), ĉ(t) ) = 0 ∀i ∈ P, (7)
jk( c̄(x, t), ĉk(t),mk(t) ) = 0 ∀k ∈ J ,

sk( c̄(x, t), ĉk(t),mk(t) ) = 0 ∀k ∈ S,

mk(t) ≥ 0 ∀k ∈ N .

The subset, Ns ⊆ N , is the set of nodes with installed sensors, and the measured con-
centrations, ĉ?

k(t), will not be known continuously in time, but rather at discrete sampling
points in Θs, described using the standard delta function, δ. The function, wk(t), is a time
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dependent weight for the concentration errors. We use a flow based weighting function for
each sensor node, shifting the error measure from a concentration basis to a mass basis.

One could view the traditional forward problem as that of setting the mass injections,
mk(t), and solving (using (1-6)) for the pipe and node concentrations, c̄i(t), and ĉk(t) respec-
tively. In the optimization problem (7), the solution vectors are the complete time profiles
of the unknown variables c̄i(x, t), ĉk(t), and mk(t), for all i ∈ P , k ∈ N . The values of
the injection terms, mk(t), are the profiles of interest, where significantly positive values
for a particular node, k, indicate a potential contaminant source location. Problem (7) is
an infinite dimensional optimization problem subject to algebraic, ordinary differential, and
partial differential constraints.

1.2 Solution Techniques

Solution approaches for differential programming problems can be separated into two general
classes, direct and indirect [3]. Indirect methods use a variational approach to write the first
order optimality conditions as a boundary value problem. Direct methods, on the other hand,
apply optimization tools directly to a discretized form of the differential model. Categories
of direct methods differ in their treatment of model constraints and algorithms exist to solve
the model constraints sequentially, simultaneously, or by some blend of the two.

Direct Sequential methods discretize the independent variables (control variables or in-
version parameters) only. Given an initial guess for the profiles of these variables, standard
solution techniques for the forward problem are used to evaluate the model at each iteration
of the optimization and calculate values for the objective function. Derivative information is
required with respect to the independent variables at each of the discretized points and can
be calculated by various techniques, including the sensitivity equations, adjoint equations,
or finite difference. The optimization problem itself is in the space of the independent vari-
ables only and is small by comparison. However, calculation of derivative information can
be computationally expensive. Also, the forward problem is often solved using an iterative
technique and noise in the solution of the forward problem can cause convergence difficulties
in the optimization.

Direct Simultaneous methods fully discretize all the unknown variables in the problem and
solve the resulting system as a large scale optimization problem with algebraic constraints.
The forward problem is converged only once, along with the optimality conditions. Accurate
analytical derivatives are often straightforward and efficient to calculate, and significant
computational gains over the standard sequential approach are possible using this more
intrusive technique. A review of direct and indirect techniques as applied to optimization of
differentially constrained problems can be found in Cervantes and Biegler [4].

Both the simultaneous and sequential techniques require some form of the water qual-

6



ity model. Traditional water quality simulation methods can be classified as Eulerian or
Lagrangian [13, 15, 19]. Eulerian methods discretize the network model in both time and
space, tracking the concentration at fixed points or volumes within the pipe. Lagrangian
methods discretize in time alone and track the concentrations of discrete volume elements
as they move through the network.

In a previous work [16], we applied a direct sequential algorithm to solve problem (7).
The model constraints representing the forward problem, (1-6) , were solved at each itera-
tion using the existing water network simulation package, EPANET [12]. We then used a
standard sequential quadratic programming tool to perform the optimization. Although the
Lagrangian formulation used by EPANET provided efficient solution of the forward problem,
it was not clear how to efficiently calculate derivatives, so finite differences were used. The
unreasonable computational cost of calculating finite differences across the model prevented
complete discretization of the time dependent injection terms, mk(t). Instead, the time dis-
cretized profiles were reduced to single scalar parameters, allowing solutions for constant
injection or initial condition contaminations only. Nevertheless, this approach demonstrated
the potential for optimization techniques. In this current work, we use a direct simultaneous
approach to overcome the difficulties encountered with the sequential method and solve the
fully time dependent problem.

