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Abstract

Tahoe is a general purpose simulation code incorporating finite element, meshfree
methods, and atomistic methods. The code is capable of execution on parallel platforms
and includes interfaces to third-party libraries that can solve linear systems of equations
in parallel. This document is intended as a guide for users. It does not contain the
detailed descriptions of the code required by developers. This guide is a work in
progress. Please send questions and bug reports to tahoe-help@sandia.gov.
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1 Introduction

Tahoe is a general purpose simulation code. It originally included only finite element meth-
ods, but has been extended to include meshfree methods, atomistics, and cohesive surface
approaches to modeling fracture. Aside from interfaces for adding element formulations
and constitutive models, Tahoe also supports specialized boundary conditions such as K-
fields and rigid boundaries of various geometries. The code has also been extended parallel
execution.

The purpose of this guide is to explain how to run Tahoe in its various modes. Tahoe
execution is driven by a parameters file. The layout of this file is described in Section 4.
The parameters in the file are scanned sequentially. The interceding chapters provide some
additional information about the various formulations available for execution. This guide
is not intended as a guide of developers. Although some references to specific classes do
appear throughout this guide, the structure of the code itself is not explained in any detail.
Additional information about the code itself can be obtained from the Tahoe Development
Server at

<http://tahoe.ca.sandia.gov>

If you are interested in getting access to the code repository for Tahoe, please contact

tahoe-help@sandia.gov

This guide contains hypertext links. These can be used to navigate the guide if your docu-
ment viewer support links.

1.1 Conventions

[To do: describe conventions used for this guide.]

1.2 Overview of Tahoe components

Although this guide will not discuss the implementation of Tahoe in any detail, some dis-
cussion of its internal organization is included to provide a rationale for the organization of
input parameters. Internally, Tahoe is organized into the components shown in Figure 1.1.
Data and parameters are “owned” by specific components of the code. A brief description
of the components follows. For further information on a given capability, identify the com-
ponent whose scope covers the capability and seek more information in the later sections of
this guide.

Tahoe is a hierarchical collection of components, or managers. Each manager is respon-
sible for specific data and functionality. The configuration of each manager is set in the
parameters input file. A brief description of each follows.
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1.2 Overview of Tahoe components

Tahoe manager

element groups

nodestime

solver

I/O

integrator
model manager

Figure 1.1: Division of functionality and data within Tahoe.

1.2.1 Tahoe manager

The Tahoe manager sits at the top of the manager hierarchy. It is responsible of for first
configuring other managers during the initialization phase of a simulation, checking for con-
sistency and compatibility of input parameters, and second serving as the back bone for
communication between the managers during the solution phase. Additionally, the Tahoe

manager is the “last hope” for trapping and correcting exceptional conditions that occur
during the solution phase.

1.2.2 Time manager

The time manager is responsible for all parameters related to the solution progress variable,
or time. This includes information about the initial time, final time, and time step. Boundary
conditions may be specified as functions of time. These schedules are specified to the time

manager. With solution procedures for which it is supported, the time manager handles
automatic time step control.

1.2.3 Controller

Tahoe supports a number of time integration schemes that are handled by the controller.
There are no input parameters for directly affecting the configuration of the controller.
The time integration scheme is determined by parameters specified to the Tahoe manager

and the time manager.
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1.3 Supported platforms

1.2.4 Node manager

The node manager is responsible for handling the fields of unknowns, i.e. u(X, t). Depend-
ing on the type of analysis, this data includes the field variables and their derivatives at the
current time step tn, the last time tn−1, and at other times tn−N for recovery from excep-
tional conditions that occur during the solution phase. The node manager handles essential
boundary conditions and specification of the externally applied conjugate forces.

1.2.5 Element groups

An element group in Tahoe generally refers to the implementation of any formulation that
translates nodal field variables to their conjugate forces. For most simulations, a major-
ity of the parameters provided to Tahoe are concerned with the element groups. For finite
element types, these parameters would include specifications of the element geometry and in-
tegration scheme for the element-level variational equations. The specification of constitutive
parameters is embedded in the element data although the types of constitutive models will
depend on the particular element. The elements supported by Tahoe are listed in Table 7.1.

1.2.6 I/O manager

The I/O manager is responsible for supporting the various input formats for geometry in-
formation and the various output formats for results data. There are no input parameters
for directly affecting the I/O manager. I/O file formats are specified in the parameters for
the Tahoe manager. A description of supported file formats is given in Section 10.

1.2.7 Solver

The solver is responsible bringing the system to equilibrium

Fint(u) = Fext(t) .

Depending on the type of analysis, the solver may require specifications of the nonlinear
solution algorithm and convergence tolerances. Parameters for solvers for linear system of
equations is embedded in the solver data, including installed third-party libraries.

1.3 Supported platforms

[To do: provide table of supported architectures, compilers, and extensions, i.e., MPI.]
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2 Execution procedures

Tahoe has be ported to a number of platforms. The code can be executed in parallel as
well as in serial. Furthermore, Tahoe runs in several modes that have been added to support
execution in parallel. These modes are listed below. Only the Parallel Analysis mode actually
runs in parallel, the other modes run in serial.

(2.1) Serial analysis

(2.2) Parallel analysis

(2.3) Domain decomposition

(2.4) Joining results data

The procedure for running in serial and parallel has been made as similar as possible. The
only differences arise from machine-dependent limitations. The parameters file and geometry
file that are needed to define an analysis are identical for both modes of analysis. Some
additional files are needed to run parallel analysis, but Tahoe generates these for the user.
The user must only be aware of which files are needed on the machine for each mode of
operation at the time of execution. The following sections explain how to execute Tahoe
with the following command line options:

tahoe

-f [job name].in
-decomp

-join

-split io

2.1 Serial analysis

For running serially, the user must have:

[job name].in parameters file
[geometry name].exo geometry file (ExodusII [33])

The file extensions are not interpreted by Tahoe, so these may be selected arbitrarily. The
resulting output files will be:

[job name].out “echo” file of parameters file
[job name].io[j].exo results data (ExodusII [33])

The results data have labels j, where j = 0, . . . , (number of output groups− 1). The number
of output groups is determined by the type of analysis. For the simplest case, each element
group will produce one output group, and the sequence of output groups will be the same
as the sequence the element groups are declared in the parameters file. Each results file has
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2.2 Parallel analysis

only one element block corresponding to the connectivities for the element group. If multiple
element blocks are used to define the connectivities for a given element group, these will be
combined into a single element block for output. Serial analysis can also be done by running
a parallel executable with the number of processors specified as one.

2.2 Parallel analysis

The procedure for launching parallel executables varies depending on the user environment.
In the examples that follow, we assume parallel executables are launched using the mpirun

command:

% mpirun -np [number of processors] tahoe

Users should substitute the appropriate command, such as dmpirun or yod, depending on
the environment.

The procedure for running Tahoe in parallel varies depending on whether the machine
has “limited” memory with respect to the problem size. A machine is considered to have
“limited” memory with respect to a given problem if the entire model from the geometry
definition cannot be stored in memory at the same time. On machines that are not memory
limited, execution of Tahoe is identical whether running on serial or in parallel, aside from
any special procedure needed to launch a parallel job. For this case, no additional steps
are required for the user in order to pre- and post-process the model definition. With
limited memory machines, a non-limited machine is needed in order to decompose the model
geometry and join the results data after execution. Domain decomposition and result file
joining is discussed in the next two sections.

The identical input files (parameters and geometry) are needed to run in parallel as are
needed to run in serial.

[job name].in parameters file
[geometry name].exo geometry file (ExodusII [33])

The first thing that the program does is look to see if the required decomposition files
already exist. Tahoe creates a domain decomposition based on the connectivities seen at
run time. If the geometry file contains blocks of elements that are not referenced in the
parameters file, these blocks are not considered during decomposition. Additionally, meshfree
methods generate connectivities at run time the depend on parameters defining the shape
functions. Tahoe does not keep track of which values in the parameters file affect the domain
decomposition. If any of these parameters are changed, the user must delete any of the
corresponding decomposition files. The decomposition files are:

[geometry name].io.exo global geometry file
[geometry name].n[M].io.map output map

[geometry name].io.ID block ID’s per output group
[geometry name].n[M ].part[i] decomposition data file

[geometry name].n[M].p[i].exo partial geometry file
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2.3 Domain decomposition

In the file names above, M is the total number of partitions, while i = 0, . . . , (M − 1). If
any decomposition files are not found, Tahoe will attempt to create all of them. If Tahoe
is launched on a non-limited memory machine, mesh decomposition is done serially on the
processor with rank 0 before starting the analysis phase of execution in parallel. If the
decomposition files already exist, the decomposition phase is not repeated. Tahoe produces
the following files during execution:

[job name].p[i].out “echo” file of parameters file
[job name].p[i].log message passing log file

console[i] redirected console output
[job name].io[j].exo results data (ExodusII [33])

where j = 0, . . . , (number of output groups− 1). The output from the standard output
streams is not redirected to a file for the processor with rank 0, that is, no console0 file
is created. Any prompts for use input still appear on the screen. When running a job in
the background the user may opt to redirect the screen output to a file, called console0 for
consistency. The following input makes use of the -f command line option to specify the
name of the parameters file:

% mpirun -np [number of processors] tahoe -f [job name].in > console0 &

On non-limited memory machines, the output from the distributed output groups is collected
on processors as designated in the output map file. Since the output is “joined” at run time,
no post-processing of the results data is required. Running Tahoe in this mode does require
more memory. Tahoe will leave the output in its decomposed form if launched with the
-split io command line option:

% mpirun -np [number of processors] tahoe -split io

When running on a limited memory machine, or when specifying the -split io option,
Tahoe will generate distributed results files:

[job name].p[i].io[j].exo distributed results file

where i = 0, . . . , (number of partitions− 1) and j = 0, . . . , (number of output groups− 1).
The distributed results files must then be joined in a separate post-processing step to produce
the results files that would have been written by a serial execution of the same calculation.

2.3 Domain decomposition

Serial mesh decomposition of a large mesh often requires more memory than some archi-
tectures have for each individual compute node. In these cases the user must perform the
decomposition and results file joining on a pre/post processor machine that is not memory
limited. If Tahoe is launched with the -decomp command line option, it will generated the
decomposition files without subsequently performing any analysis:
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2.4 Joining results files

% tahoe -decomp

As mentioned about, Tahoe creates a domain decomposition based on the connectivities seen
at run time. This is a combination of information in the parameters and geometry files. If
the geometry file contains blocks of elements that are not referenced in the parameters file,
these blocks are not considered during decomposition. Also, Tahoe does not record the values
in the parameters files used to generate a given decomposition. If the parameters file changes
in any way that would affect the set of “active” elements, or the connectivities active at run
time, the user must remove any existing decomposition files. Otherwise, Tahoe will use any
existing decomposition files.

The decomposition process is not parallelized. In order to avoid allocating processors
that will remain idle, Tahoe will not perform decomposition on a parallel platform if more
than one processors is allocated for execution. Therefore, decomposition must be initiated
with:

% mpirun -np 1 tahoe -decomp

After prompting the user for the name of the job file, Tahoe will prompt the user for the
number of partitions to create.

2.4 Joining results files

To join distributed output files, the parameters, geometry, decomposition files, and dis-
tributed results files are needed. As with the decomposition process, the joining process
has not been parallelized. On a multi-processor platform, it must be launched with a single
process:

% mpirun -np 1 tahoe -join

After prompting the user for the name of the job file, Tahoe will prompt the user for the
number of partitions in the distributed results data. The number given to Tahoe must be
the total number of partitions generated from the original model geometry. Under certain
circumstances, not all partitions will contribute distributed output to all output groups.
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3 Regression tests and benchmarks

[To do: A system of regression tests and benchmarks is in development. The purpose of the
system is to allow users to exercise various parts of the Tahoe to ensure they are functioning
properly. Additionally, the tests will provide examples of input parameters for various types
of simulations.]

3.1 Repeatability of tests across platforms

3.2 Repeatability of tests during parallel execution
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4 Input file version 3.4.1

%       # job file marker (no comments before)
v3.1     # input file version number

######################## title #########################
Oxide fracture test (pak 04/21/2001):
############ top-level execution parameters ############
3       # analysis code  
0       # input format
0       # output format
0       # read restart file
0       # write restart file
1       # print input flag  
1       # number of element groups  
############### time sequence parameters ###############
1     # number of time sequences

1     # sequence number
5       # number of steps
0       # output print increment
10      # allowable step cuts   
0.0025 # (initial) time step
################## load-time functions #################
1     # number of functions

1     # function number
2       # number of points
#  [time]     [value]
     0.0        0.0
     1.0        1.0
####################### nodal data #####################
1283    # number of nodes
2       # number of spatial dimensions
2       # number of spatial dimensions
# [node number] [x]  [y]
eg.nodes
  
0    # displacement output flag
0    # number of initial conditions
107  # number of kinematic BC's

0    # number of KBC controllers
eg.KBC

0    # number of history nodes

0    # number of nodal force BC's
0    # number of force BC controllers

################## element group data ##################
# group 1
3    # element type
1    # geometry code
625  # number of elements
4  # number of element nodes
4    # number of integration points
1    # mass type code
0    # strain-displacement option
0    # output increment flag

# nodal output values
0    # initial coordinates

1    # extrapolated/averged stresses
0    # principal stresses
0    # strain energy density
0    # Von Mises stress
0    # material output parameters

# body force vector
1   0.0 0. 0
0 # number of traction  boundary conditions

1 # number of materials
1 # material number
2 # material code
0. 0 0. 0 1. 0 # [damping] [damping] [density]
1 # thermal expansion LTf
4. 0 # % expansion
42. 0 0.333333 # [Young's modulus] [Poisson's ratio]
1. 0 2 # [thickness] [plane stress/strain]

1 # number of blocks
eg.elem

################### solver parameters ##################
0 # Newton's method nonlinear solver
1 # symmetric profile storage
0 # output flag for  global equation numbers
1 # rank check code
# algorithmic parameters
15 # maximum iterations
1.0e-10 # zero tolerance (exponent)
1.0e-12 # convergence tolerance (exponent)
10. 0 # divergence tolerance
6 # number iterations in  a "quick"  solution
3 #
0       # iteration output increment

 "quick"  solutions before step increase

Tahoe manager

element groups

nodestime

solver

I/O

controller

Figure 4.1: Layout of a Tahoe parameters file.

Simulation parameters for Tahoe are specified in white space delineated, plain text files.
Input values are separated by white space, but the arrangement of white space is ignored.
White space includes blank spaces, tabs, new line characters, and carriage returns. Tahoe
uses calls to the platform-specific, standard C/C++ libraries to handle input from text files.
Plain text files contain platform-specific line ending characters that may cause compatibility
problems when files are transferred between platforms unless some file translation is applied.
The # symbol denotes that the remainder of a given line of text should be ignored, or
treated as a comment. Values are read from the parameters file sequentially. Therefore, all
parameters must be specified, and there are no default values. The only exceptions to these
conventions may come in specifications to the third-party libraries used by Tahoe for certain
types of analysis.

As discussed in Section 1.2, Tahoe is internally divided into components. Data and
parameters are owned by each component. Figure 4.1 shows how the parameters file may be
divided into sections of parameters for the different components.

(1) “Global” analysis parameters

(2) Time parameters
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4.1 Global analysis parameters

(3) Nodal parameters

(4) Element group(s) parameters

(5) Solver parameters

Details of the parameters in each block follow below.

4.1 Global analysis parameters

The format of the global analysis parameters is shown below:

% # job file marker

3.4.1 # input file version marker

# title

[one line of at most 254 characters ]
#### analysis parameters

[analysis code]
[input format ]
[output format ]
[read restart flag ]
[write restart increment ]
[echo input flag ]

The first character in a parameters file must be %. The input file version is used by Tahoe to
determine the compatibility of the input file with the version of the executable. Tahoe issues
a warning if the input file version is older than the current. Developers are encouraged to
make changes to the input file format backward compatible; however, backward compatibility
cannot be maintained in all cases. Changes to the input file format since version 3.1 are
logged in Section 11.2. Values of the analysis code are listed in Table 5.1. Table 10.1 lists
the values for the input format. For input file formats using external geometry files, the code
is followed by the relative path to the geometry database, as in:

# input format

5 # ExodusII format

[path to geometry database]

Table 10.2 lists the values for the output format. The read restart flag is boolean of either
0 or 1. A 1 indicates that Tahoe should initialize the system using information in a restart
file. In this case, the flag is followed by the relative path to the restart file, as in:

# read restart flag

1 [path to restart file]

A write restart increment of N > 0 indicates that Tahoe should write a restart file every N
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4.2 Time parameters

steps. The echo input flag is a boolean flag of either 0 or 1. A value of 1 causes verbose
echoing of input parameters and geometry information.

4.2 Time parameters

The time parameters are grouped into three sections:

#### time parameters

# list of time sequences

[nseq = number of time sequences]

1 [parameters for sequence 1]
...

[nseq] [parameters for sequence nseq]

# list of schedule functions

[nscf = number of schedule functions]

1 [parameters for schedule function 1]
...

[nscf ] [parameters for schedule function nscf ]

# time integration parameters

[parameter list ]

The numbered sets of time sequence parameters and numbered schedule functions may ap-
pear in any order in their respective lists. The format of time sequence parameters is de-
scribed in Section 4.2.1, while the format of schedule functions in described in Section 4.2.2.
Most of the time integration schemes do not have any input parameters. Only the time
integration scheme used for implicit elastodynamics (see Table 5.1) requires additional pa-
rameters. The HHT-α [17] integrator takes the single parameter 0 ≤ α ≤ 1, where α > 0
introduces numerical dissipation. Dissipation is not supported for nonlinear analysis.

4.2.1 Time sequence parameters

A time sequence is specified by the following list of parameters:

# time sequence parameters

[number of steps]

[output print increment]

[maximum number of step cuts]

[initial step size]

If the number of steps is specified as zero, Tahoe will only complete the initialization phase of
a simulation, reading all values from the parameters file. An output print increment specified
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4.3 Nodal parameters

as N > 0 causes results data to be written every N steps of the initial step size. An output
print increment specified as N < 0 produces output every N steps of the current step size.
Some analysis times support automatic time step control. The maximum number of step
cuts controls how many times the initial time step can be reduced by a factor of two before
the simulation is aborted.

4.2.2 Schedule functions

Schedule functions are used to specify the time-varying behavior of boundary conditions or
other analysis-specific parameters such as the thermal expansion in elastostatic and elasto-
dynamic analysis. A function f(t) is specified with a list of ordered pairs {ti, f(ti)} , i =
1, . . . , npts. The function is linearly interpolated between the data provided. The function is
extended at zero slope beyond the range of time provided, that is

f(t) =


f(t1) if t < t1,

f(ti) + (t− ti)
f(ti+1)−f(ti)

ti+1−ti
if ti < t < ti+1 for i = 1, . . . , npts − 1,

f
(
tnpts

)
if t > tnpts .

[To do: add figure] An example of the input format for schedule function is shown below:

[npts = number of points on the schedule]

[t1] [f(t1)]
...[

tnpts

] [
f
(
tnpts

)]
The ordered pairs on the schedule function must be specified with time in sequentially
increasing order.

