# EXPERIENCE ON WHOLE BLOOD BACTERIAL CONTAMINATION

Cees L. van der Poel, MD, PhD

Sanquin Blood Supply Foundation

Amsterdam, The Netherlands



#### **BACKGROUND**



- Awareness on bacterial contamination of blood products
- Initial study of Soeterboek et al.: 0.6 % of whole blood units contaminated, but with a large 95 % confidence interval (0.1-2.8 %)
- Possible effect of overnight storage of whole blood on bacterial contamination
- Possible reduction by removal of intial volume, containing the 'skin plug'

#### STUDY DESIGN



#### Phase I

 Collection of sufficient amount of units to determine accurately the prevalence of bacterial contamination for whole blood collections under standard conditions in the Netherlands

#### Phase II

Determination of the effect of diversion of initial flow

# MATERIALS AND METHODS



BacT/Alert® system (Organon Teknika), CO<sub>2</sub> production measured

# BacT/Alert® system

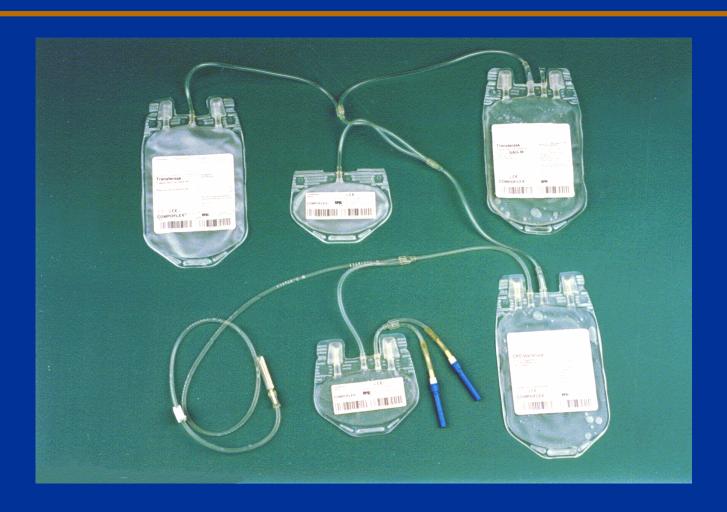




incubator



**Culture bottles** 


## MATERIALS AND METHODS (ctd)



- BacT/Alert® system (Organon Teknika), CO<sub>2</sub> production measured
- Modified Compoflex® 4-bag system (Fresenius/NPBI) with additional sampling bag and needles

# Special 5-bag system





### **VALIDATION OF SPECIAL 5-BAG**



- Collections, equal to standard bag system
- F VIII content in plasma: no difference
- component preparation: normal
- storage of erythrocytes: normal
- storage of platelets: normal
- sample in sampling bag: representative for whole unit

# MATERIALS AND METHODS (ctd)



- 7 days culture, 35°C. Positive signal: culture on blood agar plate, anaerobic and aerobic
- Standardized disinfection (FDA-approved) and collection methods
- Sole aseptic handling is transfer to BacT/Alert culture bottle (anaerobic and aerobic) in a laminair flow cabinet

#### AIMS OF PHASE I



- Reliable determination of prevalence of bacterial contamination of whole blood units (with 95 % confidence interval < 0.5 %)</li>
- Testing the effect of overnight storage as whole blood:

Group I: sampling/culture within 3 h

Group II: sampling/culture after overnight/20°C

#### **RESULTS PHASE I**



- Group I (within 2 hours): 9219 units collected;
  27 units positive (i.e. 0.29 %; 95 % confidence interval 0.19 0.43)
- Group II (overnight 20°C): 9038 units collected;
  36 units positive (i.e. 0.39 %; 95 % confidence interval 0.28 0.55)
- No significant difference, overall prevalence of whole blood contamination with bacteria:0.34 %

# DIFFERENTIATION OF POSITIVE SAMPLES

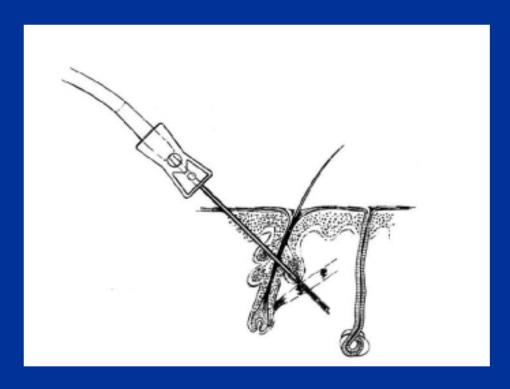
|                                  | group I | group II |
|----------------------------------|---------|----------|
| Staphylococcus sp. CNS           | 8       | 17       |
| Propionibacterium sp.            | 10      | 17       |
| Diphteroids, Corynebacterium sp. | 5       | 0        |
| Bacillus sp                      | 2       | 1        |
| Micrococcus sp.                  | 1       | 0        |
| Peptostreptococcus sp.           | 1       | 0        |
| not identified                   | 0       | 1        |

# **RESULTS PHASE I (ctd)**



- Similar distribution of species in both groups
- Mainly skin-associated, not 'pathogenic'
- Peptostreptococcus case: probably not intrinsic, also transient skin flora.