The simultaneous approach requires an explicit mathematical representation of the dis-
cretized water quality model. While the Lagrangian technique provides efficient simulation,
it is not obvious how to formulate this model in a simultaneous setting. On the other hand,
Eulerian techniques provide a straightforward representation, but the complete model, dis-
cretized in both time and space, produces a nonlinear program that is intractable for current
tools. Let nt and nx be the number of discretizations in time and space respectively. The
fully discretized model has a constraint count on the order of |P| ·nt ·nx

1 + |J | ·nt + |S| ·nt,
and an approximate variable count of |P| · nt · nx + 2(|J | · nt + |S| · nt). The problem size
grows too large because of the need to discretize the pipe concentrations in both time and
space. To overcome this, we recognize that the injection terms, node concentrations, and
objective function are all dependent on time alone. As well, the node constraints only re-
quire pipe concentrations at the pipe boundaries. The only constraint that directly uses the
spatial discretization is the pipe equation (1). Since the solution to this equation at either
boundary can be represented by an algebraic expression with time delay, we are guided to
seek a formulation of the network model that does not require a discretization in space. In
particular, we desire a model reformulation with the following properties:

• We want to include the water quality model within an optimization problem that may

1In practice, the number of discretizations in xi would be different for each pipe i, but if we consider nx

to be some averaged value, the argument remains the same.
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have additional constraints and requirements. As such, the formulation should have a
straightforward mathematical representation.

• The discretized model must be a reasonable size for current large scale nonlinear pro-
gramming tools. This likely requires a reformulation of the pipe constraints that re-
moves the need to discretize in space.

• Applications often require concentration variables for many nodes at many points in
time. In particular, our optimization formulation requires concentration variables at
all sensor nodes and all sample times. Any model preprocessing should be efficient for
a large number of both source and output nodes.

Our proposed approach is related to the recently developed particle backtracking algo-
rithm. This algorithm, proposed by Zierolf et al. [19], and extended by Shang et al. [15],
reduces the water quality model down to its essential elements. The algorithm calculates im-
pact coefficients which describe the concentrations of selected output nodes as a function of
network sources and tank concentrations. The impact coefficients are calculated by tracking
a particle in reverse time, from the output node, back through the network, to the source
nodes. The time delays associated with paths through the network are described exactly and
numerical error is only introduced by discretized tank equations. This algorithm could be
used to evaluate the time delay expressions for every sensor node at all sample times, con-
sidering a mass secondary input to each node. This technique satisfies our first two criteria,
providing a reduced model with a straightforward mathematical representation. Unfortu-
nately, difficulties include the cost of evaluating time delay expressions for a large number
of nodes at many points in time. Instead we propose a technique that considers the time
delays of each pipe individually and scales efficiently to large networks when considering all
nodes in the network model.

2 Reformulating the Pipe Constraints

The goal of the algorithm described here is to reformulate the partial differential pipe equa-
tions (1-3), into a set of algebraic constraints. We remove the need to discretize along the
length of the pipes by considering concentrations at the pipe boundaries only. We then
characterize the time delays associated with each pipe in the network. Of course, these
time delays are themselves time dependent and will be affected by changing flow conditions.
Choosing any appropriate time discretization, l ∈ Θ, we can discretize the pipe boundary
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concentrations, node concentrations, and injection terms,

c̄ =




c̄i(x=Ii(tl), tl)
...

c̄i(x=Oi(tl), tl)
...


 , ĉ =

[
ĉk(tl)

...

]
, m =

[
mk(tl)

...

]
,

∀i ∈ P ,
∀k ∈ N ,
∀l ∈ Θ.

(8)

With this discretization, the algebraic expressions for the concentrations at the pipe bound-
aries can be represented as a linear system,

P̄ c̄ + P̂ ĉ = 0, (9)

where P̄ and P̂ will be matrices of zeros and ones.
To demonstrate this, consider a network where the volumetric flow rates, Qk(t), and

fluid velocities, ui(t), are known and can reverse and stagnate. The concentration at any
point in pipe i originated from one of three possibilities: the initial concentration in the
pipe at time zero, c̄(x, t=0), or the concentration of either connected node at the current or
previous timestep. Since we assume there is no initial concentration in the pipe, the right
hand side of equation (9) is zero. The matrices P̄ and P̂ link discretized pipe boundary
concentrations with the appropriate discretized node concentrations, characterizing the time
delays in the network pipes. An expression for the concentration at one boundary will always
be straightforward to define as c̄(x = I(tl), tl) = ĉki(tl). For example, in the case of flow from
left to right, the concentration at the left side of the pipe will always be equivalent to that
of the connected node at the current timestep. With general flow patterns, the relationship
for the alternate end is more difficult to characterize.

To find this relationship, we propose an origin tracking algorithm based on the water
quality method presented by Liou and Kroon [7]. Our algorithm exploits the efficiency
of the Lagrangian technique, but while traditional Lagrangian methods track the actual
concentration value of fluid elements as they move through the network, we instead track
the origin of each fluid element in the pipe.