4.3 Nodal parameters

The nodal parameters of the input file contains the following sections:

#### nodal data

[coordinate data]

[list of initial conditions]

[list of kinematic boundary conditions]

[list of kinematic boundary condition controllers]

[list of force boundary conditions]

[list of force boundary condition controllers]

[list of history node specifications]
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4.3 Nodal parameters

The coordinate data only appears in the nodal section if geometry format TahoeI is specified
in the global parameters section, described in Section 4.1. For all other geometry file formats
listed in Table 10.1, the nodal coordinate data resides in an external file, and this section
of the nodal parameters is omitted. The format for all of the lists specified in this section
is similar. The list is initiated with its length and followed by the entries in the list if the
length is nonzero. The list of initial conditions is either empty

0 # initial conditions

or contains a list specified as

# initial conditions

[nic = number of initial conditions]

[parameters for initial condition 1]

...

[parameters for initial condition nic]

The format of initial condition specifications is described in Section 6.1. The list of kinematic
boundary conditions, or essential boundary conditions, is either empty

0 # kinematic boundary conditions

or contains a list specified as

# kinematic boundary conditions

[nkbc = number of kinematic boundary conditions]

[parameters for kinematic boundary condition 1]

...

[parameters for kinematic boundary condition nkbc]

The format of kinematic boundary condition specifications is described in Section 6.2. Kine-
matic boundary conditions allow specification of the primal variables along the cartesian axes
as a function of time. Kinematic boundary condition controllers allow specification the field
at groups of nodes to follow specific functional forms, such as the displacements surrounding
a crack tip based on the asymptotic K-field solution from isotropic linear elasticity. The list
of kinematic boundary condition controllers is either empty

0 # kinematic boundary condition controllers
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4.3 Nodal parameters

or contains a list specified as

# kinematic boundary condition controllers

[nkctl = number of kinematic boundary conditions]

[parameters for kinematic boundary condition controller 1]

...

[parameters for kinematic boundary condition controller nkctl]

The format of kinematic boundary condition controllers specifications is described in Sec-
tion 6.3. The list of force boundary conditions is either empty

0 # nodal force boundary conditions

or contains a list specified as

# nodal force boundary conditions

[nfbc = number of nodal force boundary conditions]

[parameters for force boundary condition 1]

...

[parameters for force boundary condition nfbc]

The format of nodal force boundary condition specifications is described in Section 6.4. The
list of force boundary condition controllers is either empty

0 # force boundary condition controllers

or contains a list specified as

# force boundary condition controllers

[nfctl = number of force boundary condition controllers]

[parameters for force controller 1]

...

[parameters for force controller nfctl]

The format of nodal force boundary condition controllers specifications is described in Sec-
tion 6.5. Force boundary condition controllers implement a number of “rigid” objects that
generate forces on nodes through contact. For example, the rigid sphere controllers can be
used to represent an indenter with a motion specified as a function of time.

Nodes, or sets of nodes, can be specified to produce more detailed output. The format
of history node output is described in Section 10.2.7. The list of history node specifications
is either empty

0 # number of history nodes
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4.4 Element parameters

or contains a list specified as

# history nodes

[nhst = number of history node ID’s]

[node ID1] . . . [node IDnhst
]

The node ID differs depending on geometry file format (see Table 10.1). For TahoeI format,
the node ID is simply the node number. Some of the geometry database formats supported
by Tahoe allow nodes to be grouped into sets identified by an ID. With these database
formats, the node ID corresponds to the node set ID.

4.4 Element parameters

4.5 Solver parameters

4.6 Batch file format
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5 Analysis types

Table 5.1 shows a list of analysis available in Tahoe.

Table 5.1: This is the list of types.

analysis type linear nonlinear
elastostatic 1 3
implicit elastodynamic 2 4
explicit elastodynamic 6 7
steady-state diffusion 19 N/A
transient diffusion 20 N/A

5.1 Analysis types

Linear analysis implies that the governing equations are linear in the unknown variables over
a given time increment. Nonlinear analysis implies that some iterative procedure is required
to determine the solution in the unknown variables. Most cases require the nonlinear solution
procedures. Specifying a nonlinear analysis type for a linear problem will produce a solution
after a single iteration of the solution procedure.

Whether linear or nonlinear, the solution procedure ultimately results in a linear system of
equation. A number of different storage schemes are available for the global matrix associated
with this linear system. The different types of matrix storage are listed in Table 5.2. The
choice of matrix depends on the analysis type as is outlined below. Moreover, all matrix
types may be used for serial execution, while parallel execution must use either the diagonal,
Aztec [18], or SPOOLES [4] matrices.

Table 5.2: Matrix types for the global system of equations.

matrix type code
diagonal 0
profile 1
full 2

Aztec [18] 3
SPOOLES [4] 5

5.1.1 Elastostatic analysis

This analysis can be used with profile, full, Aztec, or SPOOLES global matrix types.
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5.2 Solution techniques

5.1.2 Implicit elastodynamic analysis

This analysis uses HHT-α time integration developed by Hilber et al. [17] and can be used
with profile, full, Aztec, or SPOOLES global matrix types.

5.1.3 Explicit elastodynamic analysis

This analysis uses the explicit, central-difference time integration scheme from the classic
Newmark family of methods. In order to make this method “matrix-free”, the diagonal
matrix storage should be used.

5.1.4 Steady-state and transient diffusion

Transient head conduction uses a trapezoidal time integration scheme, and can be used with
profile, full, Aztec, or SPOOLES global matrix types.

5.2 Solution techniques

5.2.1 Linear

The linear solution technique is used with all of the linear analyses and with explicit dynamic
analysis. Explicit dynamic analysis may involve large, nonlinear kinematics of deformation,
nonlinear constitutive response, and contact; however, as a result of the time discretization,
the incremental accelerations are linearly related to the driving forces over a single time
increment.

5.2.2 Nonlinear

Nonlinear solution techniques are used with all nonlinear analyses except with nonlinear
explicit dynamics analysis. Table 5.3 shows a list of nonlinear solution techniques supported.
As mentioned above, the nonlinear solution procedures iteratively search for the solution until
some convergence tolerance is satisfied. In general, a solution procedure involves determining
two aspects of the search for the solution. The procedure must determine the “length” and
“direction” of the update to the current best guess of the solution. The methods listed in
Table 5.3 differ in how they determine these two parameters. The various nonlinear solution
methods use two criteria for assessing convergence based on the norm of the residual forces.
The first is an “absolute” tolerance while the second is a “relative” tolerance. The “absolute”
tolerance is an indication of “small” in terms of the numerical precision displayed for a
given calculation. Depending on the platform, the various formulations used throughout a
calculation, and details of the implementation, the level of numerical “noise” in a calculation
may limit how close to absolute zero the solution procedure is able to drive the norm of the
residual. The second tolerance examines the “relative” error. This compares the norm of
the residual at the end of an iteration with the norm of the residual at the first iteration.
If one examines the console output during a simulation, the absolute error is written to the
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5.2 Solution techniques

output after incremental boundary conditions are applied followed by the relative error after
each iteration. The solution procedure stops if either condition is satisfied.

Table 5.3: Nonlinear solution techniques.

solution method code
standard Newton 0

initial tangent 1
modified Newton 2

dynamic relaxation [46] 3
Newton with line search 4

preconditioned nonlinear conjugate gradient 5
interactive Newton 6

All of the nonlinear solution techniques automatically adjust the time, or load, incre-
ment depending on the behavior of the iterative solution procedure. The solvers have user-
adjustable parameters for determining whether the increment should increase or decrease.
A cut in the increment is triggered if the number of iterations exceeds to the user-defined
value or if the “relative” error exceeds a user-defined value. Additionally, the increment is
decreased if “overload” conditions are detected in calculations anywhere in the code. Once
the increment has been cut, Tahoe begins to monitor two parameters in combination to de-
termine if the increment should increased. The user can prescribe the number of iterations
in a “quick” solution and the number of sequential “quick” solutions that must pass before
the increment is increased. An increment adjustment changes the step size by a factor of
two.

5.2.2.1 Standard Newton Newton’s method is a second order optimization technique
that makes use of a tangent matrix to determine the update vector. This solver reforms a new
tangent matrix at every iteration, and does not rescale the update vector. The convergence
behavior of Newton methods is known to be poor “far” from the solution, but the method
does display locally quadratic convergence “near” the solution.

5.2.2.2 Initial tangent This solver differs from the standard Newton in that a new
tangent matrix is calculated only once per time, or load, increment. The tangent matrix is
formed for the initial iteration and is subsequently reused. This approach results in slower
rates of convergence, but may result in faster solution times since the number of times the
tangent matrix is formed and factorized is reduced. This method assumes that the matrix
type selected allows the factorized matrix to be reused at. This method may also provide
better performance in cases in which the tangent matrix becomes rank deficient.
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5.2 Solution techniques

5.2.2.3 Modified Newton This solver attempts to determine conditions under which to
reform or reuse the tangent matrix based on a series of rules. This solver may be considered
experimental.

5.2.2.4 Dynamic relaxation Dynamic relaxation [46] is a first order optimization tech-
nique that wraps the problem of finding the solution with a set of damped, second order
differential equations. The solution is determined by dissipating the transient behavior re-
sulting from residual forces.

5.2.2.5 Newton with line search This solver augments the standard Newton solver
with a line search to determine the length of the update vector. User-specified parameters
control the effort expended for the line search. The goal of the line search is to determine the
optimal distance along the update direction. User-defined parameters control the maximum
number of iterations expended to determine this optimal distance. The optimal distance is
defined by the point along the update vector at which the residual vector is orthogonal to
the update vector. An exact line search finds this point exactly. A second input parameter
provides an approximation to the exact search.

5.2.2.6 Preconditioned nonlinear conjugate gradient This solver incorporates the
preconditioned, conjugate gradient first order optimization method. User-specified param-
eters control the number of conjugate gradient iterations between “restarts”, as well as
specifications for the line search.

5.2.2.7 Interactive Newton This solver allows the user to interactively control the
solution process. The underlying solver is a Newton solver with line search. The user
can step forward or backward in time, modify solver parameters, and write output data.
Additionally, the value of other parameters in the simulation may be viewed and changed
by addressing specific scopes in Tahoe. The console commands also change with scope.
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6 Initial conditions and boundary conditions

Initial conditions and boundary conditions may be specified on selected nodes. Additionally,
the variational form of governing equations leads to natural boundary conditions that may
be specified on selected parts of the domain boundary. Tahoe supports a number of geometry
database types. These are listed in Table 10.1. The database format determines how nodes
or sets of nodes are identified and how parts of the domain boundary are identified. Table 6.1

Table 6.1: Identification of nodes and boundaries.
database node ID side ID

TahoeI node element,facet
TahoeII node set ID side set ID

ExodusII [33] node set ID side set ID

lists how nodes and element sides are identified for the different database types. Their use
will be explained with examples below. For the TahoeI format, boundary segments are
explicitly specified with an element and facet number. Canonical facet numbering for the
different integration domain geometries supported by Tahoe are listed in Section 7.1. For
TahoeII and ExodusII databases, groups of nodes may be collected into node sets and groups
of element facets are collected into side sets. Both types of sets are identified with ID
numbers.

Many of the boundary conditions may be specified as functions of time. Their values
have the form

g(t) = g f (i)(t) , (6.1)

where g is a scalar coefficient and f (i)(t) is a schedule function. Schedule functions are
explained in Section 4.2.2. Time varying functions in the input file are specified by providing
g and i, as defined in (6.1).

6.1 Nodal initial conditions

Each initial condition is specified as

[node ID] [degree of freedom] [order] [value]

The definition of the node ID depends on the geometry database type as listed in Table 6.1.
The order refers to the time derivative of the field variable to which the initial conditions
applies. A node ID of -1 applies the boundary condition to all nodes.

6.2 Nodal kinematic boundary conditions

Each nodal kinematic boundary condition is specified as

[node ID] [degree of freedom] [code] [schedule] [value]
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6.3 Kinematic boundary condition controllers

The definition of the node ID depends on the geometry database type as listed in Table 6.1.
The code specifies if the condition is applied to the nodal unknown u, or one of its time
derivatives u̇, ü, or higher. The codes are listed in Table 6.2. The value and schedule in the

Table 6.2: Codes for nodal kinematic boundary conditions.
code type

0 fixed
1 u
2 u̇
3 ü

nodal kinematic boundary condition specification refer to g and i in (6.1), respectively, for
the variation of the boundary condition in time.

6.3 Kinematic boundary condition controllers

Table 6.3: Kinematic boundary condition controllers.

code description
0 K-field
1 bimaterial K-field
2 Mapped displacements
3 Tied displacements
4 Symmetry line
5 Periodic displacements
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6.4 Applied nodal forces

6.3.1 K-field

6.3.2 Interface K-field

6.3.3 Mapped displacements

6.3.4 Tied displacements

6.3.5 Symmetry line

6.3.6 Periodic displacements

6.4 Applied nodal forces

Each nodal force boundary condition is specified as

[node ID] [degree of freedom] [schedule] [value]

The definition of the node ID depends on the geometry database type as listed in Table 6.1.
The value and schedule in the nodal kinematic boundary condition specification refer to g
and i in (6.1), respectively, for the variation of the boundary condition in time.

6.5 Force controllers

Table 6.4: Force boundary condition controllers.

code description
0 Rigid barrier (penalty)
1 Rigid sphere (penalty)
2 Rigid sphere (augmented Lagrangian)
3 Rigid sphere for meshfree domains (penalty)
4 Rigid barrier (augmented Lagrangian)

[To do: This boundary condition type actually behaves more like “elements” because they
do produce a contribution to the stiffness matrix, i.e., they act as “follower forces” and are
not simply defined as functions of time.]
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6.6 Body forces

6.5.1 Rigid barrier (penalty method)

6.5.2 Rigid sphere (penalty method)

6.5.3 Rigid sphere (augmented Lagrangian method)

6.5.4 Rigid sphere for meshfree domains (penalty method)

6.5.5 Rigid barrier (augmented Lagrangian method)

6.6 Body forces

Certain element formulations include body forces. Applied body forces are specified with
the vector analog of (6.1). Their values have the form

b(t) = b f (i)(t) , (6.2)

where b is a vector coefficient of length ndof , the number of degrees of freedom per node,
and f (i)(t) is a scalar schedule function. Schedule functions are explained in Section 4.2.2.
Body forces are specified as

[schedule] [b1] . . .
[
bndof

]
6.7 Natural boundary conditions

Recasting balance laws in weak form leads to natural boundary conditions involving flux
terms across domain surfaces. These fluxes are specified as part of the input of element
parameters. Fluxes are associated with the faces of elements. As shown in Table 6.1, the
description of element faces differs depending on the geometry database format. Each natural
boundary condition requires specification of the flux vector at every node on the selected
element face, or set of faces. Canonical number of element faces and node numbering over
each face are described in Section 7.1. Natural boundary conditions are specified as

[side ID] [schedule] [coordinate system]

[t11] . . .
[
t1ndof

]
...[

tnfn1

]
. . .

[
tnfnndof

]
Each flux vector is length ndof , and a vector must be specified for all nfn nodes on the
element face. The coordinate system is identified by the values listed in Table 6.5. The facet
local coordinate frame is constructed such that the last component of the flux vector tndof

corresponds to flux in the outward normal direction. The tangential components of the flux
vector a constructed from the mapping of the face to its corresponding parent integration
domain.

An example specification of two-dimensional, traction boundary conditions appears be-
low:
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6.7 Natural boundary conditions

Table 6.5: Coordinate systems for natural boundary conditions.
code description

0 Cartesian
1 facet local

1 # number of traction boundary conditions

####

1 # side ID

1 # schedule number

0 # coordinate system

# traction vectors

0.0 1.0

0.0 1.0

The example shows a single specification. As shown in Table 6.1, the format of the side ID
specification depends on the geometry database format. In the example, a single integer is
used to define the element edges where the boundary conditions are applied. This format
would be appropriate for geometry database types that support definition of side sets. Two
traction vectors, each with two components, are given indicating that the element edges
specified by the side ID have two nodes per edge. The traction vectors are specified with
respect to the global Cartesian coordinate frame, meaning the values for each vector cor-
respond to {tx, ty}. A traction vector must be provided for each node of the element face.
The number of nodes on each face for a given element geometry and the canonical order of
the nodes on each face is described in Section 7.1. The traction is interpolated over the face
from the nodal values using the standard finite element shape functions.
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7 Element types

Within the structure of Tahoe, any formulation that relates nodal unknowns to the corre-
sponding conjugate forces falls into the category of elements. A list of the element codes are
shown in Table 7.1. The category of continuum elements is broken into three parts: Solid,
Diffusion, and Mesh Free. Although mesh free methods do not use elements, they do need
interpolation schemes, these schemes are discussed in this chapter.

Table 7.1: Element types.

type sub-type code sub-code

finite element
continuum

small deformation 2

N/A

updated Lagrangian 3
total Lagrangian 17

updated Lagrangian AES [37] 29
updated Lagrangian Q1P0 [40] 36

linear diffusion 21

meshfree continuum
small deformation 18

N/Atotal Lagrangian 19
strain gradient total Lagrangian 20

finite element
cohesive surface

isotropic
11

0
anisotropic with rotating frame 1

anisotropic with fixed frame 2
meshfree cohesive surface anisotropic with rotating frame 22 N/A

thermal contact conducting surface rotating frame 12 N/A

contact
penalty 14

N/Aaugmented Lagrangian (2D) 16
ACME [?] library 23

pair-potential
predefined 1

N/Aself-connecting 8
8 with periodic BC’s 9

two- and three-body
potential

Stillinger-Weber [42] 6
N/Amixed Stillinger-Weber 7

6 with periodic BC’s 10
surface-surface interaction two-point potential 37 N/A
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7.1 Integration domains

7.1 Integration domains

Tahoe supports a number of Gaussian integration rules for the finite element types listed in
Table 7.1. These rules are defined for the geometries listed in Table 7.2. Additionally, the
meshfree formulations make use of a background grids composed of “integration cells” with
the same geometries and integration rules. Each of these geometries has a corresponding

Table 7.2: Integration domain geometries and Gauss rules.

geometry nodes Gauss rule code
point 1 1 -1
line 2, 3 1, 2, 3, 4 0

quadrilateral 4–8 1, 4, 9, 16 1
triangle 3, 6 1, 4, 6 2

hexahedron 8, 20 1, 8, 27, 64 3
tetrahedron 4, 10 1, 4 4
pentahedron 6, 15 N/A 5

local node numbering. The local node numbering, as well as the local ordering of the facets
is shown in Figures 7.1 through 7.6. Although the pattern of local node numbering is not
derived from a set of rules, it does display several common characteristics for all domain
geometries. The vertex nodes always have lower local numbers that the mid-side nodes.
For the three-dimensional domains, the local numbering of the facet nodes is always defined
in a sense, or line direction, consistent with the outward normal to the face. Finally, the
local node numbering for the follows the convention used by ABAQUS [16] and EnSight [10],
which is not the same as the convention used by the ExodusII [33] database format for some
domain geometries. However, the numbering of nodes on facets differs from the convention
used by ABAQUS in that element normals point outward. When reading from or writing to
an ExodusII database, Tahoe adjusts for any differences in the numbering convention.

