Service de Recherches de Métallurgie Physique

## CEA / DEN / DMN / SRMP

## Multiscale Modeling of Materials Kinetics under Irradiation

from the atomic to the macroscopic scale : a long standing activity at SRMP

- > What for ? Technical & Scientific Stakes
- > Tools, Scales, Coupling with experiment
- > Applications
- > Perspectives

## Our basic research themes

#### In order to control behavior in service and design of materials :

#### • Understand the kinetic pathways

microstructural evolution and resulting properties of « Driven materials » (submitted to various types of external forcing, mainly irradiation)

#### • Develop predictive tools

santicipate materials properties, assist in the development of new materials



- 1. Identify and modelize stability criteria, kinetic pathways : « dynamic phase diagrams »
- 2. Provide the theory and modeling of kinetic pathways with the same level of robustness as that currently achieved for cohesion
  - point defects populations and elementary properties thermodynamics & diffusion (ab initio, MD)
  - by physical mechanisms of diffusion, evolution models







## Self-interstitials in BBC Fe



CEA/DEN/DMN/SRMP

DOE Workshop Washington DC march 30 – april 2

## Point Defect clusters

#### Single-interstitials

- formation : <110> dumbbell (much more stable than <111>)
- migration : 3D
  (combined jumps more favorable than pure rotation or translation)

#### Di- & tri-interstitials

- parallel dumbbells <110>
- high binding energy 0.7eV (Di) 0.8 eV (Tri)
- low migration energy 0.4 eV  $\rightarrow$  diffuse without dissociation at low temperature
- <u>n-interstitials</u> : under way ...
  - <110>, <111> or <100> ? transition ?
  - mobiles or not?

#### $\Rightarrow$ towards dislocations loops and other PD clusters

- > Di-vacancy
  - migration barrier of di-vacancy = 0.61 eV  $\approx$  that of single vacancy (0.67 eV)
  - 3D motion

## Solutes & PD-solutes complexes

#### ➢ <u>Carbon</u>



- V-C interactions :
  - strongly attractive V-C : 0.41 eV
  - lowers effective formation energy & raise migration barriers of vacancies
    - $\rightarrow$  Diffusion coeff<sup>t</sup>, PD population

#### $\Rightarrow$ coupling with E-KMC (Jerk) simulations

- V-C complexes V<sub>m</sub>C<sub>n</sub>:
  - VC<sub>n</sub> repulsive for n > 3, V<sub>n</sub>C repulsive for n > 2
  - V-C complexes dissociate to migrate?
  - no attraction between <110> DB and nn C

### ≻ <u>Helium</u>

- Insertion site :
  - substitutional = stable configuration
  - tetrahedral = when produced in bulk
    from nuclear reactions
    (empirical potential predicts octahedral)
- He-V, He<sub>T</sub>-He<sub>T</sub>, He<sub>T</sub>-V, He<sub>n</sub>V<sub>m</sub>:
  - all interactions are attractive



fluctuation of local atomic stress  $\Rightarrow$  scatter of E<sub>f</sub> distribution



CEA/DEN/DMN/SRMP

DOE Workshop Washington DC march 30 – april 210



CEA/DEN/DMN/SRMP

## Coupling Ab initio with slow kinetics :

## **Event-based Monte Carlo**

- « objects » (cavities, clusters, dislocations, GB, surfaces...) : position, size
  - « mobile defects » (i, v, minor impurities...) : position, mobility
  - « events » (defect + object → new configuration)
  - probability laws for occurrence of events : impingement & dissociation

Recovery of pure BCC-Fe after irradiation with 3 MeV electrons JERK Program coupled with Ab Initio

J. Dalla Torre, Chu Chun Fu, F. Willaime 2003

CEA/DEN/DMN/SRMP







atomic disorder  $\rightarrow$  wide variety of structures  $\Rightarrow$  wide distribution of  $E_f$ 

## **Evolution of microstructure after irradiation**

Recovery of pure iron after irradiation with 3 MeV electron Resistivity measurements, Takaki et al. 1983





## **Evolution of microstructure after irradiation**

Recovery of pure iron after irradiation with 3 MeV electron Conclusions – Coupling Ab Initio–EKMC (Jerk)