To formalize this idea, Figure 2 shows pipe i with flow conditions from left to right.
For each timestep, l ∈ Θ, we wish to find expressions for the concentration at each pipe
boundary. At timestep l=1, a fluid element is created at the left boundary and we can
record its originating node as “A” and its originating timestep as “1”. The concentration
at this end of the pipe is equivalent to the immediate concentration from node A, that is
c̄(x=Ii(t1), t1) = ĉA(t1). The concentration at the right boundary of the pipe is equal to the
initial loading in the pipe, c̄(x=Oi(t1), t1) = 0. As time progresses, the element advances
through the pipe. Assuming the element is pushed from the pipe at timestep l=5, the
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Figure 2: General Pipe Diagram. This figure illustrates the flow of a single volume element through a pipe.
Tracking this element allows us to determine the approximate time delays at each point in time.

pipe concentration at the left boundary is still equivalent to the current value from node
A, c̄(x=Ii(t5), t5) = ĉA(t5). The concentration at the right boundary, however, is now the
same as the value from node A at timestep 1, c̄(x=Oi(t1), t1) = ĉA(t1). With this approach
we can find time delay expressions defining the boundary concentrations for each pipe at
every timestep. The result of this characterization is a set of algebraic expressions, which
are linear in c̄ and ĉ.

2.1 Origin Tracking Algorithm

The origin tracking algorithm is used to generate the linear system (9) that replaces equations
(1-3) in optimization problem (7). In developing this algorithm, the Lagrangian method of
Liou and Kroon is simplified in two ways. First, we assume that the set of discrete points
in time are known and fixed. This allows us the flexibility to work with any discretization
scheme selected for the differential tank equations. Second, we do the analysis on a pipe
by pipe basis, not on the network as a whole. The processing and memory requirements
are then linear with the number of pipes and efficient for large networks. Although these
simplifications can introduce estimation errors in the time delays associated with paths
through the network, they provide efficient scaling and favorable sparsity in the model.

A description of the origin tracking algorithm is shown below, where i is the current pipe,
and l is the current timestep. In each tracked volume element, we store the originating node,
the originating timestep, and the current position of each of the element boundaries within
the pipe.
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Algorithm 1. Origin Tracking Algorithm

Step 0. Initialize Overall Algorithm

· let i = 0, the first pipe in the network

Step 1. Initialize Pipe Iterations

· clear the fluid elements

· let l = 0

· set c̄i(x=Ii(tl), t=tl) = c̄i(x=Oi(tl), t=tl) = 0

Step 2. Advance Elements

· ∆x=ui(tl) · (tl − tl−1)

· advance all currently tracked elements by ∆x

Step 3. Add New Elements

· create a new element at the top or bottom of the list depending on flow direction

· record the originating node as ki(tl), the current “inlet” node

· record the originating timestep as l

Step 4. Write Time Delay Expressions

· if stagnant flow,

· set the concentrations equal to the expressions from the last timestep

· otherwise,

· set c̄(x=Ii(tl), t=tl) = ĉki(tl)(tl)

· if there is no element bracketing a pipe boundary

· set c̄(x=Oi(tl), t=tl) = 0

· otherwise,

· read the data from the element bracketing the pipe boundary, store the
originating node as “n” and the originating timestep as τ

· set c̄(x=Oi(tl), t=tl) = ĉn(tτ )

Step 5. Crop Elements

· remove any elements that have advanced outside the pipe boundary
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· crop the length of any overhanging element

Step 6. Continue with the next timestep

· l = l + 1

· if tl ≤ tf , goto Step 2.

Step 7. Continue with the next pipe

· i = i + 1

· if i ∈ P , goto Step 1.

To illustrate this algorithm on a simple example, consider a 1000 foot long pipe, i, where
the velocity is 30 feet per minute from left to right for the first 40 minutes, -30 feet per minute
(right to left) for the next 40 minutes, and then stagnant. Using a timestep of 10 minutes,
the progression of the algorithm is illustrated in Figure 3. For the initial timestep, l = 0,
the boundary concentrations are both equal to the initial value. At l=1 (t=10 minutes), the
initial fluid in the pipe has been displaced by 300 feet. With flow from left to right, the
concentration at the left pipe boundary is equivalent to the immediate concentration from
node A (i.e. Ii(t1) = xA