7.2 Meshfree methods

Recently, there has been intense interest in the development of meshfree numerical simu-
lation methods. The methods used in Tahoe have their origins in Smoothed Particle Hy-
drodynamics (SPH) proposed by Gringold and Monaghan[14]. A number of methods have
developed that employ variants of the Moving Least Squares fitting procedure of Lancaster
and Salkauskas[22]. These include, but are not limited to, the Diffuse Element Method of
Nayroles et al. [29], the Element Free Galerkin method of Belytschko et al. [8], the Repro-
ducing Kernel Particle Method of Liu and Chen[23], and the Meshless Local Petrov-Galerkin
method of Atluri and Zhu[5]. A number of overviews and reviews have appeared regarding
these methods[7, 25, 24, 26, 27], though the interested reader will find no shortage of new
developments.
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7.2 Meshfree methods
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face node
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Figure 7.1: Node, face, and node-on-face numbering for line integration do-
mains.
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Figure 7.2: Node, face, and node-on-face numbering for quadrilateral inte-
gration domains.
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Figure 7.3: Node, face, and node-on-face numbering for triangular integra-
tion domains.
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7.2 Meshfree methods
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3 1, 2, 6, 5, 9, 18, 13, 17
4 2, 3, 7, 6, 10, 19, 14, 18
5 3, 4, 8, 7, 11, 20, 15, 19
6 4, 1, 5, 8, 12, 17, 16, 20

Figure 7.4: Node, face, and node-on-face numbering for hexahedral integra-
tion domains.
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Figure 7.5: Node, face, and node-on-face numbering for tetrahedral integra-
tion domains.
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7.2 Meshfree methods
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Figure 7.6: Node, face, and node-on-face numbering for pentahedral integra-
tion domains.

7.2.1 Reproducing Kernel Particle Method (RKPM)

RKPM belongs to class of methods for which the approximation, or “image”, of a signal is
given by a kernel expression. Without loss of generality, we can consider the expression for
the approximation in one dimension

uRa(x) =

+∞∫
−∞

φa(x− y) u(y) dy, (7.1)

where φa is alternately called a weight, kernel, or smoothing function. From the analogy to
signal processing, φa may be viewed as a customizable low pass filter between the original
signal, or data, u(y) and its reproduced image. This function is positive, even, and has
compact support characterized by the dilation parameter a. Liu and Chen[23] improved
the accuracy of the method by modifying the window function with a correction to yield a
reproducing condition as

uRa(x) =

+∞∫
−∞

φa(x− y) u(y) dy, (7.2)

where the modified window function

φa(x− y) = C(x; x− y) φa(x− y) (7.3)

incorporates the polynomial

C(x; x− y) = b0(x) + b1(x) (x− y) + b2(x) (x− y)2 + . . . + bm(x) (x− y)m (7.4)
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7.2 Meshfree methods

which ensures that the approximation can exactly represent polynomials of order m. In
general, we may express the correction function as

C(x;x− y) = b(x) ·P(x− y) (7.5)

where P is a basis of polynomials that possess the desired degree of completeness and b(x)
is an vector of unknown coefficients determined from the reproducing condition (7.2). The
requirement that each member of the basis be reproduced follows from (7.2) as

P(0) =

+∞∫
−∞

b(x) ·P(x− y) φa(x− y) P(x− y) dy. (7.6)

The vector of coefficients follows as

b(x) = M−1
a (x)P(0) , (7.7)

where

Ma(x) =

+∞∫
−∞

P(x− y)⊗P(x− y) φa(x− y) dy (7.8)

is known as the moment matrix. Using the result from (7.7), the reproducing condition (7.2)
can be written as

uRa(x) =

+∞∫
−∞

b(x) ·P(x− y) φa(x− y) u(y) dy. (7.9)

First and higher order gradients of the field representation follow from (7.7)–(7.9) through
simple differentiation. For clarity, we present the expressions for derivatives. We note that
these derivatives may be evaluated exactly though some early work in the meshfree field
advocated approximate expressions for these derivatives[29]. The gradient of the field may
be expressed as

∂uRa(x)

∂x
=

+∞∫
−∞

u(y)⊗
[
∂b(x)

∂x
P(x− y) φa(x− y) +

b(x)
∂P(x− y)

∂x
φa(x− y) +

b(x) ·P(x− y)
∂φa(x− y)

∂x

]
dy,

(7.10)

where the gradient of the coefficient vector

∂b(x)

∂x
= −M−1

a (x)
∂Ma(x)

∂x
b(x) (7.11)
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7.3 Solid deformation

follows from (7.7) making use of the relation

∂ [M−1
a ]ij

∂xk

= −
[
M−1

a

]
ir

∂ [Ma]rs

∂xk

[
M−1

a

]
sj

. (7.12)

Higher-order gradients may be calculated by further differentiation of (7.10)–(7.12). Notably,
the expressions for the representation of the unknown field variables are general for an
arbitrary number of field and spatial dimensions, including the expressions for the first and
higher order gradients of the field.

In evaluating the representations for the field numerically, we discretize the integrals in
the previous expressions. The discrete reproducing condition follows from (7.9) as

uRh
a(x) =

Np∑
I=1

b(x) ·P(x− xI) φa(x− xI) uI ∆VI , (7.13)

where Np is the number of sampling points, or particles, under consideration, and xI , uI =
u(xI), and ∆VI are the coordinates, field value, and integration weight (volume) associated
with particle I, respectively. From (7.13), we can identify the RKPM nodal shape functions
as

uRh
a(x) =

Np∑
I=1

ΦaI(x) uI , (7.14)

where
ΦaI(x) = b(x) ·P(x− xI) φa(x− xI) ∆VI . (7.15)

Unlike the shape functions derived for standard finite element methods, the RKPM shape
functions (7.15) do not in general possess the so-called Kronecker delta property, that is

ΦaI(xJ) 6= δIJ . (7.16)

The lack of this property complicates the enforcement of essential boundary conditions. Fur-
thermore, this characteristic affects the enforcement of contact constraint and the imposition
of cohesive tractions.

[To do: User must specify
(1) the window function
(2) basis functions
(3) order of completeness for polynomial basis functions]

7.3 Solid deformation

This section describes the elements available for performing analysis of stress and deformation
in solids. The material models available for these elements are described in Section 8.
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7.3 Solid deformation

7.3.1 Element 29: finite strain element with enhanced modes

This element formulation is due to Simo, Armero, and Taylor [37]. The element incorporates
internal element modes of deformation to improve performance under bending and under
nearly incompressible states of deformation.

7.3.2 Element 36: finite strain mixed element

The formulation is due to Simo, Taylor, and Pister [40]. The basic idea behind the formula-
tion is to represent the pressure and dilatation Θ as separate fields from the displacement.
For the continuous case, the determinant of the deformation gradient

J = detF = 1 +
∂u

∂X
(7.17)

is equal to the dilatation. However, when the displacement field u is restricted to a finite
dimensional representation, it may not contain enough degrees of freedom to represent nearly
incompressible deformations without making the response overly stiff. Therefore, the dilata-
tion and pressure are represented as separate fields. The modified deformation gradient is
given by

F̄ =

(
Θ

J

)1/3

F. (7.18)

The remainder of the formulation results as a consequence. For Q1P0, the (2D) bi- or
(3D) trilinear displacement field (Q1) is combined with piecewise constant (P0) pressure
and dilatation fields. Since the space for these fields is restricted to within element domains,
these degrees of freedom can be determined analytically at the element level and substituted
into the remaining element equations to results in a purely displacement-based formulation.

Note that several errors appear in the derivation of the consistent tangent in the CMAME
paper. Therefore, the implementation of the tangent here does not match the published
formulation.

7.3.3 Output variables

The values that can be written to output as nodal or element quantities are listed in Tables 7.3
and 7.4, respectively. The element output of integration point values have the labels

ipN. [label] N = 1, . . . , nip,

where nip is the number of element integration points.

7.3.4 Constitutive models

The materials available for analysis of solid deformation are listed in Table 8.1.

41



7.4 Diffusion

Table 7.3: Nodal output values for solid deformation.

# var. description labels
1 X reference coordinates x [i] i = 0, . . . , nsd

2 d displacements D [i] i = X, Y, . . . , ndof

3 σ extrapolated stresses
2D: s11, s22, s12
3D: s11, s22, s33, s23, s13, s12

4 σ̂ extrapolated principal stresses s [i] i = 0, . . . , nsd

5 φ extrapolated strain energy density phi

6 cd, cs
extrapolated acoustical wave
speeds

2D: cd, cs
3D: cd, cs min, cs max

7
extrapolated material model
output

determined by model

Table 7.4: Element output values for solid deformation.

# var. description labels

1 X reference centroid coordinates xc [i] i = 0, . . . , nsd

2 m integrated mass mass

3 φ integrated strain energy U

4 T integrated kinetic energy T

5 L integrated linear momentum L [i] i = X, Y, . . . , ndof

6 σ integration point stresses
2D: s11, s22, s12
3D: s11, s22, s33, s23, s13, s12

7 integration point material output determined by model

7.4 Diffusion

7.4.1 Output variables

7.4.2 Constitutive models

7.5 Cohesive surface elements

At every point along a cohesive surface, we define a local coordinate frame which resolves
the opening displacements across the surface into normal and shear components. As shown
in Figure 7.7, this coordinate frame is not uniquely defined for finite deformations. We
choose to define this coordinate system with respect to the mid-plane between the displaced
surfaces. Alternately, this frame may be fixed to the upper or lower facet. The discussion
that follows is independent of the particular choice of local coordinate system though we
present specific expressions for the mid-plane. Let the transformation of the gap vector from
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7.5 Cohesive surface elements

e1

e2
e1
~

e2
~

Figure 7.7: Local coordinate frame ẽi constructed along the surface where ei

is the global cartesian frame.

its representation in the global coordinate frame ∆ to its local representation ∆̃ in a frame
defined with respect to the cohesive surface be given by

∆̃ = QT ∆. (7.19)

The transformation resolves the opening displacement into normal and shear components
relative to the current orientation of the surface. This distinction allows for the definition of
mixed-mode, surface constitutive relations that show a dependence on the character of the
opening displacement. In a variational setting, the contribution to the virtual work from
cohesive surface elements is

δwCSE =

∫
Γ0

T · δ∆ dΓ, (7.20)

where the integration domain Γ0 is defined in the undeformed configuration and δ∆ is the
variation in the surface opening displacement. We review the formulation of several surface
constitutive models in Section 7.5.2. The discussion that follows applies to all displacement-
driven cohesive relations T̃(∆̃) defined in the local surface frame. From (7.19), the traction
in the global coordinate frame is given by the transformation

T = QT̃. (7.21)

7.5.1 Output variables

Nodal and element output variables are prescribed in the input file by specifying a 1 for
variables to be written and a 0 for variables not to be written. The sequence and definition
of the nodal and element output variables are described in the next sections.
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7.5 Cohesive surface elements

7.5.1.1 Nodal output variables The output variables written by cohesive surface el-
ements are listed in Tables 7.5 and Table 7.6. Output variables defined at the integration
points are projected to the nodes using the algorithm proposed by Zinkiewickz et al. [?].

The isotropic and anisotropic element write the same variables; however, some of the
variables returned as scalars for the isotropic formulation are returned as vectors for the
anisotropic case.

Table 7.5: Nodal output variables for isotropic cohesive surface elements.

# var. description labels
1 X reference coordinates x [i] i = 0, . . . , nsd

2 d displacements D [i] i = X, Y, . . . , ndof

3 ||∆|| opening displacements jump

4 ||T|| traction Tmag

5 constitutive output variables determined by model

Table 7.6: Nodal output variables for anisotropic cohesive surface elements.

# var. description labels
1 X reference coordinates x [i] i = 0, . . . , nsd

2 d displacements D [i] i = X, Y, . . . , ndof

3 ∆̃ local opening displacements
2D: d t, d n

3D: d t1, d t2, d n

4 T̃ local traction
2D: T t, T n

3D: T t1, T t2, T n
5 constitutive output variables determined by model

Note that the normal component for the output of the opening displacement and the
traction is always the last value. The tangent directions, denoted with the t1 and t2, are
determined by the coordinate mapping over surface element and generally vary from element
to element.

7.5.1.2 Element output variables The element output variables for both isotropic and
anisotropic cohesive surface elements are listed in Table 7.7. Note that some of the variables
are element-averaged quantities, while others are integrated over the element.

7.5.2 Constitutive models

The element formulation presented in Section 7.5 makes use of a local coordinate frame
defined with respect the deforming facets of the cohesive surface. This construction allows
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7.5 Cohesive surface elements

Table 7.7: Element output variables for cohesive surface elements.

# var. description labels

1 X centroid in reference coordinates xc [i] i = 0, . . . , nsd

2 φ integrated cohesive energy phi

3 t average traction
2D: T t, T n

3D: T t1, T t2, T n

all surface constitutive relations to define the evolution of the local traction T̃ with respect
to the local opening displacement ∆̃, while the kinematics of large deformation and surface
rotations are accounted for at the element level. For the case of an elastic, or reversible,
cohesive relation, the traction is derived from a free energy potential ϕ as

T̃ =
∂ϕ

∂∆̃
(7.22)

while the surface stiffness may be expressed as

∂T̃

∂∆̃
=

∂2ϕ

∂∆̃∂∆̃
. (7.23)

Motivated by the universal binding energy curves of Rose et al. [32] from atomistic
modeling, Xu and Needleman[50] proposed the mixed-mode cohesive potential

ϕ
(
∆̃
)

= φn+φn exp

(
−∆̃n

δn

) ([
1− r +

∆̃n

δn

]
1− q

r − 1
− exp

(
−∆̃2

t

δ2
t

) [
q +

(
r − q

r − 1

)
∆̃n

δn

])
.

(7.24)
From (7.22), the components of the traction are

T̃n

(
∆̃
)

=
φn

δn

exp

(
−∆̃n

δn

) (
∆̃n

δn

exp

(
−∆̃2

t

δ2
t

)
+

1− q

r − 1

[
1− exp

(
−∆̃2

t

δ2
t

)] [
r − ∆̃n

δn

])
(7.25)

and

T̃t

(
∆̃
)

= 2 φn
∆̃t

δ2
t

(
q +

[
r − q

r − 1

]
∆̃n

δn

)
exp

(
−∆̃n

δn

)
exp

(
−∆̃2

t

δ2
t

)
. (7.26)

In (7.24)–(7.26), the ratio q = φt

φn
relates the pure normal mode to shear mode fracture

energy and r = ∆̃∗
n

δn
defines ∆̃∗

n, the value of ∆̃n after complete shear separation with T̃n = 0.
The effect of r vanishes when q = 1, which is the value used for all calculations in this study.
The normal and tangential openings are defined as ∆̃n = ∆̃ · ñ and ∆̃n = ∆̃ · t̃ with respect
to the local normal and tangent. Xu and Needleman developed this cohesive relation in two
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7.6 Cohesive surface elements for meshfree domains

dimensions. We extend this relation to three dimensions by assuming the response to be
isotropic with respect to the tangential opening. That is, the response is expressed only in
terms of the magnitude of the tangential opening, which can also be written as

∆̃t =
∣∣∣∆̃− ∆̃n ñ

∣∣∣ , (7.27)

to emphasize that it is independent of t̃. For the three-dimensional model, we did not
attempt to incorporate any additional effects from the relative rotation of the surfaces about
the normal.

7.6 Cohesive surface elements for meshfree domains

7.6.1 Constitutive models

7.6.2 Parameters for adaptive insertion

7.7 Contact

In the input section for contact elements, the user specifies a regularization constant and the
entities involved with contact. Contact entities are specified in two sections, contact surfaces
and contact, or striker, nodes.

7.7.1 Penalty formulation

With this contact formulation, the penetration of a striker node into a contact surface is
penalized with a quadratic potential as

Uc =
1

2
kc g2, (7.28)

where kc is the contact stiffness, or regularization parameter, and g is the penetration dis-
tance. When used in conjunction with cohesive surface elements, a reasonable choice for the
contact stiffness is

kc = kCSE A, (7.29)

where A is the area of the cohesive surface element, and kCSE is the tangent stiffness of the
surface constitutive relation. For the potential proposed by Xu-Needleman potential 7.24,
this stiffness is

kCSE =
φ

δ2
n

. (7.30)

7.7.2 Augmented Lagrangian formulation

The augmented Lagrangian formulation in Tahoe is based on the formulation by Heegaard
and Curnier [15].
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7.8 Pair-potential

7.8 Pair-potential

7.9 Two- and three-body potential

7.10 Surface-surface interactions

7.10.1 Element 37: two-point surface interactions

The formulation of surface-surface interactions is similar to what is described by Argento et
al. [3]. The interaction energy of two surfaces S1 and S2 is given by the double-integral

U(S1, S2, t) = α12(t)

∫
S1

∫
S2

u(|g|) dS1dS2, (7.31)

where u is a potential function and g is a vector connecting a point on S1 with a point on
S2. The function α12(t) is introduced to allow the interaction forces to scale with simulation
time. Two of differential elements dS1 and dS2 interact if

n1 · g > 0 and n2 · g < 0, (7.32)

where n1 and n2 are the normals to dS1 and dS2, respectively. The interaction force is then
given by

f = −∂U

∂g
. (7.33)
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8 Constitutive models for solid mechanics

This section of the guide describes the constitutive models available for analysis of displace-
ments and stresses. A separate section is dedicated to each material model. Each section
provides some background information about the model followed by a description of the in-
put required for three- and two-dimensional analysis. All materials support implicit as well
as explicit analysis. That is, most models implement a consistent tangent matrix that should
produce locally quadratic convergence when used with Newton-type, nonlinear solution al-
gorithms (see Section 5.2.2). As will be noted in the sections that follow, some models only
provide approximate tangents that will result in slower convergence rates with Newton-type
solvers.