#### **CONCLUSIONS PHASE I**



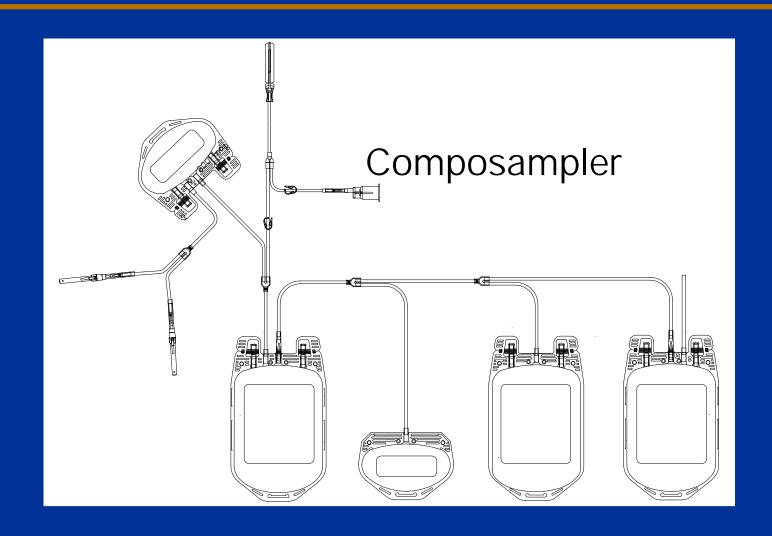

- Prevalence of bacterial contamination in whole blood collections is 0.34 % (lower than previously reported) with a small 95 % confidence interval
- Mainly skin-derived bacterial contamination: part should be preventable by improved disinfection and/or removal of first amount of blood
- No direct effect of overnight storage as whole blood (leukocytes have to be removed for the reported effect)

# **BACKGROUND PHASE II**



 Possible reduction by removal of initial collected volume containing the 'skin plug'




# MATERIALS AND METHODS Phase II



- Modified Compoflex® 4-bag system (Fresenius/NPBI) with Composampler® and additional sampling bag and needles
- other materials & methods same as Phase I

 Modified bag system was validated, like the system used in Phase I

# Special 5-bag system with Composampler®





#### AIMS OF PHASE II



- Measurement of the prevalence of bacterial contamination in whole blood units after diversion of the first 10 ml (with the determined prevalence in phase I as base level)
- Testing the effect of diversion in two groups:
  Group I: sampling/culture within 3 h
  Group II: sampling/culture after overnight/20°C

# **RESULTS OF PHASE II**



|                     | Standard whole blood collection | Diversion of the 1 <sup>st</sup> 10 ml |
|---------------------|---------------------------------|----------------------------------------|
|                     |                                 |                                        |
| Donations tested    | 18,257                          | 7,115                                  |
| Prevalence          | 0.34%                           | 0.21%                                  |
| Confidence interval | 0.25-0.44                       | 0.12-0.35                              |

## **RESULTS PHASE II (ctd)**



- After removal of the first 10-ml, the prevalence of bacteria was for both groups 0.21 %
- Group with immediate sampling: not significant
- Group with overnight sampling: significant decrease
- Total study: significant decrease: p < 0.05</li>

## DIFFERENTIATION OF POSITIVE SAMPLES

|                                  | Phase I | Phase II |
|----------------------------------|---------|----------|
| Staphylococcus sp. CNS           | 25      | 2        |
| Propionibacterium sp.            | 27      | 10       |
| Diphteroids, Corynebacterium sp. | 5       | 0        |
| Bacillus sp                      | 3       | 0        |
| Micrococcus sp.                  | 1       | 0        |
| Peptostreptococcus sp.           | 1       | 0        |
| Streptococcus bovis              | 0       | 1        |
| Gemella morbillorum              | 0       | 1        |
| Klebsiella pneumonia             | 0       | 1        |
| not identified                   | 1       | 0        |

# RESULTS PHASE II (ctd)



- The majority of bacteria were identified as *Propionibacterium species* (skin flora).
- A significant decrease of the prevalence of Staphylococcus species (p=0.015) was found.

#### **DISCUSSION**



findings supported by:

Wagner: study with in vitro model

Bruneau: indirect evidence by measuring the contamination in the first two fractions during collection

why only Staphylococcus sp. decreased?
 no real skin plugs but flaps?

## **DISCUSSION** (ctd)



- Even after introduction of this preventive measure, the theoretical contamination risk of random donor pooled platelet concentrates composed out of 5 single donor units is still considerable: about 1%. Additional testing required.
- First volume can be used for test purposes, provided that collection system can be assigned as "closed".

#### CONCLUSIONS



- Prevalence of bacterial contamination in whole blood collections is 0.34 % with a small 95 % confidence interval
- Prevalence of bacterial contamination in whole blood collections can be reduced significantly by removal of first amount of blood
- No gram negative bacteria cultured out of a total of 18,000 units of whole blood

# Acknowledgements

Dirk de Korte<sup>1</sup>, Jan.H. Marcelis<sup>2</sup>, Ad M. Soeterboek<sup>2</sup>

Sanquin CLB Division R&D, Dept. Transfusion Technology, Amsterdam, The Netherlands

Sanquin Blood Bank Division "de Meierij",

Eindhoven, The Netherlands