i , c̄i(x=xA
i , t=t1) = ĉA(t1)). The concentration at the right pipe

boundary is still the initial value (i.e. Oi(t1) = xB
i , c̄i(x=xB

i , t=t1) = 0). As we proceed
three more timesteps, we completely push the initial fluid from the pipe. For l = 4, the
concentration at the left boundary is still the same as the node A, but the concentration
at the right boundary is now equivalent to that of node A from three timesteps previous,
c̄i(x=xB

i , t=t4) = ĉA(t1)
Reversing the flow, we begin pushing the volume elements back towards the inlet. At

l = 5, the concentration at the left boundary is the immediate value from node B, whereas
the fluid element leaving the left boundary of the pipe originated from node A at timestep
3. Advancing three more timesteps, we have pushed out all fluid originating from node A.
The concentration at the right boundary is still the immediate value from node B, and the
concentration at the left boundary is now a delayed value from node B. Finally, in timestep
l = 9, the flow is stagnant and the concentration expressions are duplicated from the previous
timestep.

Performing this algorithm for each pipe in the network, we can completely describe the
linear system (9). The computational cost of the algorithm is linear in the number of pipes
yet describes relationships for all pipe boundaries at all discretized points in time. Note that
this algorithm requires flow data and network structure only and is performed with no prior
knowledge of the source terms, m. This resulting linear system provides a straightforward
mathematical representation that characterizes the time delays and can easily be included
in the discretized optimization problem.
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Figure 3: Algorithm Example. This figure illustrates the origin tracking algorithm on a brief example with varying
flow direction.
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3 Discretized Nonlinear Program

Using the reformulation of the pipe constraints illustrated in Section 2, we can discretize
problem (7) in time alone, producing a reasonably sized nonlinear program. Although the
origin tracking algorithm allows the use of any discretization scheme, accuracy requirements
on the pipe time delays tend to govern the stepsize and we gain little benefit from a higher
order method. In this paper we use a simple backward Euler technique. However, we have
implemented more advanced techniques, like collocation on finite elements, with similar
results.

Choosing equally spaced intervals, h=tl− tl−1, we write the discrete form of equation (5)
as,

[
V (tl+1)

h
+


 ∑

i∈Γk(tl+1)

Qi(tl+1)


 + Qext

k (tl+1) + Qinj
k (tl+1)


 ĉk(tl+1)

− V (tl+1)

h
ĉk(tl)−


 ∑

i∈Γk(tl+1)

Qi(tl+1)c̄i(x=Oi, tl+1)


−mk(tl+1) = 0

for all k ∈ S, l ∈ Θ, where the initial condition is given by,

ĉk(t=0) = 0. (10)

The discretized junction equations from (4) are,

ĉk(tl)−


 ∑

i∈Γk(tl)

Qi(tl)c̄i(x=Oi, tl)


 + mk(tl)


 ∑

i∈Γk(tl)

Qi(tl)


 + Qext

k (tl) + Qinj
k (tl)

= 0, (11)

for all k ∈ J , l ∈ Θ; l 6= 0. Difficulty arises when all flows to a junction are stagnant. In this
case, we replace equation (11) with ĉk(tl) = ĉk(tl−1) or ĉk(t0) = 0, if required. The set of
discretized equations (9-11), for the pipes, junctions, and tanks can be written as the linear
system,

[
P̄ P̂ 0

N̄ N̂ M

] 


c̄
ĉ
m


 =

[
0
0

]
, (12)
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where c̄, ĉ, and m are the complete vectors of discretized concentrations described by (8).
The junction and tank equations are grouped together and [ N̄ N̂ M ] is the Jacobian of
these discretized node equations with respect to the unknown variables. Discretizing the
objective from (7) we have,

ΨD(ĉ) =
1

2
[ĉ− ĉ?]T W [ĉ− ĉ?] . (13)

Here, W is the diagonal matrix of flow based weights for the concentration error and will
only have nonzero entries corresponding to sensor nodes at sample times. These weights are
all positive, so W is a positive semidefinite matrix2. Minimizing the quadratic objective (13),
subject to the linear constraint equations (12), and bounds on the injection terms, m ≥ 0,
we produce a convex quadratic program. As such, any solution of this problem is a global
minimum, but the solution, [c̄, ĉ, m] is not necessarily a unique minimizer.

To illustrate this, consider a simple two node network with flow from node A to node B
and a sensor at node B only. Assume, given current flow rates, that the travel time between
the nodes is one hour. If the sensor at node B registers concentration c? at time t?, it is clear
that the contamination could have been injected at node B at time t?. But it could also
have been injected at node A at time t? minus one hour. In fact, if we allow the possibility
of multiple injections, any linear combination of these two injections summing to c? is a
possible solution, giving us infinitely many solutions to the optimization problem.