Table 8.1: Materials for analysis of displacements and
stress.

code description
1 small deformation Kirchhoff-St. Venant
2 finite deformation Kirchhoff-St. Venant
3 small deformation cubic
4 finite deformation cubic
5 uncoupled volumetric/deviatoric
6 quadratic-logarithmic (Simo)
7 quadratic-logarithmic (Ogden)
8 small deformation J2 plasticity
9 finite deformation J2 plasticity
10 finite deformation J2 plasticity in principal stretches
11 small deformation Drucker-Prager plasticity
12 2D hexagonal Lennard-Jones lattice
13 plane strain FCC Lennard-Jones lattice
14 FCC lattice with EAM potentials
15 Stillinger-Weber diamond cubic
16 Virtual Internal Bond model
17 isotropic Virtual Internal Bond model (Simo)
18 isotropic Virtual Internal Bond model (Ogden)
19 isotropic Virtual Internal Bond model with J2 plasticity
30 Thermo-viscoplastic model
31 Thermo-viscoplastic model
40 Finite strain viscoplastic model
45 BCJ model
46 BCJ model with damage
47 BCJ model with damage
49 Finite strain crystal elasticity

48



Table 8.1: Materials for analysis of displacements and
stress.

code description
50 Crystal plasticity model
51 Crystal plasticity model
52 Gradient crystal plasticity model
55 Crystal plasticity model
56 Crystal plasticity model
57 Gradient crystal plasticity model
61 Neo-Hookean viscoelastic model
62 Neo-Hookean viscoelastic model
63 Finite strain viscoelastic Kirchhoff-St.Venant
64 Small strain viscoelastic Kirchhoff-St.Venant
80 ABAQUS/Standard [16] UMAT BCJ
90 ABAQUS/Explicit VUMAT BCJ

8.0.2 Common input parameters

All constitutive models for solid mechanics share some common input parameters. An ex-
ample of these parameters is shown below:

# Rayleigh damping parameters

0.0 # mass proportionate damping

0.0 # stiffness proportionate damping

# mass density

1.0 # mass/reference volume

# thermal expansion

0 # schedule number

0.0 # % expansion

The force for Rayleigh damping is defined as

FR = CR v (8.1)

where the damping matrix CR is a linear combination of the mass and stiffness matrices

CR = aM + bK, (8.2)

where a and b are the parameters specified in the input file.
Thermal expansion may be defined as a function of time with two parameters. The

schedule number corresponds to the schedules defined in the time parameters block of the
input file 4.2. The second parameter defines the volume change as a percentage. Thermal
expansion is disabled by specifying a value of 0 for the schedule number. Thermal strains
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are imposed differently for small strain and finite strain material models. For small strain
materials, an additive decomposition of the strain is assumed

ε = εθ + εmechanical, (8.3)

where the thermal strain is
εθ(t) = ε(t)1 (8.4)

For materials formulated at finite strains, the multiplicative split

F = Fmechanical Fθ, (8.5)

of the deformation gradient is assumed, where the thermal deformation gradient is

Fθ(t) = (1 + ε(t))1. (8.6)

8.0.3 Common input parameters for 2D analysis

If constructed using the standard Tahoe materials model toolbox, all materials for two-
dimensional analysis contain two common parameters. An example of these parameters is
shown below:

####### common 2D parameters

1.0 # thickness

2 # constraint option

The thickness t is used to transform the differential volume element as

dΩ = t dx1 dx2. (8.7)

The acceptable values for the constraint option are shown in Table 8.2. Some materials

Table 8.2: Constraint options for two-dimensional analysis.

code description
1 plane stress
2 plane strain

models have been specifically formulated as plane stress or plane strain. These materials
will silently override the user-specified value of the constraint option.
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8.1 Material 1: small deformation Kirchhoff-St. Venant

8.1 Material 1: small deformation Kirchhoff-St. Venant

The stress response of this isotropic model is governed by the strain energy function

Φ(ε) =
1

2
εij Cijkl εkl, (8.8)

where ε is the infinitesimal strain tensor and C is the isotropic tensor of elastic constants
which may be written as

C =


λ + 2µ λ λ 0 0 0

λ λ + 2µ λ 0 0 0
λ λ λ + 2µ 0 0 0
0 0 0 µ 0 0
0 0 0 0 µ 0
0 0 0 0 0 µ

 (8.9)

for the three-dimensional case. The Lamé constants λ and µ are related to Young’s modulus
E and Poisson’s ratio ν by

λ =
ν E

(1 + ν) (1− 2 ν)
(8.10)

and

µ =
E

2 (1 + ν)
. (8.11)

8.1.1 3D input parameters

An example of input parameters for three-dimensional analysis is shown below:

####### Kirchhoff-St.Venant

1 # material code

####### common material parameters

0.0 0.0 1.0

0 0.0

####### moduli

100.0 # Young’s modulus

0.25 # Poisson’s ratio

After the common parameters described in Section 8.0.2, the model requires specification of
Young’s modulus E and Poisson’s ratio ν.
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8.2 Material 2: finite deformation Kirchhoff-St. Venant

8.1.2 2D input parameters

An example of input parameters for two-dimensional analysis is shown below:

####### Kirchhoff-St.Venant

1 # material code

####### common material parameters

0.0 0.0 1.0

0 0.0

####### moduli

100.0 # Young’s modulus

0.25 # Poisson’s ratio

####### 2D parameters

1.0 # thickness

2 # constraint option

After the common parameters 8.0.2, the model requires specification of Young’s modulus E
and Poisson’s ratio ν. The material thickness and constraint option from Table 8.2 follow
the parameters for three-dimensional analysis.

8.1.3 Output values

This constitutive model does not have any output values.

8.2 Material 2: finite deformation Kirchhoff-St. Venant

This model is the finite deformation version of the material model described in Section 8.1.
The stress response of this isotropic model is governed by the strain energy function

Φ(E) =
1

2
Eij Cijkl Ekl, (8.12)

where E is the Green Lagrangian strain tensor

E =
1

2

(
FTF− 1

)
, (8.13)

where F is the deformation gradient and C is the isotropic tensor of elastic constants given
by (8.9).
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8.3 Material 3: small deformation cubic

8.2.1 3D input parameters

An example of input parameters for three-dimensional analysis is shown below:

####### Kirchhoff-St.Venant

2 # material code

####### common material parameters

0.0 0.0 1.0

0 0.0

####### moduli

100.0 # Young’s modulus

0.25 # Poisson’s ratio

After the common parameters described in Section 8.0.2, the model requires specification of
Young’s modulus E and Poisson’s ratio ν.

8.2.2 2D input parameters

An example of input parameters for two-dimensional analysis is shown below:

####### Kirchhoff-St.Venant

2 # material code

####### common material parameters

0.0 0.0 1.0

0 0.0

####### moduli

100.0 # Young’s modulus

0.25 # Poisson’s ratio

####### 2D parameters

1.0 # thickness

2 # constraint option

After the common parameters 8.0.2, the model requires specification of Young’s modulus E
and Poisson’s ratio ν. The material thickness and constraint option from Table 8.2 follow
the parameters for three-dimensional analysis.

8.2.3 Output values

This constitutive model does not have any output values.

8.3 Material 3: small deformation cubic

The stress response of this model is governed by the strain energy function

Φ(ε) =
1

2
εij Cijkl εkl, (8.14)
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8.3 Material 3: small deformation cubic

where ε is the infinitesimal strain tensor and C is the tensor of elastic constants which may
be written as

C =


C11 C12 C12 0 0 0
C12 C11 C12 0 0 0
C12 C12 C11 0 0 0
0 0 0 C44 0 0
0 0 0 0 C44 0
0 0 0 0 0 C44

 (8.15)

for the three-dimensional case. The elasticity tensor in (8.15) has cubic symmetry. The
degree of anisotropy is often characterized by the parameter

A =
2 C44

C11 − C12

, (8.16)

where A = 1 for isotropy.

8.3.1 3D input parameters

An example of input parameters for three-dimensional analysis is shown below:

####### cubic model

3 # material code

####### common material parameters

0.0 0.0 1.0

0 0.0

####### cubic moduli

100.0 # C11

10.0 # C12

50.0 # C44

After the common parameters described in Section 8.0.2, the model requires specification of
the cubic moduli C11, C12, and C44.
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8.4 Material 4: finite deformation cubic

8.3.2 2D input parameters

An example of input parameters for two-dimensional analysis is shown below:

####### cubic model

3 # material code

####### common material parameters

0.0 0.0 1.0

0 0.0

####### cubic moduli

100.0 # C11

10.0 # C12

50.0 # C44

####### orientation

0 # is rotated

0.0 # rotation angle

####### 2D parameters

1.0 # thickness

2 # constraint option

After the common parameters described in Section 8.0.2, the model requires specification of
the cubic moduli C11, C12, and C44. The cubic moduli are followed by specification of the
lattice rotation, consisting of a boolean flag indicating whether the lattice is rotated and
the angle rotation. The material thickness and constraint option from Table 8.2 follow the
parameters for three-dimensional analysis.

8.3.3 Output values

This constitutive model does not have any output values.

8.4 Material 4: finite deformation cubic

This model is the finite deformation version of the material model described in Section 8.3.
The stress response of this isotropic model is governed by the strain energy function

Φ(E) =
1

2
Eij Cijkl Ekl, (8.17)

where E is the Green Lagrangian strain tensor

E =
1

2

(
FTF− 1

)
, (8.18)

where F is the deformation gradient and C is the tensor of elastic constants given by (8.15).
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8.4 Material 4: finite deformation cubic

8.4.1 3D input parameters

An example of input parameters for three-dimensional analysis is shown below:

####### cubic model

4 # material code

####### common material parameters

0.0 0.0 1.0

0 0.0

####### cubic moduli

100.0 # C11

10.0 # C12

50.0 # C44

After the common parameters described in Section 8.0.2, the model requires specification of
the cubic moduli C11, C12, and C44.

8.4.2 2D input parameters

An example of input parameters for two-dimensional analysis is shown below:

####### cubic model

4 # material code

####### common material parameters

0.0 0.0 1.0

0 0.0

####### cubic moduli

100.0 # C11

10.0 # C12

50.0 # C44

####### orientation

0 # is rotated

0.0 # rotation angle

####### 2D parameters

1.0 # thickness

2 # constraint option

After the common parameters described in Section 8.0.2, the model requires specification of
the cubic moduli C11, C12, and C44. The cubic moduli are followed by specification of the
lattice rotation, consisting of a boolean flag indicating whether the lattice is rotated and
the angle rotation. The material thickness and constraint option from Table 8.2 follow the
parameters for three-dimensional analysis.
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8.5 Material 5: uncoupled volumetric/deviatoric

8.4.3 Output values

This constitutive model does not have any output values.

8.5 Material 5: uncoupled volumetric/deviatoric

This model is the finite deformation, isotropic constitutive model proposed by Simo et al.
[40] for which the response to volumetric and deviatoric deformations is uncoupled. The
hyperelastic stress response is derived from the stored energy function

Φ = U(J) + Φ̄
(
b̄
)

(8.19)

U(J) =
1

2
κ

[
1

2

(
J2 − 1

)
− ln J

]
(8.20)

Φ̄
(
b̄
)

=
1

2
µ
(
tr b̄− 3

)
, (8.21)

where κ is the bulk modulus, µ is the shear modulus, b̄ = J−2/3b is the deviatoric part of
the left Cauchy-Green stretch tensor

b = FFT, (8.22)

and J = detF. As a result of the form of the volumetric portion of the stored energy function
U(J) (8.20), this model is stable under severe compression.

The bulk and shear moduli are related to Young’s modulus E and Poisson’s ratio ν by

κ =
E

3 (1− 2 ν)
(8.23)

and

µ =
E

2 (1 + ν)
. (8.11)

8.5.1 3D input parameters

An example of input parameters for three-dimensional analysis is shown below:

####### uncoupled volumetric/deviatoric model

5 # material code

####### common material parameters

0.0 0.0 1.0

0 0.0

####### moduli

100.0 # Young’s modulus

0.25 # Poisson’s ratio

After the common parameters described in Section 8.0.2, the model requires specification of
Young’s modulus E and Poisson’s ratio ν.
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8.6 Material 6: quadratic-logarithmic (Simo)

8.5.2 2D input parameters

An example of input parameters for two-dimensional analysis is shown below:

####### uncoupled volumetric/deviatoric model

5 # material code

####### common material parameters

0.0 0.0 1.0

0 0.0

####### moduli

100.0 # Young’s modulus

0.25 # Poisson’s ratio

####### 2D parameters

1.0 # thickness

2 # constraint option (override)

After the common parameters 8.0.2, the model requires specification of Young’s modulus E
and Poisson’s ratio ν. The material thickness and constraint option from Table 8.2 follow
the parameters for three-dimensional analysis. This two-dimensional model is formulated in
plane strain, so other values for the constraint option are silently overridden.

8.5.3 Output values

This constitutive model does not have any output values.

8.6 Material 6: quadratic-logarithmic (Simo)

This model is the finite deformation, isotropic constitutive model proposed by Simo et al.
[36] expressed in principal stretch space. The hyperelastic stress response is derived from
the stored energy function expressed in terms of the logarithms of the principal stretches as

Φ(e1, e2, e3) =
1

2
λ (e1 + e2 + e3)

2 + µ
(
e2
1 + e2

2 + e2
3

)
, (8.24)

where
eA = log λA, A = 1, 2, 3. (8.25)

The Lamé constants λ and µ are related to Young’s modulus E and Poisson’s ratio ν by

λ =
ν E

(1 + ν) (1− 2 ν)
(8.10)

and

µ =
E

2 (1 + ν)
. (8.11)
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8.6 Material 6: quadratic-logarithmic (Simo)

The implementation of the model follows the spectral formulation developed by Simo and
Taylor [39]. Notably, the principal values of the Kirchhoff stress are linearly related to the
logarithmic strains 

τ1

τ2

τ3

 =

κ + 4
3
µ κ− 2

3
µ κ− 2

3
µ

κ− 2
3
µ κ + 4

3
µ κ− 2

3
µ

κ− 2
3
µ κ− 2

3
µ κ + 4

3
µ


e1

e2

e3

 (8.26)

for elastic deformations. As a result of (8.26), the return mapping algorithm is readily
transferred to stress space, leading to a highly efficient numerical implementation.

The model described in Section 8.7 uses the stored energy function (8.24) with the spectral
formulation developed by Ogden [30]. The Ogden formulation allows more straightforward
handling of repeated principal stretches.

8.6.1 3D input parameters

An example of input parameters for three-dimensional analysis is shown below:

####### quad-log (Simo)

6 # material code

####### common material parameters

0.0 0.0 1.0

0 0.0

####### moduli

100.0 # Young’s modulus

0.25 # Poisson’s ratio

After the common parameters described in Section 8.0.2, the model requires specification of
Young’s modulus E and Poisson’s ratio ν.

8.6.2 2D input parameters

An example of input parameters for two-dimensional analysis is shown below:

####### quad-log (Simo)

6 # material code

####### common material parameters

0.0 0.0 1.0

0 0.0

####### moduli

100.0 # Young’s modulus

0.25 # Poisson’s ratio

####### 2D parameters

1.0 # thickness

2 # constraint option (override)
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8.7 Material 7: quadratic-logarithmic (Ogden)

After the common parameters 8.0.2, the model requires specification of Young’s modulus E
and Poisson’s ratio ν. The material thickness and constraint option from Table 8.2 follow
the parameters for three-dimensional analysis. This two-dimensional model is formulated in
plane strain, so other values for the constraint option are silently overridden.

8.6.3 Output values

This constitutive model does not have any output values.

8.7 Material 7: quadratic-logarithmic (Ogden)

This model is the finite deformation, isotropic constitutive model proposed by Simo et al.
[36] expressed in principal stretch space. The hyperelastic stress response is derived from the
stored energy function given by (8.24), expressed in terms of the logarithms of the principal
stretches. This model differs from the model described in Section 8.7 only in the underlying
spectral formulation. Instead of the formulation proposed by Simo and Taylor [39], this
model use the spectral formulation developed by Ogden [30]. This formulation allows more
straightforward handling of repeated principal stretches.

8.7.1 3D input parameters

An example of input parameters for three-dimensional analysis is shown below:

####### quad-log (Ogden)

7 # material code

####### common material parameters

0.0 0.0 1.0

0 0.0

####### moduli

100.0 # Young’s modulus

0.25 # Poisson’s ratio

After the common parameters described in Section 8.0.2, the model requires specification of
Young’s modulus E and Poisson’s ratio ν.
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8.8 Material 8: small deformation J2 plasticity

8.7.2 2D input parameters

An example of input parameters for two-dimensional analysis is shown below:

####### quad-log (Ogden)

7 # material code

####### common material parameters

0.0 0.0 1.0

0 0.0

####### 2D parameters

1.0 # thickness

2 # constraint option (override)

####### moduli

100.0 # Young’s modulus

0.25 # Poisson’s ratio

The material thickness and constraint option from Table 8.2 follow the the common param-
eters 8.0.2. Finally, the model requires specification of Young’s modulus E and Poisson’s
ratio ν. This two-dimensional model is formulated in plane strain, so other values for the
constraint option are silently overridden.

8.7.3 Output values

This constitutive model does not have any output values.

8.8 Material 8: small deformation J2 plasticity

This model combines the isotropic stored energy function from Section 8.1 with a J2 yield
condition incorporating linear kinematic and isotropic hardening for infinitesimal strain anal-
ysis. This model is due to Simo and Hughes [38]. The yield condition is formulated as

f(σ,q) := ||η|| −
√

2

3
K(α) ≤ 0, (8.27)

where the internal variables q =
{
α, β̄

}
are the equivalent plastic strain α and the center of

the yield surface β̄ in deviatoric stress space. The relative stress η is

η = dev [σ]− β̄, (8.28)

where σ is the Cauchy stress. The associative flow rule and hardening laws are

ε̇p = γ
η

||η||
, (8.29)

˙̄β = γ
2

3
H ′(α)

η

||η||
, (8.30)

α̇ = γ

√
2

3
, (8.31)
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8.8 Material 8: small deformation J2 plasticity

where γ is the consistency parameter from the Kuhn-Tucker complementary conditions

γ ≥ 0, f(σ,q) ≤ 0, (8.32)

and
γ f(σ,q) = 0. (8.33)

The combined linear kinematic and isotropic hardening functions are defined as

H(α) = (1− θ) H̄α (8.34)

and
K(α) = σy + θH̄α, (8.35)

where σy is the initial yield stress and H̄ is the single hardening modulus. The parameter
0 ≤ θ ≤ 1 determines the mixity of isotropic to kinematic hardening, with θ = 1 indicating
purely isotropic hardening.

8.8.1 3D input parameters

An example of input parameters for three-dimensional analysis is shown below:

####### small strain J2 plasticity

8 # material code

####### common material parameters

0.0 0.0 1.0

0 0.0

####### moduli

100.0 # Young’s modulus

0.25 # Poisson’s ratio

####### plasticity

0 # isotropic hardening function (0:linear)

0.25 # yield stress

0.01 # hardening parameter

After the common parameters described in Section 8.0.2, the model requires specification of
Young’s modulus E and Poisson’s ratio ν. Finally, the user defines the specification for the
isotropic hardening function K(α), the initial yield stress σy, and the hardening parameter
H̄. All available hardening functions are listed in Table 8.5. An example of implementing
the general cubic spline is detailed in Section 8.9.
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8.8 Material 8: small deformation J2 plasticity

8.8.2 2D input parameters

An example of input parameters for two-dimensional analysis is shown below:

####### small strain J2 plasticity

8 # material code

####### common material parameters

0.0 0.0 1.0

0 0.0

####### moduli

100.0 # Young’s modulus

0.25 # Poisson’s ratio

####### plasticity

0 # isotropic hardening function

0.25 # yield stress

0.01 # hardening parameter

####### 2D parameters

1.0 # thickness

2 # constraint option (override)

After the common parameters described in Section 8.0.2, the model requires specification
of Young’s modulus E and Poisson’s ratio ν. Following these parameters, the user defines
the specification for the isotropic hardening function K(α), the initial yield stress σy, and
the hardening parameter H̄. All available hardening functions are listed in Table 8.5. An
example of implementing the general cubic spline is detailed in Section 8.9. The material
thickness and constraint option from Table 8.2 follow the parameters for three-dimensional
analysis. This two-dimensional model is formulated in plane strain, so other values for the
constraint option are silently overridden.

8.8.3 Output values

This constitutive model has three scalar output values listed in Table 8.3.