#### > Monte Carlo simulations in excellent agreement with measurements

- temperature peaks reproduced within 10 K
- dose effects as well :
  - $\checkmark\,$  IE, II, III stages shift towards lower temperatures
  - ✓ 500-600K stage appears at high doses only

#### Identification/ validation of associated mechanisms

- confirms identification of recovery stages
  - ✓ stage 500-600K : associated with vacancy clusters dissociation
  - ✓ stage III : migration of di-vacancies improves agreement / experiment
- confirms E<sub>f</sub> calculations for vacancies :
  - ✓ ab initio values agree with high experimental values (2.1–2.4 eV) ; lower experimental values (1.6 eV) are incompatible : due to C-V binding E

## Slow kinetics : Thermal aging

Thermal aging

#### Demixtion of Fe-Cu : precipitation of Cu in Fe and steel

A. Barbu, F. Soisson, Y. Le Bouar 2000-2002



Modelization : Kinetic Monte Carlo (Rigid Lattice)

Observation : Tomographic (3D) Atom pROBE





## Slow kinetics : Kinetic Monte Carlo (Rigid Lattice)



CEA/DEN/DMN/SRMP

DOE Workshop Washington DC march 30 – april 2 20







#### Solute concentration profile

CEA/DEN/DMN/SRMP

DOE Workshop Washington DC march 30 - april 2

## Slow kinetics : Self-consistent Mean Field



Evolution of grain boundary composition in 316 SS under irradiation



## Slow kinetics : Rate theory (« Cluster dynamics »)

#### Solute clustering under neutron irradiation



B. Radiguet, Ph. Pareige (GPM Rouen University), A. Barbu, 2002-2004





Solute clusters : 2 nm -  $5 \times 10^{23}$  m<sup>-3</sup>



## Mechanisms of Cu clustering in <u>Fe</u>-0.1% Cu





CEA/DEN/DMN/SRMP

## Slow kinetics : from atomistic to mesoscopic models

#### Monte Carlo simulation

Steady state cluster size distribution



Al - 1 at.% Zr 450°C

## Slow kinetics : from atomistic to mesoscopic models

Improved NGC calculation : test solution models

œ

Steady state cluster size distribution





## Kinetic evolution of radiation damage : basic challenges

#### Towards increased complexity : real materials and conditions

#### I. Elementary atomic transport mechanisms

- ✤ more refined and reliable input data in kinetic models
- « difficult » materials : Fe, Zr, oxides, carbides (all !)
- complex defect population and migration pathways in alloys

#### II. Kinetic models of μ-chemistry & μ-structure evolution

- beyond the models for isolated point defects and clusters in pure or dilute binary alloys, account for :
- multi-component, concentrated, heterogeneous alloys
- incidence of mesoscale microstructure (GB's, dislocations, surfaces...)
- wider space and time scales
- multiscale coupling with I
- atomistics enrich rather than discard classical theories: another multiscale coupling

#### **Physics under construction :** numerical simulation still a tool to build safe physical bases

- explore, test and improve models : numerical experimentation
- couple with dedicated physical experiments

#### Coupling experiment and simulation → Associate versatile irradiation & characterization tools at the same scale Volume $\rightarrow$ identical in experiments and simulations Surfaces $\rightarrow$ taken into account Charged particles: Triple Beam + in situ TEM, e<sup>-</sup> VDG, HVTEM Irradiation ions e ions e ions e<sup>-</sup> ions e STEM **Direct observation** thin thin GB tip foil foil **Mechanical testing** EDS, EELS AES, XPS **TAP** TEM 110 **Nanoindentation** Solute Surface Grain boundary Loops, cavities, clusters segregation segregation precipitates TEM = Transmission e- microscopy Simulation box TAP = Tomographic Atom Probe AES = Auger e- spectroscopy XPS = X ray Photoelectron spectroscopy ~100 nm STEM = Sanning transmission e- microscopy EDS = Energy dispersive X-ray spectroscopy 400 nm EELS= e- energy loss spectroscopy

# Service de Recherches de Métallurgie Physique CEA / DEN / DMN / SRMP

Thank you

## RT calculation of free PD and PD-cluster population