Source inversion problems, like this one, are inherently ill-posed [6, 17, 1]. Rojas [11]
classifies ill-conditioned problems in two general categories, discrete ill-posed problems and
rank deficient problems. Rank deficient problems have a coefficient matrix where small
singular values are clearly separated from the large singular values. The contaminant source
determination problem exhibits this deficiency because of the nonuniqueness described above.
In order to force a unique solution for this problem, we introduce a regularization term in the
objective, ρ1

2
mT Rm, and write the complete nonlinear program for the contaminant source

inversion problem as,

min
ĉ,m

1

2
[ĉ− ĉ?]T W [ĉ− ĉ?] + ρ

1

2
mT Rm

s.t. P̄ c̄ + P̂ ĉ = 0, (14)

N̄ c̄ + N̂ ĉ + Mm = 0,

m ≥ 0,

2In the unusual circumstance where there is a sensor at every node and data is sampled at every timestep,
W will be nonsingular and positive definite.
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where R is a positive definite regularization matrix. The exact form of R will depend on
the type of regularization used. As shown below, any positive value for ρ is sufficient to
guarantee a unique solution to problem (14).

A necessary and sufficient condition for a unique solution to the quadratic programming
problem is positive definiteness of the reduced Hessian [9] and full rank of the active con-
straint set. For convenience, we can eliminate the pipe concentrations, c̄, and write problem
(14) as,

min
ĉ,m

1

2
[ĉ− ĉ?]T W [ĉ− ĉ?] + ρ

1

2
mT Rm

s.t. Nĉ + Mm = 0, (15)

m ≥ 0,

where N = [N̂−N̄P̄−1P̂ ]. Considering a particular solution to this problem, we can partition
the injection variables so that M0 refers to the Jacobian of the node equations with respect
to the injection variables with zero values (variables at the lower bound), and M+ refers to
the Jacobian of the node equations with respect to the injection variables that have positive
values (away from the bound). The combined Jacobian is then,

[
N M0 M+

0 I 0

] 


ĉ
m0

m+




Using reduction of variables [8], we can produce null space matrix, Z, for the Jacobian of
the constraints,

Z =

[
D
I

]
; D = −

[
N M0

0 I

]−1 [
M+

0

]
= −

[
N−1M+

0

]

and write the reduced Hessian of the Lagrangian,

[
DT I

]



W 0 0
0 ρR0 0
0 0 ρR+




[
D
I

]
= MT

+N−T WN−1M+ + ρR+. (16)

Since the weighting matrix, W , will be positive semidefinite, the first term in (16), MT
+N−T WN−1M+,

will be, at least, positive semidefinite. Since R (and hence R+) is positive definite, any small
positive value for ρ will ensure that the reduced Hessian is positive definite. Given full rank
of [NM+], in turn, guarantees that the solution to problem (14) will be unique. In practice,
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ρ will need to be sufficiently large to overcome any inaccuracies due to machine precision
and ill-conditioning.

The regularized formulation presented in (14) is a well-posed quadratic program that can
be solved with a variety of large scale optimization tools. In the next section we will illustrate
the effectiveness of this formulation for finding both the time and location of injections for
a number of contamination scenarios.

4 Numerical Results

We will first illustrate the behavior of problem formulation (14) on a small fictitious network.
Following this discussion, we present numerical results for a real municipal network model
withdifferent contamination locations and sensor configurations. The procedure used for
numerical testing is illustrated in Figure 4. Using the network model and choosing an
injection location, we simulate a contamination scenario with the water network simulation
package, EPANET [12]. We have developed a tool to formulate the optimization problem.
Our formulation tool requires the horizon information (the start and end time to consider
for the inversion), the sensor configuration, and the integration timestep. It then reads
the network structure from EPANET input, and the network flow rates and concentrations
from EPANET output. Using the origin tracking algorithm, the tool formulates problem
(14) as an AMPL [5] model. AMPL is a modeling language that provides both first and
second order derivative information using automatic differentiation. IPOPT, a nonlinear
interior point optimization package [18], is then used to solve the optimization problem and
find solutions for both the network concentrations and the injection profiles. To verify the
effectiveness of the formulation, we examine the injection profiles, m, from the optimization
solution and compare against the actual profiles used in the simulated contamination.