Table 8.3: Output values for a small strain J2 plasticity model.

var. description labels
α equivalent plastic strain alpha

||dev [σ] || second invariant of the deviatoric stress VM
p pressure press
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8.9 Material 9: finite deformation J2 plasticity

8.9 Material 9: finite deformation J2 plasticity

This model is based on a formulation due to Simo [34, 35] for finite strain J2 plasticity. The
formulation includes both linear isotropic and kinematic hardening; however, the implemen-
tation allows specification of an arbitrary isotropic hardening function, but does not include
kinematic hardening. The isotropic stored energy function for this model is taken from the
model described in Section 8.2. The yield condition is formulated in terms of the Kirchhoff
stress τ as

f(τ ,q) := ||η̄|| −
√

2

3
K(α) ≤ 0, (8.36)

where the internal variables q =
{
α, β̄

}
are the equivalent plastic strain α and the center of

the yield surface β̄ in deviatoric Kirchhoff stress space. The deviatoric relative stress η̄ is

η̄ = dev [τ ]− β̄. (8.37)

As in the small strain case, the hardening variable is assumed to evolve as

α̇ =

√
2

3
γ, (8.38)

where γ is the consistency parameter in (8.32) and (8.33). The flow rule rule and kinematic
hardening law are derived assuming a multiplicative split of the deformation gradient as
F = FeFp. The isotropic hardening functions available for this model are described in
Section 8.9.4.

NOTE: The implementation of the consistent tangent moduli for this model has not been
verified. The moduli are not used in the stress-update equations, but do affect the rate of
convergence for Newton-type solvers. Finite strain, J2 plasticity is also implemented in the
model described in Section 8.10.
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8.9 Material 9: finite deformation J2 plasticity

8.9.1 3D input parameters

An example of input parameters for two-dimensional analysis is shown below:

####### finite strain J2 plasticity

9 # material code

####### common material parameters

0.0 0.0 1.0

0 0.0

####### moduli

100.0 # Young’s modulus

0.25 # Poisson’s ratio

####### plasticity

2 # isotropic hardening function

####### spline hardening function

4 # number of points

# [alpha] [K(alpha)]

0.00 0.25

0.01 0.255

0.05 0.26

0.10 0.30

After the common parameters described in Section 8.0.2, the model requires specification of
Young’s modulus E and Poisson’s ratio ν. The moduli are followed by the specification of
the isotropic hardening function K(α). In the example, the function specification 2 indicates
the general cubic spline. All available hardening functions are listed in Table 8.5. The points
defining the spline follow.
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8.9 Material 9: finite deformation J2 plasticity

8.9.2 2D input parameters

An example of input parameters for two-dimensional analysis is shown below:

####### finite strain J2 plasticity

9 # material code

####### common material parameters

0.0 0.0 1.0

0 0.0

####### moduli

100.0 # Young’s modulus

0.25 # Poisson’s ratio

####### 2D parameters

1.0 # thickness

2 # constraint option (override)

####### plasticity

2 # isotropic hardening function

####### spline hardening function

4 # number of points

# [alpha] [K(alpha)]

0.00 0.25

0.01 0.255

0.05 0.26

0.10 0.30

After the common parameters described in Section 8.0.2, the model requires specification
of Young’s modulus E and Poisson’s ratio ν. The material thickness and constraint option
from Table 8.2 follow the parameters for three-dimensional analysis. This two-dimensional
model is formulated in plane strain, so other values for the constraint option are silently
overridden. The parameters for 2D analysis are followed by the specification of the isotropic
hardening function K(α). In the example, the function specification 2 indicates the general
cubic spline. All available hardening functions are listed in Table 8.5. The points defining
the spline follow.

8.9.3 Output values

This constitutive model has three scalar output values listed in Table 8.4.

8.9.4 Hardening functions

The isotropic hardening function for this model is specified by the user. The functions
available are listed in Table 8.5. The input parameters for each function are described in
the sections that follow. For the nonlinear hardening functions, it is possible to specify
the function parameters to produce hardening behavior that is not strictly convex. The
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8.9 Material 9: finite deformation J2 plasticity

Table 8.4: Output values for a small strain J2 plasticity model.

var. description labels
α equivalent plastic strain alpha

||β̄|| norm of kinematic hardening norm beta√
3
2
||dev [τ ] || second invariant of the deviatoric stress VM Kirch

p pressure press

Table 8.5: Isotropic hardening functions.

code description
0 linear
1 linear-exponential saturation
2 general cubic spline

local Newton iteration used to compute the return mapping during plastic loading is not
guaranteed to converge under these conditions.

8.9.4.1 linear The linear hardening function has the form

K(α) = σy + K α, (8.39)

where σy is the initial yield stress and K is the hardening modulus. An example of input
parameters is shown below:

####### linear hardening function

0.25 # initial yield stress

0.01 # hardening modulus

8.9.4.2 linear-exponential saturation The linear-exponential saturation hardening
function has the form

K(α) = σy + K α + ∆K∞

(
1− exp

[
−α

δ

])
, (8.40)

where σy is the initial yield stress and K is the linear hardening modulus. The saturation
hardening has a magnitude of ∆K∞ and occurs at a characteristic equivalent plastic strain
of δ. An example of input parameters is shown below:

67



8.9 Material 9: finite deformation J2 plasticity

####### linear-exponential saturation

0.25 # initial yield stress

0.10 # linear hardening modulus

0.05 # saturation hardening

0.05 # saturation strain

8.9.4.3 general cubic spline The cubic spline hardening function has the general form

K(α) =


K(1)(α1) + (α− α1) K(1)′(α1) if α < α1,

K(i)(α) if αi < α < αi+1 for i = 1, . . . , n− 1,

K(n)(αn) + (α− αn) K(n)′(αn) if α > αn,

(8.41)

where the n is the number of points used to define the spline. Over each sub-interval, the
spline takes the form

K(i)(α) = a
(i)
0 + a

(i)
1 ∆α + a

(i)
2 ∆α2 + a

(i)
3 ∆α3, (8.42)

where ∆α = α − αi. The coefficients a(i) are computed from the spline points under the
conditions that spline pass through the data and that the first derivative of the spline is
continuous between sub-intervals. Additionally, the end conditions for the spline are specified
as

K(1)′′(α1) = K(n)′′(αn) = 0 (8.43)

to match the linear extensions assumed beyond the range of the spline data. A specific
example of input to define a hardening function is shown below:

####### spline hardening function

4 # number of spline points

# [alpha] [K(alpha)]

0.00 0.25

0.01 0.255

0.05 0.26

0.10 0.30

Generally, the input has the form

####### spline hardening function

[npts = number of spline points]

[α1] [K(α1)]
...[

αnpts

] [
K
(
αnpts

)]
Although not required or enforced, one typically selects α1 = 0 in order to define the initial
yield stress specifically with K(α1).
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8.10 Material 10: finite deformation J2 plasticity in principal stretches

8.10 Material 10: finite deformation J2 plasticity in principal
stretches

This model combines the isotropic stored energy function from Section 8.6 with a J2 yield
condition incorporating linear kinematic and isotropic hardening for finite strain analysis.
This model is due to Simo [36]. The yield condition is formulated in terms of the Kirchhoff
stress τ as

f(τ ,q) := ||η̄|| −
√

2

3
K(α) ≤ 0, (8.44)

where the internal variables q =
{
α, β̄

}
are the equivalent plastic strain α and the center of

the yield surface β̄ in deviatoric Kirchhoff stress space. The relative stress η̄ is

η̄ = dev [τ ]− β̄. (8.45)

As in the small strain case, the hardening variable is assumed to evolve as

α̇ =

√
2

3
γ, (8.46)

where γ is the consistency parameter in (8.32) and (8.33). The flow rule rule and kinematic
hardening law are derived assuming a multiplicative split of the deformation gradient. These
will not be outlined here; however, the linear kinematic and isotropic hardening functions

H(α) = (1− θ) H̄α (8.47)

and
K(α) = τy + θH̄α (8.48)

functional analogously to the small strain model described in Section 8.8. τy is the initial
Kirchhoff yield stress and H̄ is the hardening modulus. The parameter 0 ≤ θ ≤ 1 deter-
mines the mixity of isotropic to kinematic hardening, with θ = 1 indicating purely isotropic
hardening. This model is formulated in principal stretches which preserves the classical re-
turn mapping schemes from the infinitesimal theory. An important results of the spectral
treatment is that the consistent tangent is symmetric even during plastic loading.
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8.10 Material 10: finite deformation J2 plasticity in principal stretches

8.10.1 3D input parameters

An example of input parameters for three-dimensional analysis is shown below:

####### finite strain J2 plasticity

10 # material code

####### common material parameters

0.0 0.0 1.0

0 0.0

####### moduli

100.0 # Young’s modulus

0.25 # Poisson’s ratio

####### plasticity

0.25 # yield stress

0.01 # hardening parameter

1.0 # kinematic/isotropic mixity

After the common parameters described in Section 8.0.2, the model requires specification of
Young’s modulus E and Poisson’s ratio ν. Finally, the user defines the initial yield stress
σy, the hardening parameter H̄, and the kinematic/isotropic hardening mixity parameter θ,
for which θ = 1 produces purely isotropic hardening.

8.10.2 2D input parameters

An example of input parameters for two-dimensional analysis is shown below:

####### finite strain J2 plasticity

10 # material code

####### common material parameters

0.0 0.0 1.0

0 0.0

####### moduli

100.0 # Young’s modulus

0.25 # Poisson’s ratio

####### 2D parameters

1.0 # thickness

2 # constraint option (override)

####### plasticity

0.25 # yield stress

0.01 # hardening parameter

1.0 # kinematic/isotropic mixity

After the common parameters described in Section 8.0.2, the model requires specification
of Young’s modulus E and Poisson’s ratio ν. The material thickness and constraint option
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8.11 Material 11: small deformation Drucker-Prager plasticity

from Table 8.2 follow the parameters for three-dimensional analysis. This two-dimensional
model is formulated in plane strain, so other values for the constraint option are silently
overridden. Following these parameters, the user defines the initial yield stress σy, the
hardening parameter H̄, and the kinematic/isotropic hardening mixity parameter θ, for
which θ = 1 produces purely isotropic hardening.

8.10.3 Output values

This constitutive model has five scalar output values listed in Table 8.6.

Table 8.6: Output values for a finite strain J2 plasticity model.

var. description labels
α equivalent plastic strain alpha

||τ || second invariant of the Kirchhoff stress VM Kirch
p pressure press

σmax maximum principal Cauchy stress s max

σmin minimum principal Cauchy stress s min

8.11 Material 11: small deformation Drucker-Prager plasticity

This model combines the isotropic stored energy function from Section 8.1 with a pressure-
dependent yield condition incorporating linear kinematic hardening for infinitesimal strain
analysis. The parameters for this model follow the presentation of Regueiro and Borja [31].
The pressure-dependent yield condition is formulated as

f(σ, α1, α2) :=

√
3

2
||dev [σ] ||+

√
3

(
ζ + β

tr [σ]

3

)
≤ 0, (8.49)

where σ is the Cauchy stress and

ζ = −ᾱ + b α1 +
α2√

3
. (8.50)

The internal variables {
α1

α2

}
= −

[
K ′ 0
0 H ′

]{
vp

ep

}
(8.51)

are related to the total volumetric and deviatoric plastic strains vp and ep, respectively,
through the hardening moduli K ′ and H ′. The material constants ᾱ and β may be defined
in terms of the cohesive c̄ and friction angle φ̄ as

ᾱ =
6 c̄ cos φ̄√

3
(
3 + A sin φ̄

) (8.52)
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8.11 Material 11: small deformation Drucker-Prager plasticity

and

β =
6 sin φ̄√

3
(
3 + A sin φ̄

) , (8.53)

where −1 ≤ A ≤ 1. The plastic potential function is

ϕ(σ, α1, α2) =

√
3

2
||dev [σ] ||+

√
3

(
ζ + b

tr [σ]

3

)
. (8.54)

Associative plasticity is recovered if b = β, where b is the material dilation constant, and J2

plasticity is recovered if b = β = 0.

8.11.1 3D input parameters

An example of input parameters for three-dimensional analysis is shown below:

####### small strain Drucker-Prager plasticity

11 # material code

####### common material parameters

0.0 0.0 1.0

0 0.0

####### moduli

100.0 # Young’s modulus

0.25 # Poisson’s ratio

####### plasticity

0.15 # cohesive-like strength parameter

0.04 # friction-like parameter

0.0 # dilation parameter

0.0 # deviatoric hardening parameter

0.0 # volumetric hardening parameter

After the common parameters described in Section 8.0.2, the model requires specification of
Young’s modulus E and Poisson’s ratio ν. The cohesion-like strength parameter parameter
ᾱ, the friction-like parameter β, the dilatation parameter b, and the hardening moduli follow.
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8.12 Material 12: 2D hexagonal Lennard-Jones lattice

8.11.2 2D input parameters

An example of input parameters for two-dimensional analysis is shown below:

####### small strain Drucker-Prager plasticity

11 # material code

####### common material parameters

0.0 0.0 1.0

0 0.0

####### moduli

100.0 # Young’s modulus

0.25 # Poisson’s ratio

####### plasticity

####### plasticity

0.15 # cohesive-like strength parameter

0.04 # friction-like parameter

0.0 # dilation parameter

0.0 # deviatoric hardening parameter

0.0 # volumetric hardening parameter

####### 2D parameters

1.0 # thickness

2 # constraint option (override)

After the common parameters described in Section 8.0.2, the model requires specification of
Young’s modulus E and Poisson’s ratio ν. The cohesion-like strength parameter parameter
ᾱ, the friction-like parameter β, the dilatation parameter b, and the hardening moduli follow.
The material thickness and constraint option from Table 8.2 follow the parameters for three-
dimensional analysis. This two-dimensional model is formulated in plane strain, so other
values for the constraint option are silently overridden.

8.11.3 Output values

This constitutive model has four scalar output values listed in Table 8.7.

8.12 Material 12: 2D hexagonal Lennard-Jones lattice

[To do: this is a pure plane stress material] The stress response of this material is calculated
from an underlying lattice structure and bonding potential by making use of the Cauchy-
Born rule. The method was originally described by Born [9] as a means for estimating the
theoretical strength of crystals and for assessing the stability of cubic crystal configurations
subject simple deformations. The Cauchy-Born rule is a multiscale assumption about how
the motion of many atoms can be related to continuum deformation measures. Under the
assumption, the atoms in an crystal subject to a homogeneous deformation move according
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8.12 Material 12: 2D hexagonal Lennard-Jones lattice

Table 8.7: Output values for the small strain Drucker-Prager plasticity model.

var. description labels

α2
deviatoric part of stress-like plastic
variable

alpha dev

α1
volumetric part of stress-like plastic
variable

alpha vol

||dev [σ] || second invariant of the deviatoric stress VM
p pressure press

F(X,t)

X

x

Figure 8.1: Deformation of the underlying microstructure as prescribed by
the Cauchy-Born rule.

to a single mapping from the undeformed to the deformed configuration. From the con-
tinuum level, this mapping is taken to be the deformation gradient F(X, t). As shown in
Figure 8.1, the continuum region surrounding a point X in the undeformed configuration
distorts as described by the deformation gradient. The coordinate of the continuum point
in the deformed configuration is denoted by x. At a microstructural length scale below the
continuum level, we assume the deformation of an underlying crystal lattice undergoes the
same homogeneous transformation. The deformation gradient at a point at the continuum
length scale is assumed to be constant over a boundless crystal at the microstructural length
scale. The microstructural description of a crystalline material and the corresponding con-
tinuum constitutive properties are linked using an equivalence in strain energy density. The
continuum-level strain energy density is equated to the energy in a representative volume
of the microstructure. Since the deformation is homogeneous, the behavior of an arbitrarily
large crystal can be studied by considering only the representative volume subject to peri-
odic boundary conditions. For crystalline materials of a single species with a primitive unit
cell, this representative volume is the atomic volume. The change in energy per unit volume
for a given deformation predicted by this procedure corresponds to the bulk behavior of the
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8.12 Material 12: 2D hexagonal Lennard-Jones lattice

crystal at zero Kelvin. There are no surface or temperature-dependent effects. The atoms
in the crystal interact as determined by assumed bonding potential functions. Taken from
atomistic calculations, these semi-empirical relationships may be in the form of pairwise po-
tentials, multi-body potentials, or embedded atom method potentials. The number of bonds
contributing to the energy in the representative volume depends on the range of influence of
the bonding potentials.

For a lattice bound by pair potentials, the strain energy density is

Φ2(C) =
1

Ω0

nb∑
i=1

U (i)
(
r(i)(C)

)
, (8.55)

where C = FTF is the right Cauchy-Green stretch tensor, nb is the number of bonds, Ω0 is
the representative volume, r(i) is the deformed bond length, and U (i)(r) is a pairwise bond
potential. Typically, all the bonds are assumed to be governed by the same potential function
U(r). Since the deformation is assumed homogeneous over the crystal, the transformation
defined by F can be applied to vectors of finite length. For each bond in the undeformed
unit cell, we define a bond vector

R = RΞ, (8.56)

where R and Ξ are the undeformed bond length and direction, respectively. Assuming the
deformation gradient F is homogeneous over the representative volume, we can express the
deformed bond length as

r(C) = R
√

Ξ ·CΞ. (8.57)

Given the strain energy density function (8.55), we can derive a complete description of the
stress response and elastic tangent moduli using Green elastic theory [30].

r( )1 r( )2

r( )3

W

FR( )1 R( )2

R( )3

W 0

Figure 8.2: Deformation of the unit cell of a two-dimensional hexagonal lat-
tice subject the Cauchy-Born rule.

Figure 8.2 shows the primitive unit cell of a two-dimensional, hexagonal lattice with
nearest neighbor bonding for which nb = 3. In the undeformed configuration, the bond
vectors are given by

R(1) = a0

{
−1/2

−
√

3/2

}
R(2) = a0

{
1/2

−
√

3/2

}
R(3) = a0

{
1
0

}
, (8.58)
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8.12 Material 12: 2D hexagonal Lennard-Jones lattice

where a0 is the undeformed lattice parameter.
Following Green elastic theory, the Cauchy stress and spatial tangent modulus are given

by

σ = σ1, (8.59)

where the magnitude of the equibiaxial stress is

σ =
3

2

a0

λΩ0

U ′(λa0) , (8.60)

and

c = µ [1⊗ 1 + 2 I] , (8.61)

where the instantaneous shear modulus is

µ =
3

8 Ω0

[
a2

0 U ′′(λa0)−
a0

λ
U ′(λa0)

]
. (8.62)

With instantaneous isotropic response under the restriction of Cauchy symmetry, the com-
plete description of the modulus involves only the single parameter µ from (8.62). Cauchy
symmetry for this two-dimensional model implies a fixed Poisson’s ratio ν = 1

3
.

The earliest potentials used in lattice modeling were constructed to display the essential
features of cohesive interactions between atoms with parameters fitted to available exper-
imental data, such as lattice parameters and elastic properties in the undeformed state.
Born [9] employed an “inverse power” potential of the form

U(r) = D
nm

n−m

[
1

n

(a0

r

)n

− 1

m

(a0

r

)m
]

, (8.63)

where n > m, D, and a0 were chosen to match experimental data. In particular, the well-
known Lennard-Jones potential results from (8.63) with m = 6 and n = 12.

8.12.1 3D input parameters

This model is formulated in two-dimensions. Other models use the Cauchy-Born rule to
calculate the stress response of single crystals in three dimensions.

8.12.2 2D input parameters

An example of input parameters for two-dimensional analysis is shown below:

8.12.3 Output values

This constitutive model does not have any output values.
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8.13 Material 13: plane strain FCC Lennard-Jones lattice

8.13 Material 13: plane strain FCC Lennard-Jones lattice

see 8.12 With instantaneous isotropic response under the restriction of Cauchy symmetry,
the complete description of the modulus involves only the single parameter µ from (8.62).
Cauchy symmetry for a three-dimensional lattice implies a fixed Poisson’s ratio ν = 1

4
.