For all examples, we have selected a 5 minute integration timestep and a 5 minute sample
interval. Since the sampling interval is equivalent to the integration timestep, we set the
regularization matrix R = I, approximating

∑
k∈N

∫ tf
0

mk(t)
2dt. For a sampling interval that

was longer than the timestep, one could regularize with
∑

k∈N
∫ tf
0

(
∂mk(t)

∂t

)2

dt to impose a

smoothness condition on the injection profiles between sampling intervals. The regularization
parameter, ρ, is set to 1·10−4. Fortunately, the numerical results are reasonable over a wide
range of values for ρ and no specific tuning is required to find solutions for the different
injection locations studied.
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Figure 4: Formulation Test Procedure. EPANET is used to calculate network hydraulics and provide the
simulated sensor measurements. We then formulate the optimization problem in AMPL and solve using IPOPT.
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Figure 5: Grid Network Example A small symmetric grid network with sensors installed at every second node,
indicated by the shaded circles. Here, we simulate a contamination at node 13.

4.1 Example 1. Symmetric Grid Network

The first example we will consider is a simple grid network, shown in Figure 5, where flows
are in the direction indicated, consumption demands exist at the boundary nodes only, and
the single known external water source is a reservoir at node 26. The time delays between
the nodes range from approximately half an hour to five hours. The shaded nodes indicate
installed sensors, and with sensors at every second node, this example is symmetric about
the diagonal from node 1 to node 25. We use EPANET to simulate a 30 minute long injection
from node 13 at hour 1.

First, we run the optimization at hour 4, considering only the previous 4 hours of sensor
and flow data. The solution to the inverse problem is given in Figure 6, where we have solved
for the complete injection profiles of all nodes, showing only those with significant values.
Even though our regularized problem is guaranteed to have a single unique solution, this
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Figure 6: Grid Network Solution 1. Solution for an injection at node 13 using a 4 hour time horizon.

single solution indicates several possible injection scenarios. One possibility is the solution
we were hoping for, an injection at node 13 at hour 1. The contamination could also have
occured at nodes 9 and 17 at approximately hour 0, or at nodes 8 and 12 at approximately
hour 2. Although simultaneous injections may seem unlikely, our formulation makes no
restriction on the number of injections or the injection time and solves for these injection
scenarios as well.

We can see from the network structure, sensor configuration, and flow direction, that
it is impossible to distinguish the actual injection node 13, from injections at nodes 8 and
12. However, we would expect the sensors at nodes 4 and 16 to measure any contaminant
that was injected at nodes 9 and 17. In this particular network, the time delays for links
17-16 and 9-4 are just over 4 hours. We ran the optimization at hour 4 and only considered
the previous 4 hours of data (only 3 hours past the actual injection). Therefore, the sensor
measurements at nodes 4 and 16 do not provide any information about injections at nodes
9 and 17 in the time horizon considered.

Using the same simulated injection, but running the optimization at hour 8, considering
the previous 8 hours of simulation data, we find the solution shown in Figure 7. Here, nodes
9 and 17 have now been excluded as possible injection locations. This simple example shows
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Figure 7: Grid Network Solution 2. Solution for an injection at node 13 with an 8 hour time horizon. Note that
nodes 9 and 17 are now excluded as possible injection locations.
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the importance of sufficient horizon lengths and concentration measurements of zero.

4.2 Example 2. Real Municipal Network Model

We have tested our formulation on a model for a real municipal water network with 469
nodes and 635 links. We consider four injection locations in the network, A through D,
shown in Figure 8. We selected three locations where contaminant spreads readily through
a major portion of the network, A,B, and C. Location A is along a major feed line to the
network, while locations B and C are interior to the network. We have also selected a node,
at location D, with minimal spreading of contaminant through the network. For each of the
four locations, we simulate a 16 hour time segment, with a 30 minute injection at hour 8.
We would expect an attack or accidental injection to be significantly longer than 30 minutes,
but we use this short injection time to illustrate the algorithm performance on a difficult
injection scenario. A longer (or continuous) injection would provide even more information
for the optimization and, in general, the formulation should be more effective.

We wish to verify the effectiveness of the formulation for a large number of test examples.
Visually inspecting each of the profiles, like those shown in Figures 6 and 7 is unreasonable.
Instead, we seek a single scalar measure of the effectiveness of the formulation in identifying
the actual injection node. After running the optimization we integrate the solution profiles for
all the injection terms, γk =

∫ tf
t=0

mk(t)dt. We then sort the nodes, in descending order of γk.
This provides a rank for the solution profile of each node in the network. Obviously, we desire
the solution profile corresponding to the actual injection node to be ranked first (i.e. the
optimization solution estimates the most prominent injection at the node where the actual
injection occured). Unfortunately, because of the limited sensor grid and nonuniqueness,
this may not be possible.

While measuring the effectiveness of the formulation, we are interested in two key indi-
cators.

1. The Number of Installed Sensors: We would like the algorithm to identify injection
locations using as few sensors as possible. The placement of installed sensors will likely
be critical in reducing this number.

2. Identification Time: Note, this does not refer to the time for an optimization to execute,
but rather to the time required for the contaminant to reach installed sensors, plus
the additional time required to accrue enough information for the optimization to be
effective. This constitutes the total ellapsed time, following a contamination, before the
system can make a reasonable estimate of the injection location. We give an indicator
of this time by
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Figure 8: Municipal Water Network Injection Locations. Four simulated injection locations, A through
D, are shown in the diagram of the network model.
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Figure 9 shows the results for over 1000 tests on the four injection scenarios, using the
same formulation parameters as the previous example. For each of the injection locations,
we vary both the number of sensors and the time of optimization. Randomizing a list of all
the network nodes, we select the first 5 nodes as sensor locations and run the optimization
for each of the times shown. We then increase the number of sensors by adding additional
sensors from the remaining nodes on the list. In this way, the sensors from the previous
configuration remain in their original locations and we only add new sensor locations. By
varying the time of the optimization, we are able to deduce the identification time for the
particular scenario and sensor configuration. With the 5 minute integration stepsize and
8 hour time horizon, each optimization problem is a large scale nonlinear program with
212352 variables, 167232 equality constraints, and 45120 inequality constraints3. For each
optimization, we plot the rank of the solution profile for the simulated injection node, shown
by the shading scale to the right.

The hashed regions indicate tests where none of the installed sensors had yet registered
any contaminant and thus there is no information to run the optimization. At t = 0 hours,
the time of the simulated injection, no sensors have measured contaminant, therefore we do
not expect any result for this entire column. In the top row of each contour plot, sensors are
installed at every node, and we expect rank 1 for each of the simulated injection scenarios.

The formulation is very effective for locations A through C, where we can determine the
injection location in very little time with few sensors. It is important to remember that we
have placed sensors randomly and are only simulating a 30 minute injection. We expect even
better results when sensors are placed optimally and injections are longer.

The effectiveness is influenced dramatically by the flow patterns at the injection location.
Although injection locations B,C, and D are all within the same region of the network, the
effectiveness of the formulation is different for location D. The flow conditions from injection
location D do not cause significant spreading of the contaminant through the network, and
we expect a higher requirement on the number of installed sensors. Nevertheless, once there
are enough sensors to detect the contamination, the formulation is extremely effective at
determining the correct injection location and optimal sensor placement should reduce the
number of required sensors.

3The optimization problem is formulated for 96 timesteps, each with 470 node concentrations, 470 injec-
tion terms, 636 pipe concentrations, for both the inlet and the outlet. This gives us 96 · (2 · 470 + 2 · 636) =
212352 variables, 96 · (1 · 470 + 2 · 636) = 167232 equality constraints, and 96 · 470 = 45120 variable bounds.
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Figure 9: Rank of Optimization Solution for Simulated Injection Node. This figure illustrates the
effectiveness of the formulation in determining the correct injection node for simulated injections A through D. The rank of the
injection node is shown with the shading to the right of each contour plot. A low ranking indicates that the formulation has
been effective at identifying the injection location.
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5 Conclusions and Future Work

We have presented an algorithm for reformulating the pipe constraints of network water
quality models, dramatically reducing the size of the discretized problem. This algorithm
provides a straightforward mathematical representation of the pipe boundary concentrations,
and is efficient for large networks with many source and output nodes. Although we have
only demonstrated the origin tracking algorithm for the contaminant source determination
problem, its usefulness extends to other optimization and control problems.

The results of problem formulation (14) are very promising for the contamination source
determination problem and it is important to further develop the technology. Some areas of
future work include:

· The results for location D illustrate the importance of determining optimal sensor
locations. Current work in this area is useful for detection systems, but the objective
measures used may not be appropriate for the contamination source determination
problem. With estimates of the likely flow patterns through the network, we could use
network observability tools to determine sensor locations that reduce the amount of
nonuniqueness in solutions. While our formulation performs well on the test examples
studied, we can make no guarantee that the regularized solution includes all possible
injection scenarios. Also, to guarantee a unique solution of the unregularized problem
for any and all possible injection scenarios, we would require an installed sensor at each
and every node in the network. It may be important to reduce the number of possible
injection locations to make a guarantee of uniqueness for optimal sensor placement.