Table 8.8: FCC lattice orientation options.

code orientation

0
e1: [ 1 0 0 ]
e3: [ 0 0 1 ]

1
e1: [ 1 0 1̄ ]
e3: [ 1 0 1 ]

2
e1: [ 1 0 1̄ ]
e3: [ 1 1 1 ]

8.13.1 3D input parameters

Although the underlying lattice for this material is three-dimensional, it has only be imple-
mented for plane strain deformation. Other models use the Cauchy-Born rule to calculate
the stress response of single crystals in three dimensions.

8.13.2 2D input parameters

An example of input parameters for two-dimensional analysis is shown below:

8.13.3 Output values

This constitutive model does not have any output values.

8.14 Material 14: FCC lattice with EAM potentials

The stress response of this model is calculated by applying the Cauchy-Born, described
in Section 8.12, rule together with embedded atom method potentials. Application of the
Cauchy-Born rule dates back to the work of Born [9]. More recently, Tadmor et al. [43],
used the method with the embedded atom method potentials as a means to derive nonlin-
ear, hyperelastic constitutive models for use in numerical simulations to predict stress and
deformation. The embedded atom method [11] (EAM) was developed in an attempt to incor-
porate more physical understanding into the bond potential functions. Originally motivated
by the view of metals as nuclei in a sea of electrons, the total energy of any atom in the
crystal is comprised of a contribution due to the nuclear repulsion and an embedding energy
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8.14 Material 14: FCC lattice with EAM potentials

representing the attraction of the nucleus to the background electron density. In fitting a set
of EAM potentials to a particular material, one must define three functions: a pair potential
describing nuclear interactions, the electron density distribution around each nucleus, and a
function describing the interaction between a nucleus and the background electron density.
Although quite different from simple pair interactions, EAM potentials may be incorporated
into the procedures for deriving constitutive properties without any modifications to the
assumptions of the Cauchy-Born rule.

Using EAM potentials, the strain energy density has two contributions,

ΦEAM = Φ2 + Φe, (8.64)

where Φ2 is the contribution from the nuclear interactions given by the pair potential expres-
sion (8.55) and Φe is the embedding energy. This additive split in the total energy results in
additive contributions to the stress response and tangent moduli. Therefore, all expressions
derived from (8.55) still apply, and we only need to discuss the additional contribution due
to the embedding energy. The contribution to the total energy (8.64) due to the embedding
energy may be written as

Φe =
1

Ω0

Ue(ρe) (8.65)

where ρe is the background electron density, that is, the electron density at the nucleus of a
particular atom resulting from all neighbors of the atom, but not the atom itself. As a first
approximation, the electron density is assumed to be centrosymmetric

ρe =

nb∑
i=1

ρe

(
r(i)
)
. (8.66)

Table 8.9: Embedded atom method potentials.

code potential

0 Al: Ercolessi and Adams [12]

1 Al: Voter and Chen [48]

2 Cu: Voter and Chen [47]
3† Au: Foiles, Baskes, and Daw [?]

† This potential requires the file auu3 with the potential data in
ParaDyn [?] format.

[To do: print tables of modulus values and units for each potential.]

8.14.1 3D input parameters

An example of input parameters for three-dimensional analysis is shown below:

78



8.15 Material 15: Stillinger-Weber diamond cubic

8.14.2 2D input parameters

An example of input parameters for two-dimensional analysis is shown below:

8.14.3 Output values

This constitutive model does not have any output values.

8.15 Material 15: Stillinger-Weber diamond cubic

The cubic unit cell for the diamond cubic structure is shown in Figure 8.3. The unit cell

[010]

[001]

[100]

lattice A

lattice B

Figure 8.3: Cubic unit cell of the diamond cubic lattice.

can be constructed from two interlaced face-centered cubic lattices. The lattice B in the
figure is positioned relative to lattice A by a displacement of {1/4, 1/4, 1/4} of the cube
edge dimensions. Stakgold[41] discussed how such structure, which Wiener[49] called a
composite lattice, should be treated, though he limits his discussion to pair potentials and
his approach does not strictly guarantee objectivity of the resulting strain energy density
function. In general terms, symmetry constraints require that each constituent sub-lattice
deforms homogeneously, but the sub-lattices can move relative to each other by a rigid
body translation which depends on the interatomic potentials. The rigid body motion is
determined by minimizing the energy of the crystal as a function of the translational degrees
of freedom. By enforcing this condition, static equilibrium is satisfied for all atoms in the
lattice.

Keeping in mind that the degrees of freedom will be introduced in a manner which
maintains objectivity, we can express a modified strain energy density function as

Φ(C) = Φ̌(C,Ξ(C)) , (8.67)
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8.15 Material 15: Stillinger-Weber diamond cubic

where Ξ represents a vector of all the degrees of freedom of Φ̌. The degrees of freedom are
implicit functions of the stretch C. Given a strain energy density function of the form (8.67),
we can apply the standard relations from Green elastic theory to derive expressions for the
stress response and tangent moduli. The internal degrees of freedom are added as

x = F (X + Ξ) (8.68)

Though perhaps not the most accurate for all types of simulations, the original potentials
by Stillinger and Weber [42] are still highly attractive due to their simplicity. With these
potentials, the strain energy density is composed of two contributions,

ΦSW = Φ2 + Φ3. (8.69)

Here, Φ2 represents the contribution from standard inverse-power pair potentials, and Φ3

represents the contribution from three-body potentials which are needed to stabilize the
tetrahedral structures that compose the lattice. For a range of deformations around the
undeformed state, these potentials involve only nearest neighbor bonds. In the original
formulation[42], the two-body potential is given by

U2(r) =

{
A (B r−p − r−q) exp

[
δ

r−rcut

]
r < rcut

0 r ≥ rcut,
(8.70)

and the three-body potential is

U3

(
r(ji), r(jk), θ(ijk)

)
=

{
λ
(

1
3

+ cos θ(ijk)
)2

exp
[

γ
r(ji)−rcut

]
exp

[
γ

r(jk)−rcut

]
r(ji), r(jk) < rcut

0 r(ji), r(jk) ≥ rcut.
(8.71)

Both potentials make use of an exponential cut-off term which causes the potentials, and
all derivatives of the potentials, to vanish smoothly when the atomic spacing r reaches rcut.
This cut-off term is advantageous because it clearly defines the distance over which atoms
interact and provides a smooth termination for all the potentials through to the second
derivatives required to compute the moduli. U3 (8.71) is clearly designed to favor the “ideal”
tetrahedral angle of θt = cos−1(−1/3), though the functional form is not motivated by any
detailed attributes of the sp3 orbitals which produce this configuration. In terms of (8.70)
and (8.71), we can express the strain energy density (8.69) as

ΦSW =
1

Ω0

 8∑
(ij)=1

U2

(
r(ij)

)
+

12∑
(ijk)=1

U3

(
r̃(ijk)

) , (8.72)

where we represent the arguments to the three-body term as a vector composed of the length
of two bond vectors and the cosine of the angle they subtend,

r̃(ijk) =


r(ji)

r(jk)

cos θ(ijk)

 . (8.73)
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8.16 Material 16: Virtual Internal Bond model

Table 8.10: Diamond cubic lattice orientation options.

code orientation

0
e1: [ 1 0 0 ]
e3: [ 0 0 1 ]

1
e1: [ 1 0 1̄ ]
e3: [ 1 0 1 ]

2
e1: [ 1 0 1̄ ]
e3: [ 1 1 1 ]

[To do: with and without internal equilibration.]

8.15.1 3D input parameters

An example of input parameters for three-dimensional analysis is shown below:

8.15.2 2D input parameters

An example of input parameters for two-dimensional analysis is shown below:

8.15.3 Output values

This constitutive model does not have any output values.

8.16 Material 16: Virtual Internal Bond model

The general features of the VIB model, as well as more detailed study of its localization
behavior under conditions of dynamic crack propagation, are described in greater detail
elsewhere[13, 19, 20, 21]. The VIB model is developed within the framework of hyperelas-
ticity. The current, or deformed, configuration of a body is described as x = ϕ(X), by a
mapping ϕ of the undeformed configuration X. The arrangement of cohesive interactions
among material particles is described by a spatial bond density function. The strain energy
density is computed by integrating the bond density in space in a continuous analog to the
sum over discrete lattice neighbors for the case of crystalline materials. The VIB form of
the strain energy density function is

Φ =
1

Ω0

∫
Ω∗

0

U(l) DΩ dΩ, (8.74)

where Ω0 is the undeformed representative volume, l is the deformed virtual bond length,
U(l) is the bonding potential, DΩ is the volumetric bond density function, and Ω∗

0 is the
integration volume defined by the range of influence of U .
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8.16 Material 16: Virtual Internal Bond model

[To do: show results for the fracture energy, cohesive strength, and modulus in terms of
potential, and then show specific results for the Smith-Ferrante potential. Is the potential
selectable?]

Unlike constitutive models based on the Cauchy-Born rule for crystalline materials de-
scribed in Section 8.14, the VIB model may suffer significant numerical errors when evalu-
ating integrals of the bond distribution to determine the strain energy density (8.74) and
the resulting stress response and moduli. Many different schemes could be developed for
evaluating the VIB model integrals. As with any numerical procedure, the optimal scheme
represents a compromise between accuracy and speed of execution. The primary concern
with the implementation of the isotropic VIB model is that the response in numerical cal-
culations is indeed lacking in any orientational dependence resulting from the integration
procedure. For the plane stress, isotropic VIB model, the integral of the volumetric bond
density function reduces to an integral over the interval −π ≤ φ ≤ π. A simple scheme for
evaluating these integrals is shown in Figure 8.4. The uniform bond distribution is sampled

N

N odd

1 3 5 7 9 11

-20
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log 1111DC
C1111

Ê
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Á

ˆ
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˜
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1111C
N = 3

f̂0

Df
Df

Df

pf̂0

•

•

Figure 8.4: Convergence to isotropic response in the numerical implementa-
tion of the plane stress, isotropic VIB model.

at fixed intervals ∆φ. The resulting values of the stress and modulus should be independent
of the orientation of the “microstructure”, represented by the offset angle φ̂0 in positioning
the integration points. Clearly, the value of the VIB integrals for the stress and modulus will
not be independent of φ̂0 if an insufficient number of sampling points is used. The variation
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8.16 Material 16: Virtual Internal Bond model

of the C1111 component of the spatial tangent modulus for an arbitrarily chosen state of
deformation is shown in Figure 8.4 for the case of N = 3 sampling points. As is evident
from the figure, the value displays a six-fold symmetric variation. The N = 3 configuration
corresponds to the bonding arrangement in a two-dimensional, close-packed lattice. This is
the lattice arrangement on the close-packed planes of the face-centered cubic (FCC) lattice
and on the basal plane of the hexagonal close-packed (HCP) lattice. For calculations at
infinitesimal deformations, these planes are commonly assumed to be isotropic. However,
only the instantaneous response of the undeformed lattice lacks orientational dependence.
For deformations at finite strains, this crystal plane displays six-fold symmetric anisotropy.
Figure 8.4 also shows how the numerical response converges toward isotropy as the number
of integration points is increased. The magnitude of the variation in the modulus ∆C1111 rel-
ative to the “exact” value for the applied deformation C∞

1111 drops to below machine precision
with only 11 integration points. Therefore, the computational effort to produce essentially
isotropic response in the numerical implementation does not present significant difficulties.
The evenly-spaced integration point arrangement seems to be a highly efficient scheme for
evaluating the VIB integrals. For a given number of points, the results using integration
schemes based on evenly-spaced points display much smaller dependencies on orientation
than do the results using integration schemes based on Gaussian quadrature.

For the three-dimensional isotropic VIB model, the task of generating isotropic response
is significantly more difficult. This case requires evaluating the VIB integrals over a sphere.
Unlike the two-dimensional case, there are no schemes for arranging an arbitrary number
of points on a sphere in a evenly-spaced manner. The icosahedron with its 20 equilateral
triangular faces presents a starting point from which more dense arrangements of points
can be constructed. Integration rules with 80 and 320 points in arrangements which are
symmetric about the “equator” are shown in Figure 8.5. These arrangements are created by

40-point rule 160-point rule

Figure 8.5: Integration point arrangements in three dimensions based on the
icosahedron. [To do: get picture of lat-long points.]

successively bisecting the edges of the triangular facets and projecting the vertex points onto
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8.16 Material 16: Virtual Internal Bond model

the sphere. The center of each facet is used as an integration point with a weight selected
to produce the correct result when integrating a constant over the surface of the sphere.
For a rotation about an arbitrarily selected axis, the variation in the C1111 component of
the spatial tangent modulus is shown in Figure 8.6 for the integration schemes depicted

0.998

0.992

1.003

1.000

1.008 40 points

160 points

f̂0

C
C

1111

1111

p

•

Figure 8.6: Orientational dependence of C1111 for the three-dimensional
isotropic VIB model in a deformed state.

in Figure 8.5. The figure shows that the modulus displays noticeable anisotropic behavior
although a much larger number of points is used than would be required in two dimensions
to produce essentially no error. Bažant[6] has developed more sophisticated schemes for
numerical integration over the surface over of a sphere, but even these schemes produce a
significant increase in computational effort with the extension from two to three dimensions.
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8.16 Material 16: Virtual Internal Bond model

8.16.1 3D input parameters

An example of input parameters for three-dimensional analysis is shown below:

####### VIB

16 # material code

####### common material parameters

0.0 0.0 1.0

0 0.0

####### potential parameters

1 # potential code

4.775 # A

0.0643# B

####### integration parameters

1 # integration rule

40 # number of integration points

8.16.2 2D input parameters

An example of input parameters for two-dimensional analysis is shown below:

####### VIB

16 # material code

####### common material parameters

0.0 0.0 1.0

0 0.0

####### 2D parameters

1.0 # thickness

1 # constraint option (override)

####### potential parameters

1 # potential code

4.775 # A

0.0643# B

####### integration parameters

0 # integration rule

11 # number of integration points

8.16.3 Output values

This constitutive model does not have any output values.
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8.17 Material 17: isotropic Virtual Internal Bond model (Simo)

8.17 Material 17: isotropic Virtual Internal Bond model (Simo)

This model combines the VIB strain energy density from Section 8.16 with the spectral
formulation developed by Simo and Taylor [39]. Expressed in principal stretches, the model
displays exactly isotropic response regardless of the accuracy of the scheme used to integrate
the bond distribution. [To do: However, the model will not display the modulus, fracture
energy, or cohesive strength developed from analysis of the model.]

8.17.1 3D input parameters

An example of input parameters for three-dimensional analysis is shown below:

8.17.2 2D input parameters

An example of input parameters for two-dimensional analysis is shown below:

8.17.3 Output values

This constitutive model does not have any output values.

8.18 Material 18: isotropic Virtual Internal Bond model (Ogden)

This model combines the VIB strain energy density from Section 8.16 with the spectral
formulation developed by Ogden [30]. Expressed in principal stretches, the model displays
exactly isotropic response regardless of the accuracy of the scheme used to integrate the
bond distribution. [To do: However, the model will not display the modulus, fracture energy,
or cohesive strength developed from analysis of the model.]

8.18.1 3D input parameters

An example of input parameters for three-dimensional analysis is shown below:

8.18.2 2D input parameters

An example of input parameters for two-dimensional analysis is shown below:

8.18.3 Output values

This constitutive model does not have any output values.
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8.19 Material 19: isotropic Virtual Internal Bond model with J2 plasticity

8.19 Material 19: isotropic Virtual Internal Bond model with J2

plasticity

This model combines the VIB strain energy density from Section 8.16 with the spectral
formulation developed by Simo and Taylor [39] and the finite strain framework of J2 plasticity
from Simo [36] described in Section 8.10. Expressed in principal stretches, the model displays
exactly isotropic response regardless of the accuracy of the scheme used to integrate the bond
distribution. [To do: However, the model will not display the modulus, fracture energy, or
cohesive strength developed from analysis of the model.]

The yield condition is formulated in terms of the Kirchhoff stress τ as

f(τ ,q) := ||η|| −
√

2

3
K(α) ≤ 0, (8.75)

where the internal variables q =
{
α, β̄

}
are the equivalent plastic strain α and the center of

the yield surface β̄ in deviatoric Kirchhoff stress space. The relative stress η is

η = dev [τ ]− β̄. (8.76)

As in the small strain case, the hardening variable is assumed to evolve as

α̇ =

√
2

3
γ, (8.77)

where γ is the consistency parameter in (8.32) and (8.33). The flow rule rule and kinematic
hardening law are derived assuming a multiplicative split of the deformation gradient. These
will not be outlined here; however, the linear kinematic and isotropic hardening functions

H(α) = (1− θ) H̄α (8.78)

and
K(α) = τy + θH̄α (8.79)

functional analogously to the small strain model described in Section 8.8. τy is the initial
Kirchhoff yield stress and H̄ is the hardening modulus. The parameter 0 ≤ θ ≤ 1 deter-
mines the mixity of isotropic to kinematic hardening, with θ = 1 indicating purely isotropic
hardening.

8.19.1 Output values

[To do: output values]
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8.80 Material 80: ABAQUS/Standard UMAT BCJ

8.80 Material 80: ABAQUS/Standard UMAT BCJ

This model makes of the the ABAQUS/Standard [16] UMAT interface in Tahoe. This model
is due to Bammann, Chiesa, and Johnson [?]. The ABAQUS/Standard UMAT interface in
Tahoe parses ABAQUS-format input. The specifications for UMAT’s in Tahoe may be taken
directly from an ABAQUS Standard input deck.

Like all material models, the materials using the ABAQUS/Standard UMAT interface may
be used for analysis types not supported by ABAQUS/Standard. Namely, the materials may
be applied to dynamic analysis using explicit time integration. Using this time integration
scheme, the UMAT’s will calculate both the stress and modulus, unless specifically rewritten
to detect whether both or just one is actually needed for the analysis. Unmodified UMAT’s
will perform unnecessary calculations, leading to longer simulations times. This model re-
quires an installation of Tahoe that include the f2c [?] module.

8.80.1 3D input parameters

An example of input parameters for three-dimensional analysis is shown below:

####### ABAQUS/Standard BCJ

80 # material code

####### common material parameters

0.0 0.0 1.0

0 0.0

####### ABAQUS input deck

*****************************************

*MATERIAL, NAME=A356

**

** user subroutine is dmg1.f using metric units

** material name = alum 356

** creation date = 08/08/96

** data fit by = Jim Lathrop for uscar A356 temp-strain rate

*USER MATERIAL, CONSTANTS=52

**

**G, a,Bulk,b,melttemp,C1, C2, C3

** C4, C5, C6, C7, C8, C9, C10, C11

**C12,C13,C14,C15,C16,C17, C18, C19

**C20,Ca,Cb,init.temp,heat gen.coeff,void growth exp,initial rad,tors constant a

**nuc const b,nuc const c,nuc coeff,fract.tough,part.size,part.vol.fract,cd1,cd2

**

2.592E+04 1.000E+00 6.763E+04 0.000E+00 5.556E+03 5.309E+01 9.453E+02 1.559E+02

1.105E+02 1.000E-05 0.0000000 1.128E-03 -1796.200 4.820E+03 1.094E+01 2.385E-03

1.441E+03 1.674E-03 0.000E+00 2.818E+03 4.622E+00 0.000E+00 0.000E+00 0.000E+00

0.000E+00 -5.000000 -0.389490 297.00000 0.0000000 0.3000000 0.0002000 615460.00
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8.80 Material 80: ABAQUS/Standard UMAT BCJ

58640.000 30011.000 86.600000 17.300000 4.000E-06 0.0700000 4.5000000 40.000000

20.00E-00 20.00E-00 0.0509000 0.0010000 0.0000000 0.0000000 0.0000000 0.0000000

0.0000000 0.0000000 0.0035000 0.0090000

*DEPVAR

25

[To do: This is for A356]

8.80.2 2D input parameters

The parameters for using the [To do: same as for three-dimensional analysis. Since this
model is formulated in three-dimensions, the thing will be plane strain when used for two
dimensional analysis. Mention this above in the general description of the UMAT interface.]