· No analysis has yet been done to test the reliability of this formulation in the face of
sensor failure or noise in flow rates and sensor measurements. An actual implementa-
tion would likely need to include a robust estimation phase that could remove potential
outliers in the measurement data. It is also important to quantify the uncertainties
associated with the data.

· Many contaminants will experience decay as they propagate through the network.
Reaction terms would enter the formulation through the models for the pipes and the
storage tanks. The storage tank equations are dependent on time alone and can be
easily modified to include reaction terms. The pipe equations are reformulated with
the origin tracking algorithm, which could be modified to include first order kinetic
decay expressions. Each element has a corresponding fixed volume, and the elapsed
time in the pipe is known from the resulting time delay. We would also now require
identification of the contamination species to include the correct reaction rate.
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· In each of the tests, the time for the optimization to execute on a 2.2 GHz Pentium
4 machine was under two minutes. This demonstrates that the formulation could be
used in a real time setting for the particular model studied. It is necessary to examine
the performance of this formulation for much larger community networks. Since the
time delays associated with large water networks are often long, it is reasonable to
assume that one could formulate the contamination source determination problem
on a subset of the entire network, formulating problem (14) for a region around the
detected contaminant. If multiple injections are suspected, multiple instances could be
formulated and solved simultaneously.

In conclusion, we have demonstrated that our problem formulation is very effective at
identifying the location of potential contamination sources in the water network. Using the
origin tracking algorithm, we can use the direct simultaneous approach to solve the fully
time dependent contamination source determination problem, a result that was previously
not possible with the direct sequential approach.
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[3] Lorenz T. Biegler, Arturo M. Cervantes, and Andreas Wächter. Advances in simultaneous strategies for dynamic process
optimization. Technical report, Department of Chemical Engineering, Carnegie Mellon University, February 2001. CAPD
Technical Report B-01-01.

[4] A. Cervantes and Lorenz T. Biegler. Optimization strategies for dynamic systems. In C. Floudas, P. Pardalos (Eds.),
Encyclopedia of Optimization, 2003.

[5] Robert Fourer, David M. Gay, and Brian W. Kernighan. AMPL: A Modeling Language for Mathematical Programming.
The Scientific Press (now an imprint of Boyd & Fraser Publishing Co.), Danvers, MA, USA, 1993.

[6] P. K. Lamm. Inverse problems and ill-posedness. Inverse Problems in Engineering, Theory and Practice, Americal Society
of Mechanical Engineers, pages 1–10, 1993.

27



[7] C. P. Liou and J. R. Kroon. Modeling the propogation of water-borne substances in distribution networks. J. Am. Water
Works Assoc., 79(11):54–58, 1987.

[8] Stephen G. Nash and Ariela Sofer. Linear and Nonlinear Programming. The McGraw-Hill Companies, Inc., 1996.

[9] Jorge Nocedal and Stephen J. Wright. Numerical Optimization. Springer-Verlag New York, Inc., 1999.

[10] Avi Ostfeld and Elad Salomons. An early warning detection system (ewds) for drinking water distribution systems security.
Proceedings of the EWRI Conference, Philadelphia, 2003.

[11] Marielba Rojas. A Large-Scale Trust-Region Approach to the Regularization of Discrete Ill-Posed Problems. PhD thesis,
Rice University, May 1998.

[12] L.A. Rossman. EPANET User’s Manual. Risk Reduction Engineering Laboratory, U.S. EPA, Cincinnati, 2000.

[13] Lewis A. Rossman and Paul F. Boulos. Numerical methods for modeling water quality in distribution systems: A com-
parison. Journal of Water Resources Planing and Management, 122(2):137–146, March/April 1996.

[14] Lewis A. Rossman, Paul F. Boulos, and Tom Altman. Discrete volume-element method for network water-quality models.
Journal of Water Resources Planning and Management, 119(5), September/October 1993.

[15] Feng Shang, James G. Uber, and Marios M. Polycarpou. Particle backtracking algorithm for water distribution systems
analysis. Journal of Environmental Engineering, pages 441–450, May 2002.

[16] Bart G. van Bloemen Waanders, Roscoe. A. Bartlett, Lorenz. T. Biegler, and Carl. D. Laird. Nonlinear programming
strategies for source detection of municipal water networks. Presented at EWRI Conference, Philadelphia, 2003.

[17] Curtis R. Vogel. Computational Methods for Inverse Problems. SIAM, Frontiers in Applied Mathematics, 2002.
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