8.80.3 Output values

[To do: output values determined by the implementation of the UMAT. Show output param-
eters for A356.]
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9 Constitutive models for cohesive surface elements

This section of the guide describes the constitutive models that may be used as material
models specifying the traction vector as a function of the displacement discontinuity for
the cohesive surface elements described in Section 7.5.2. Each of the following subsections
provides some background information about its respective material model followed by a
description and example of the input required for analysis. All cohesive surface models have
been implemented in two dimensions, and most also have three-dimensional implementations.
All surface materials support implicit and explicit analysis; in other words, all models im-
plement consistent tangent matrices that produce quadratic convergence near local minima
when used with the Newton-type, nonlinear solution algorithms (see Section 5.2.2).

Table 9.1: Constitutive models for cohesive surface elements

code description
0 Xu-Needleman (elastic)
1 Tvergaard-Hutchinson (elastic)
2 Linear Damage
3 Tvergaard-Hutchinson (elastic + viscous dissipation)
4 Tijssens (elastic/viscoplastic)
5 trilinear rate-dependent
6 “Tied” potential (elastic)
7 Yoon, Allen, and Searcy (linear viscoelastic)
8 thermomechanical model (not implemented)
9 rate-based ductile fracture model
10 elastoplastic model for geomaterials
11 rigid-plastic model for geomaterials

9.0.4 Background

The Tahoe input for the cohesive surface elements described in Section 7.5.2 specify the
traction-separation relation(s) for a given cohesive surface element block by specifying a
list of material codes ranging from 0 to 7 along with any required model parameters. In
the following sections, “Surface Material x” refers to the constitutive relation specified by a
material code of “x” for a given element block. In these constitutive models, the displacement
discontinuity between two opposite crack faces is quantified by the gap vector ∆ whose
components ∆t and ∆n in two dimensions are specified for directions along and normal to
the midplane between the two crack faces. In three dimensions, the components are ∆t1,
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9.1 Surface Material 0: Xu-Needleman (elastic)

∆t2, and ∆n. Each constitutive model described below returns the traction vector T as a
function of ∆ and any internal state variables {qi} the model has. Also, many of these
models specify length scales δi, i = n, t in the normal and tangential directions directions
(i = n, t1, t2 in 3D), and one defines a dimensionless vector λ related to the gap vector ∆
via

λ ≡ ∆i

δi

. (9.1)

With this notation many models define the traction vector as a function of the λi or indeed
of the scalar opening parameter λ ≡

√
λ · λ.

In addition, many of these cohesive models have a penalty stiffness mulitplier that stiffens
the material under compression in order to improve the poor behavior of cohesive surface
elements in this regime. The penalty stiffness multiplier is a single number multiplying the
natural stiffness that would be calculated by the cohesive surface model.

9.1 Surface Material 0: Xu-Needleman (elastic)

This model due to Xu and Needleman [50] is based on the universal binding energy curve
and exhibits complete reversibility; consequently, the traction vector can be derived from a
potential Φ(∆) via

T =
∂Φ

∂∆
. (9.2)

For the Xu-Needleman model, Φ is a function of the dimensionless gap vector λ described
above and is given by

Φ(∆) = φn(1 + e−λn)(1− r + λn)
1− q

r − 1
− e−λ2

t (q +
r − q

r − 1
λn). (9.3)

Here φn is an input parameter specifying the work to fracture and one has the identity

φn =

∫
∂φ

∂∆
· δ∆. (9.4)

Two additional dimensionless parameters appearing in the expression for Φ are q = φt

φn

relating the normal to shear fracture energies and r = ∆∗
n

δn
which defines the normal opening

∆∗
n after pure shear separation at zero normal traction. The exponential decay of this

potential implies an infinite range of interaction between two crack faces, but the Tahoe
implementation of this model truncates the potential at a distance rfail δn. A plot of the
normal traction as a function of ∆n for pure mode I loading is shown in Figure ?? .

9.1.1 Input parameters

The Xu-Needleman model is implemented for both two- and three-dimensionsal simulations,
and the input parameters are independent of the dimensionsality of the problem. An example
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9.2 Surface Material 1: Tvergaard-Hutchinson (elastic)

of these input parameters is shown below:

####### Xu Needleman

0 # surface material code

####### model parameters

1 # q

0 # r

0.1 # dn

0.1 # dt

1.0 # phi_n

100.0 # r_fail

10.0 # penetration stiffness multiplier

9.1.2 Output values

This constitutive model does not have any output values.

9.2 Surface Material 1: Tvergaard-Hutchinson (elastic)

As with the Xu-Needleman model, the model of this section due to Tvergaard and Hutchinson
[45] is compeletely reversible and uses the dimensionless gap vector λ to characterize the
opening displacement. Unlike the Xu-Needleman model, the Tvergaard-Hutchinson model
first specifies a potential density φ shown in Figure ?? and given by

φ(∆) =


σmax

λ
Λ1

: λ < Λ1

σmax : Λ1 < λ < Λ2.
σmax

1−λ
1−Λ2

: Λ2 < λ < Λfail

(9.5)

The potential Φ can be obtained from the potential density via

Φ = δn

∫ λ

0

φ(λ̃) dλ̃, (9.6)

and the traction may be concisely expressed as

Ti =
∂Φ

∂∆i

=
δn

δi

Λiφ(λ). (9.7)

9.2.1 Input parameters

This cohesive model is implemented in two- and three-dimensions, and it should be noted
that the zero-stiffness plateau in the traction-separation relation when Λ1 6= Λ2 can lead
to poorer-than-quadratic or convergence or no convergence at all in certain problems. An
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9.3 Surface Material 2: Linear Damage Model

example of the input parameters for the Tvergaard-Hutchinson model follows:

####### Tvergaard-Hutchinson

1 # material code

####### model parameters

100.0 # sigma

0.01 # dn

0.01 # dt

0.1 # Lambda_1

0.9 # Lambda_2

1.0 # Lambda_fail (set to 1 if lambda_fail < 1)

0. # penetration stiffness multiplier

9.2.2 Output values

This constitutive model has a single nodal output value; it prints the value of λ.

9.3 Surface Material 2: Linear Damage Model

This model is not currently implemented in three-dimensions.

9.3.1 Input parameters

An example of input parameters for the linear damage model is shown below:

####### linear damage code

2 # surface material code

####### model parameters

0.01 # dn

0.01 # dt

0.0 # penetration stiffness multiplier

9.3.2 Output values

This constitutive model does not have any output values.

9.4 Surface Material 3: Tvergaard-Huthcinson with viscous dissi-
pation

This model generalizes the Tvergaard-Hutchinson model described in Section 9.2 to include
the effects of viscous dissipation. Consequently, this model does not exhibit reversability
upon unloading, and may not be completely described by a potential. The traction T is now
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9.5 Surface Material 4: Tijssens’ crazing model (elastic-plastic)

a function of ∆̇, the rate of change of the gap vector, as well as a function of ∆ itself. It
may be expressed as

T = Ttv + η0(1− λ)∆̇ (9.8)

where Ttv denotes the traction as a function of ∆ specified by the Tvergaard-Hutchinson
model in Equation (9.7).

9.4.1 Input parameters

Sample input parameters are shown below:

####### Tvergaard-Hutchinson with viscous dissipations

3 # surface material code

####### model parameters

100.0 # sigma

0.01 # dn

0.01 # dt

0.10 # lambda_1

0.90 # lambda_2

1.0 # lambda_fail (set to 1 if lambda_fail < 1)

0.01 # eta_0

0.0 # penalty stiffness multiplier

9.4.2 Output values

This constitutive model outputs nodal values of λ and the energy dissipated by the viscous
term in the traction-separation relation.

9.5 Surface Material 4: Tijssens’ crazing model (elastic-plastic)

This model is due to Tijssens et al. [44], and models crazing in amorphous polymers. This
cohesive law has three distinct regimes corresponding to elastic deformation until craze
initiation, plastic deformation as the craze fibrils lengthen, and finally failure as the crazes
lose their load-carrying capacity. The elastic regime is linear elastic with traction-separation
relation

Ti = ki∆i (9.9)

where the normal and tangential stiffnesses ki; i = n, t are parameters of the model and
summation over repeated indices is not implied. Elastic deformation continues until the
stress state in the bulk material surrounding the cohesive layer satisfies a yield condition.
For mode I loading, the yield condition reduces to specifying a critical normal traction
for craze initiatiation. For more general loading, the stress tensor may be sampled in the
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9.5 Surface Material 4: Tijssens’ crazing model (elastic-plastic)

surrounding bulk, and the initiation criterium is given by a function of Tn and the bulk stress
tensor σ

f(σ, Tn) = −1

2
σii −

1

2
Aθ −

Bθ

2σii

− Tn = 0 (9.10)

The parameters Aθ and Bθ are temperature dependent according to

Xθ = X0e
− QX

kBθ , X = A, B. (9.11)

After craze initiation, the traction-separation relation is specified in rate form as

Ṫi = ki(∆̇i − ∆̇cr
i ) (9.12)

The components ∆cr
i represent the span of craze fibrils between the surfaces of the cohesive

layer and evolve according to

∆̇i = ∆̇0
i (e

− K∗
kBθ

(τi−Ti) − δite
− K∗

kBθ
(τt−Tt)). (9.13)

Here, kBθ is Boltzmann’s constant multiplied by the absolute temperature (assumed constant
throughout the simulation), K∗ and the τi are input parameters governing the kinetics of
craze growth, and the Kronecker delta, δit, is included to ensure that Tt is an even function
of ∆t. It is assumed that τn =

√
3τt and ∆̇0

t =
√

3∆̇0
n in analogy to von Mises’ stresses. Also,

the normal elastic stiffness kn is constant while the tangential elastic stiffness kt softens
according to

kt = kt0 e−ct∆cr
n /∆crit

. (9.14)

Once the craze width ∆cr
n reaches a critical opening ∆crit, the craze is assumed to have failed

and lost its load-carrying capacity. In the Tahoe implementation of this model, the traction
is reduced to zero over nfail timesteps with tangential and normal stiffnesses given by kt and
kn, respectively. The result for pure mode I loading at constant rate yields the traction-
separation curves shown in Figure ??. The hardening behavior is seen when ∆̇n < ∆̇0

n;
otherwise softening behavior is observed.
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9.6 Surface Material 5: trilinear rate dependent

9.5.1 Input Parameters

The input parameters for this model are as shown below:

####### Tijssens

4 # surface material code

####### model parameters

100.0 # k_t^0

100.0 # k_n

50.0 # decay constant for k_t^0

0.005 # critical craze opening width

1.0 # A_0 - mixed-mode initiation parameter

1.0 # B_0 - mixed-mode initiation parameter

1.0 # Q_A - mixed-mode initiation parameter

1.0 # Q_B - mixed-mode initiation parameter

0.001 # deltadot_n^0 - should be of order the opening rate, Delta_dot

10.0 # tau_n

1.0 # K^star

273.0 # absolute temperature

1 # integer > 0 giving bulk element group to obtain stress from

10 # integer number of timesteps n_fail

9.5.2 Output Values

This cohesive model outputs four nodal values. The first is the local normal opening rate
∆̇n. The second is the tangential craze width, ∆cr

t , and the third is the normal component
of the same, ∆cr

n . The final output parameter is the initiation function f(σ, Tn).

9.6 Surface Material 5: trilinear rate dependent

This model is a generalization of the Tvergaard-Hutchinson model of Section 9.2; its primary
distinction is that the critical normal length scale δn varies as a function of the normal opening
rate δ̇n. The material is assumed to yield when it first reaches the plateau traction (for pure
mode I loading) σm, and at this yield point δn is set as a function of rate given by

δn = δb
n + δm

n log ∆̇n (9.15)

where log denotes the natural logarithm. Before the critical normal traction is reached, the
normal length scale is rate-independent and given as an input paramter. Once the normal
length scale has been set for a particular integration point, the parameter is finalized there
and that point is no longer sensitive to variations in the local opening rate.

A second distinction between this trilinear model and Tvergaard and Hutchinson’s is
that the traction-separation relation is no longer constrained to have a plateau (region of
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9.7 Surface Material 6: Tied Potential

zero stiffness); there is an additional parameter mp allowing nonzero stiffness and better
numerical performance. The traction on the plateau is determined by mp via

T(λ) = T(Λ1)(1 + mp(λ− Λ1)), (9.16)

where Λ1 has the same meaning as in the Tvergaard-Hutchinson model of Section ??. Like-
wise, T(Λ1) is idential to that determined by Surface Material 1 since the loading rate effects
the plastic failure portion of the model and not the elastic loading portion.

9.6.1 Input parameters

An example of the input parameters for the trilinear, rate-dependent model is shown below:

####### rate-dependent Tvergaard-Hutchinson

5 # surface material code

####### model parameters

100.0 # sigma

0.25 # rate-independent normal length scale, dn

0.25 # dt

0.1 # Lambda_1

0.9 # Lambda_2

1.0 # Lambda_fail (set to 1 if lambda_fail < 1)

0.0 # penalty stiffness multiplier

1.0 # delta_n^b (intercept of rate function)

1.0 # delta_n^m (slope or rate functions)

0.0 # m_p

Setting “delta n b” equal to “d n” and “delta n m” and “m p” to zero in the input file
reduces this model to the rate-independent Tvergaard-Hutchinson one of Section 9.2.

9.6.2 Output values

This model outputs nodal values for λ, each component of the local opening rate ∆̇, and the
rate-dependent normal length scale δn.

9.7 Surface Material 6: Tied Potential

This material surface model works in conjunction with the TiedNodes KBC Controller 3,
and its behavior is unpredictable unless the TiedNodes controller is activated. This co-
dependency is used in an attempt to remedy some shortcomings of cohesive surface models.
To begin with, cohesive surface models are in general designed to model the loss of a ma-
terial’s load-carrying capacity across a crack face, yet by necesity the traction-separation
relation must also specify the response of this region of material to loading before this ca-
pacity is assumed to have been lost. Consequently, there is a priori no relation between the
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9.7 Surface Material 6: Tied Potential

bulk material and the initial (presumably) elastic loading portion of the traction separation
relation. The tied nodes KBC Controller constrains the two faces separated bridged by a
cohesive surface to admit no displacement discontinuity across them until an initiation cri-
terium is reached, and consequently, the cohesive surface element is inactive until its nodes
are “untied” at initiation. To this end, the tied potential provides a function TiedPoten-
tialT::InitiationQ that determines if a critical traction has been reached for yield to occur
and for the material to exhibit cohesive failure. Although a minimal initiation function is
provided and will be described below, this function should in general be re-implemented by
the end user. Since the material response is that of the bulk until the nodes are untied,
this model should provide greater numerical stability in situations where the cohesive layer
may reasonably be expected to undergo severe compression or other deformations for which
a cohesive surface element may be ill-equipped.

Currently, two traction-separation laws may be used after the nodes are untied. The
first is the Xu-Needleman model of Section 9.1 and the second is the Tvergaard-Hutchinson
model of Section 9.2. The Xu-Needleman implementation begins the traction separation
law at the peak stress of φn/(eδn) in the notation of Section 9.1, so that the materials yield
criterium is taken to be one of maximum normal traction.

The Tvergaard and Hutchinson tied-potential implementation allows the user to specify
the initiation point in terms of the scalar opening parameter λ and the model parameters
given in Section 9.2. More concretely, a given value of λ may be inverted to determine
a specific traction that acts as the initiation traction. Since the initiation traction is not
constrained to be the maximum traction, this choice of tied potential is possibly more robust
than the Xu-Needleman choice, but it is plagued by poorer numerical performance.

9.7.1 Input parameters

The tied potential input parameters contain a flag that is set to zero to choose the Tvergaard-
Huthcinson model and to one to choose the Xu-Needleman model. Examples of both sets of
input will be shown.

Below is shown sample input for a tied Xu-Needleman model:
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9.8 Material 7: Yoon, Allen, and Searcy (linear viscoelastic)

####### Tied potential

6 # surface material code

0. 1. # normal direction to sample stress to obtain traction

####### surface material code for Xu-Needleman

0

####### model parameters

1.0 # q

0.0 # r

0.001 # dn

0.001 # dt

10.0 # phi

10.0 # r_fail

For the tied Tvergaard-Hutchinson model:

####### Tied potential

6 # surface material code

0. 1. # normal direction to sample stress to obtain traction

####### surface material code for Tvergaard-Hutchinson

1

####### model parameters

100.0 # sigma

0.001 # dn

0.001 # dt

0.25 # lambda_1

0.75 # lambda_2

1.0 # lambda_3

0.25 # lambda_0, initiate at T = T(lambda_0)

Although the input parameters have been ordered to correspond exactly with the ones for
their respective untied cohesive laws, it should be noted that there are no penalty stiffness
multipliers for interpenetration, and that the mode I formalism currently used overrides any
effects in the Xu-Needleman specification other than q = 1, r = 0.

9.7.2 Output values

The tied potentials ouput a single nodal value that reflects a given nodes status as tied ( 6= 0)
or untied (0.) and may be useful in conjunction with visualization tools.

9.8 Material 7: Yoon, Allen, and Searcy (linear viscoelastic)

This model presented initially by Yoon and Allen and later by Searcy and Allen models a
cohesive layer as a linear viscoelastic material that undergoes damage as it loses its load-
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9.8 Material 7: Yoon, Allen, and Searcy (linear viscoelastic)

carrying capacity. An undamaged material will respond exactly as a linear viscoelastic
material, while a material undergoing damage will require the specificaton of a damage
evolution law. The details of the physical interpretation of the damage parameter α are
given in Reference [51], and the traction-separation law is given as

T = λ(1− α(t))

[
T0 +

∫ t

0

(
E∞ +

ne∑
i

(1− Eie
− t

τi )

)
∂λ(τ ′)

∂τ ′
dτ ′

]
(9.17)

where the Ei and τi are elastic moduli and relaxation times corresponding to relaxation
process i, and E∞ is the equilibrium elastic modulus as for a Prony series in a standard
linear solid. The model as published contains an initiation traction T0, but calculations
using the model set T0 to zero, the same convention currentely used in Tahoe. There is a
choice of damage evolution laws where α̇ is specified as a function of λ, λ̇, and α itself. In all
the damage evolution laws, it is assumed that α does not evolve for closing cohesive surfaces,
i.e when λ̇ is non-negative.

The first damage law is given in Reference [1] as

α̇ = α0λ
m, (9.18)

and the response of this evolution law to cyclic loading is shown in Figure . A second
evolution law is given in Reference [51] as

α̇ = α0(1− αn)(1− bλm), (9.19)

and the response of this law to identical cyclic loading as before is shown in Figures . A
third and for the moment final damage evolution law is given by

α̇ = α0λ̇
m, (9.20)

and its response to cyclic loading is shown in Figure .
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9.8 Material 7: Yoon, Allen, and Searcy (linear viscoelastic)

9.8.1 Input parameters

An example of input parameters for two- or three-dimensional analysis is shown below:

######## Yoon-Allen-Searcy

7 # potential code

0. # fsigma_0

1. # d_c^t - critical tangential length scale

1. # d_c^n - critical normal length scale

10. # E_infinity - equilibrium modulus

2 # number of elements in prony series (nprony)

10. # first relaxation modulus

10. # first relaxation time

100. # second relaxation modulus

2. # second relaxation time

.

.

.

100. # nprony_th relaxation modulus

100. # nprony_th relaxation time

1 # damage evolution law code

# 1: alpha_dot = alpha_0*l^alpha_exp

# 2: alpha_dot =

# ((alpha_0(1-alpha)^alpha_exp)(1-lambda_0)^lambda_exp)

# 3: alpha_dot = alpha_0*lambda_dot^alpha_exp

2. # alpha_exp

10. # alpha_0

#-3. # lambda_exp # only for damage code 2

#10. # lambda_0 # only for damage code 2

10. # penetration stiffness multiplier

9.8.2 Output values

This constitutive model has three nodal output values. It outputs values of λ, λ̇, and α.
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10 Geometry and results files

The user input consists of analysis parameters and a geometry specification. Analysis pa-
rameters are specified in a plain text file. Several options exist for the specification of the
geometry. Table 10.1 lists the file types available to specify the geometry. These will be
described in greater detail in Section 10.1. Table 10.2 lists the file types available for the
output of results. Note that some of the file types may be used for both input and results,
while others are limited to one or the other.

Table 10.1: Geometry input file formats.

code description
0 TahoeI
1 TahoeII

3
EnSight [10] Gold ASCII
version 6

4
EnSight Gold Binary
version 6

5 ExodusII [33]
6 ABAQUS ASCII [?]
7 ABAQUS Binary
10 PATRAN [28]

Table 10.2: Result output file formats.

code description

0 TahoeI
2 TecPlot [2] version 7

3
EnSight [10] Gold ASCII
version 6

4
EnSight Gold Binary
version 6

5 ExodusII [33]
6 ABAQUS ASCII [?]
7 ABAQUS Binary
10 PATRAN [28]
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10.1 Geometry file formats

10.1 Geometry file formats

Input data is allowed to be one of three database formats listed in Table 10.1:

(1) TahoeI: With this format, geometry data may be supplied embedded in the parameters
file or in files separate from, or external to, the parameters files. When specified in
external files, the block of geometry data in the parameters file is replaced by the name
of the external file where the data resides. The format of the data itself is the same in
both cases.

(2) TahoeII: This format allows random access to the geometry data which is stored in
one or more plain text files.

(3) ExodusII: This format allows random access to the geometry data which is stored in
platform independent binary file.

All Tahoe plain text input files are white space delineated, that is, values are separated by
white space, but the arrangement of white space is ignored. The # symbol denotes that the
remainder of a given line of text should be ignored, or treated as a comment.

10.1.1 TahoeI format

The TahoeI format includes specifications for model geometry as well as kinematic and force
boundary conditions. Each of these input types is described in greater detail in the sections
that follow. All of the input types precede the actual input data with some indication of the
dimensions of the data. When beginning to read a block of input data, Tahoe will determine
whether the block begins with an integer or with a character string. A leading integer denotes
the dimensions of an embedded block of input data. If Tahoe finds a character string, it
assumes the string is the name of an external file in which the input data resides. Tahoe
cannot distinguish file names beginning with an integer from the dimensions of an embedded
data block.

10.1.1.1 Coordinate list The format of coordinate data is shown below:

# dimensions

[nnd = number of points]

[nsd = number of spatial dimensions]

# coordinates

1 [x11] . . . [x1nsd
]

...
[nnd] [xnnd1] . . . [xnndnsd

]

The coordinate of each point is preceded by its index. Coordinates may appear in any order;
however, Tahoe does not verify that all nnd points have been assigned coordinates exactly
once.
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10.1.1.2 Element block The format of element block data is shown below:

# dimensions

[nel = number of elements]

[nen = number of nodes per element]

# connectivities

1 [n11] . . . [n1nen ]
...

[nel] [nnel1] . . . [nnelnen ]

The connectivity of each element is preceded by its index. Connectivities may appear in any
order; however, Tahoe does not verify that all nel elements have been assigned connectivities
exactly once.

10.1.1.3 Node set The format of node set data is shown below:

# dimension

[nnd = number of nodes]

# list

[n1] . . . [nnnd
]

10.1.1.4 Side set The format of side set data is shown below:

# dimension

[ns = number of facets]

# facet list

[e1] [s1]
...

[ens ] [sns ]

Facets are specified by two numbers, the element number e and the side s. The side num-
bering convention for the various integration domain geometries are shown in Figures 7.1
through 7.6.

10.1.2 TahoeII format

The TahoeII format allows random access to geometry data in a plain text file format. The
file format uses the keywords listed in Table 10.3. The keywords must preceded by an
asterisk (*). Aside from the keyword set, each keyword denotes a separate type of data.
These keywords may appear in any order in a TahoeII file. However, since the file is scanned
whenever data is requested, it is more efficient to place longer blocks of data toward the end
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Table 10.3: Keywords for the TahoeII file format.

version title

dimensions nodes

elements nodesets

sidesets set

of the file. Alternately, blocks of data may be specified in files separate from the primary
TahoeII file. When specified in an externally, the block of geometry data in the file is replaced
by the path of the external file where the data resides. The format of the data itself is the
same in both cases.

A TahoeII file contains a single set of coordinates and an arbitrary number of element
sets, node sets, and side sets. The format of the sets is similar to the TahoeI format described
in Section 10.1.1. The sets are identified by an ID. ID’s may be any positive integer and do
not need to be consecutive. ID’s for each type of set are stored separately. As mentioned
above, TahoeII files are plain text and white space delineated, that is, values are separated
by white space, but the arrangement of white space is ignored. The # symbol denotes that
the remainder of a given line of text should be ignored, or treated as a comment. The current
TahoeII version is 1.0. The format of each type of data in a TahoeII file is described in the
sections that follow.

10.1.2.1 Version The version keyword is used to check the compatibility of the database
with the current version of the TahoeII code. The current version is 1.0. An example of
this section is shown below:

# TahoeII file version

*version 1.0

10.1.2.2 Title This section begins with the version keyword. A one line title may be
assigned to the database:

# database title

*title

[one line title of 254 characters or less ] (10.1)

10.1.2.3 Dimensions This section begins with the dimensions keyword. It contains
the dimensions of the nodal coordinate data, and declares the ID and dimension of each
element, node, and side set. This sequence of data in this section must follow the order
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shown in the example below:

# dimensions and IDs

*dimensions

# dimension of coordinate data

[nnd = number of nodes]

[nsd = number of spatial dimensions]

# element set declarations

[nes = number of element sets]

[ID1] [nel1 = number of elements] [nen1 = number of element nodes]
...

[IDnes ] [nel nes ] [nen nes ]

# node set declarations

[nns = number of node sets]

[ID1] [nnd1 = number of set nodes]
...

[IDnns ] [nnd nns ]

# side set declarations

[nss = number of side sets]

[ID1] [ns1 = number of facets]
...

[IDnss ] [ns nss ]

If the number of element sets nes, node sets nns, or side sets nss is zero, the subsequent list
of ID’s and dimensions is empty.

10.1.2.4 Node sets This section begins with the nodesets keyword. The node sets
must appear in the order they have been specified in the dimensions section 10.1.2.3. The
beginning of the data for each node set is marked by the set keyword. The data for each
set is comprised of the number of nodes in the set and list of nodes themselves. This data
for each set may be defined in line or in an external file. If the data is defined in an external
file, the path to the file replaces the data itself in the TahoeII file. In either case, the format
of the data itself is the same. The format of each node set specification is the same as the
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TahoeI format for node sets 10.1.1.3. An example appears below:

# node set specifications

*nodesets

*set

[nnd1 = number of nodes in set 1]

[n1] . . . [nnnd1
]

...

*set

[nnd nns = number of nodes in set nns]

[n1] . . .
[
nnnd nns

]
The set subscripts for the nodes in each set have been omitted for clarity. Note that the
dimensions of the set are from the from the dimensions section are repeated but that the ID
of each set is not repeated. When specifying the data for a node set in an external file, the
primary TahoeII contains the path to the external file, as shown below:

*set [path to external file]

10.1.2.5 Side sets This section begins with the sidesets keyword. The side sets must
appear in the order they have been specified in the dimensions section 10.1.2.3. The begin-
ning of the data for each side set is marked by the set keyword. The data for each set is
comprised of the number of each in the set and list of facet specifications themselves. Facets
are specified by two numbers, the element number e and the side s. The side numbering con-
vention for the various integration domain geometries are shown in Figures 7.1 through 7.6.
This data for each set may be defined in line or in an external file. If the data is defined
in an external file, the path to the file replaces the data itself in the TahoeII file. In either
case, the format of the data itself is the same. The format of each side set specification is
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the same as the TahoeI format for side sets 10.1.1.4. An example appears below:

# side set specifications

*sidesets

*set

[ns1 = number of facets in set 1]

[e1] . . . [s1]
...

[ens1 ] . . . [sns1 ]

...

*set

[ns nss = number of facets in set nss]

[e1] . . . [s1]
...[

ens nss

]
. . .

[
sns nss

]
The set subscripts for the element and sides in each set have been omitted for clarity. Note
that the dimensions of the set are from the from the dimensions section are repeated but
that the ID of each set is not repeated. When specifying the data for a side set in an external
file, the primary TahoeII contains the path to the external file, as shown below:

*set [path to external file] (10.2)

10.1.2.6 Element sets This section begins with the elements keyword. The element
sets must appear in the order they have been specified in the dimensions section 10.1.2.3.
The beginning of the data for each element set is marked by the set keyword. The data
for each set is comprised of the number of each in the set and list of facet specifications
themselves. This data for each set may be defined in line or in an external file. If the data
is defined in an external file, the path to the file replaces the data itself in the TahoeII file.
In either case, the format of the data itself is the same. The format of each element set
specification is the same as the TahoeI format for element sets 10.1.1.2. An example appears
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below:

# element set specifications

*elements

*set

[nel1 = number of elements in set 1]

1 [n11] . . . [n1nen1 ]
...

[nel1] [nnel11] . . . [nnel1nen1 ]

...

*set

[nel nes = number of elements in set nes]

1 [n11] . . .
[
n1nen nes

]
...

[nel nes ]
[
nnel nes1

]
. . .

[
nnel nesnen nes

]
The set subscript on the nodes in each element has been omitted for clarity. The connectivity
of each element is preceded by its index. Connectivities may appear in any order; however,
Tahoe does not verify that all nel elements have been assigned connectivities exactly once.
Note that the dimensions of the set are from the from the dimensions section are repeated
but that the ID of each set is not repeated. When specifying the data for a side set in an
external file, the primary TahoeII contains the path to the external file, as shown below:

*set [path to external file]

10.1.2.7 Nodal coordinates The coordinate specification is marked by the nodes key-
word. The format of coordinate data is the TahoeI format described in Section 10.1.1.1. An
example is shown below:

# nodal coordinates

*nodes

# dimensions

[nnd = number of points]

[nsd = number of spatial dimensions]

# coordinates

1 [x11] . . . [x1nsd
]

...
[nnd] [xnnd1] . . . [xnndnsd

]
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The coordinate of each point is preceded by its index. Coordinates may appear in any order;
however, Tahoe does not verify that all nnd points have been assigned coordinates exactly
once. Coordinate data may be specified in the primary TahoeII file or in an external file.
When specifying the data for a side set in an external file, the primary TahoeII contains the
path to the external file, as shown below:

# nodal coordinates

*nodes [path to external file] (10.3)

10.1.3 EnSight Gold format

EnSight Gold [10] files can be read in version 6 Gold plain text or binary format. The EnSight
binary files are portable between some platforms. When an EnSight database is read, the
user should enter the case file name, including the extension, when prompted for a database
filename.

10.1.4 ExodusII/Genesis format

The ExodusII [33] finite element geometry and results file format was developed at Sandia
National Laboratories. This file format is export-controlled, and therefore is not available to
all users. A given database should contain a coordinate list, element blocks, and any node
set or sides sets references from the parameters file. Tahoe does not read material data from
the ExodusII database. Node and element maps are currently ignored and items are assumed
to be consecutively numbered. To refer to a specific set or block in the database use the ID
value. The blocks and sets do not need to have consecutive ID values.

10.1.5 ABAQUS Results Files format

ABAQUS [?] results files in ASCII or binary (*.fil/*.fin) are provided as an input option.
Typically as an input option for translating database information. The Tahoe interface
supports 5.8 and 6.2 versions and maybe others, depending upon version variations. A given
database should contain a coordinate list, element list, node sets, and element sets. Nodes
and elements do not have to be consecutively numbered. ABAQUS results files have sets for
both elements and nodes. The toolbox interface only reads the first eight characters of the
set name. No spaces are allowed. ABAQUS does not have database records pertaining to
side sets.

10.1.6 MSC PATRAN Neutral format

MSC PATRAN [28] neutral files are created using the export command within PATRAN. A
given database should contain a coordinate list, element list, named component groups that
contain element blocks and/or node sets. Nodes and elements do not have to be consecutively
numbered. To refer to an element block or node set, use the group name. PATRAN group
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names are created from the Group pull down menu and are typically used for posting different
layers. They are exported to a Neutral file as Named Components. When writing the Neutral
file, PATRAN will truncate the group name to 12 characters and write it in upper case. The
group names must not contain spaces. The Neutral files do not have anything explicitly
pertaining to side sets, but if desired, a pseudo side set could be established using contact
surface boundaries.

10.1.7 Tahoe Results format

Tahoe results files are the output files written in Tahoe format. This format differs from
Tahoe I or Tahoe II input file format and contains variable results. When prompted for
the database filename, the user should supply the geometry (*.geo) or results (*.run) file
including the extension.

10.2 Results file formats

Output data is associated with an output group. An output group is not necessarily the
same as the element group. Element groups can have more than one connectivity set for
post-processing purposes. Some element groups have no output. These connectivity sets
are not the element blocks listed in the parameters file. For instance, to visualize an in-
ternal 3D crack, those elements that represent the crack (localized elements or cohesive
surfaces) are separated into an additional connectivity within the element group. This al-
lows post-processors to easily show the crack without having to create isosurfaces or other
body representations.

Variable output data is either associated with a node or an element. Nodal data are
variable values defined at the nodes within the output group. Element data are variables
values associated with the elements. Each element variable has one value per element. All
element quadrature data is projected to the nodes using the smoothing algorithm proposed
by Zienkiewicz [?].

For the purposes of writing output files, the output print increment is a value starting at
one and is consecutively incremented. Thus the print increment is not the same as the com-
putational increments used by the program. This accounts for changes in the frequency with
which computational increments are printed and some I/O databases demand consecutive
numbering.

Depending upon the type of output database chosen, different output files are created.
File extensions are listed in Table 10.4. The log/output file is always created and contains an
echo of the input data. If multiple loading sequences are used, the extensions for geometry
and variable data will be lengthened to include sequence numbers. EnSight uses the variable
labels as file extensions on its variable files. For ExodusII and TecPlot, the variable labels are
used as variable names. The nodes are broken up into those used by the connectivities. Node
numbers coincide with the internal consecutive node numbering. As described in Section 2.2,
Tahoe has two output modes for parallel execution. Tahoe can join the results data from all
the processors at run time, or the distributed results data may be joined during a separate

111



10.2 Results file formats

Table 10.4: File extensions for results files.

file type extension description

plain text

.out input echo/runtime log

.io[group].fracture fracture surface area

.nd[node].hst nodal history

.rs[step] restart data

TahoeI
.geo output geometry
.run output results

TecPlot .io[group].dat output results

EnSight

.io[group].case case file

.io[group].geo output geometry

.io[group].ps[step].geo changing output geometry

.io[group].ps[step].[label] output variable

ExodusII
.io[group].exo output results
.io[group].ps[step].exo changing geometry output

post-processing step. With distributed output files, the extension .p[processor] is prepended
to each of the extensions listed in Table 10.4.

10.2.1 TecPlot

The TecPlot [2] files are currently written in version 7.5 plain text format. Element data
is ignored and not written to an output file. Element data must be averaged or projected
to the nodes. TecPlot plain text files can be converted to binary files, which are generally
portable, using the PrePlot executable supplied by TecPlot.

10.2.2 EnSight

EnSight [10] files are written in version 6 Gold plain text or binary format. The EnSight binary
files are generally portable between some platforms. Users should conduct a preliminary test
to verify this portability. Version 6 Gold files are readable by EnSight version 6 Gold and by
EnSight version 7 or later. The EnSight case file is written at each print increment to account
for unexpected machine crashes. Each output group is treated as a part and is written to a
separate geometry and case file. Separate files are produced so only the part that changes
will be printed at each print increment. Thus reducing the amount of file space needed for
large meshes. Element and node tags are not given. Any vector variable internally named
with the { X, Y, Z} convention will be written to a vector variable file instead of a scalar
variable file.
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10.2.3 ExodusII

ExodusII files are portable to all platforms that have the library installed on them. Each
block within an output group is treated as a block. Separate files are written for each output
group. Separate files are produced so only the block that changes will be printed at each
print increment. Separate files are also produced so that nodal data from different output
groups does not need to be merged. Element numbering and ordering maps are not given.
The nodes are broken up into those used by the connectivities. ExodusII files, from multiple
restarts, can be joined together using the conex executable.

10.2.4 ABAQUS Results

ABAQUS results files are created for version 5.8. These files could be used in Post. Each
block withan an output group is treated as an element set. Separate files are written for
each output group.

10.2.5 PATRAN Results

PATRAN results files are created following the format for version 2001. These files could
be used in Post. Each block withan an output group is treated as a Named Component.
For each output group, a geometry file, displacement file, force file, node variable file and
element variable file is written (if variable data exists).

10.2.6 Fracture surface area

The fracture surface area file contains columnar data, in the order listed as follows:

(1) time

(2) fracture surface area

10.2.7 Node history output

The history node file contains columnar data, in the order listed as follows.

(1) time

(2) displacement vector

(3) velocity vector (if dynamic or transient)

(4) acceleration vector (if dynamic)

(5) force vector (if prescribed DOF exists)
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11 History of updates to the Tahoe User Guide

11.1 History

[To do: brief history:
originated by Stephanie Wimmer
updated to Version 3.4 by Patrick Klein. ]

11.2 Changes since Version 3.4

This section summarizes changes to the Tahoe input format since Version 3.4.

11.2.1 update 3.4.1

Two additional output variables have been added to the element output for solid deformation
elements listed in Table 7.4. This brings the number of element output flags from 5 to 7.
This change is version aware. Only 5 flags are read if the input file version is older than
3.4.1.
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