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EXECUTIVE SUMMARY 

The decrease in manpower and increase in material handling needs on many Naval vessels 
provides the motivation to explore the modeling and control of Naval robotic and robotic assistive 
devices.  This report addresses the design, modeling, control and analysis of position and force 
controlled robotic systems operating on the deck of a moving ship.  First we provide background 
information that quantifies the motion of the ship, both in terms of frequency and amplitude.  We then 
formulate the motion of the ship in terms of homogeneous transforms.  This transformation provides a 
link between the motion of the ship and the base of a manipulator.  We model the kinematics of a 
manipulator as a serial extension of the ship motion.  We then show how to use these transforms to 
formulate the kinetic and potential energy of a general, multi-degree of freedom manipulator moving on 
a ship.  As a demonstration, we consider two examples: a one degree-of-freedom system experiencing 
three sea states operating in a plane to verify the methodology and a 3 degree of freedom system 
experiencing all six degrees of ship motion to illustrate the ease of computation and complexity of the 
solution.  The first series of simulations explore the impact wave motion has on tracking performance 
of a position controlled robot.  We provide a preliminary comparison between conventional linear 
control and Repetitive Learning Control (RLC) and show how fixed time delay RLC breaks down due 
to the varying nature wave disturbance frequency.  Next, we explore the impact wave motion 
disturbances have on Human Amplification Technology (HAT).  We begin with a description of the 
traditional HAT control methodology.  Simulations show that the motion of the base of the robot, due 
to ship motion, generates disturbances forces reflected to the operator that significantly degrade the 
positioning accuracy and resolution at higher sea states.  As with position-controlled manipulators, 
augmenting the control with a Repetitive Learning Controller has little impact due to the variable 
nature of the wave period.  We then introduce a new approach to HAT control, Ship Motion 
Compensation for Force Control Systems (SMCFCS).  This basic approach uses inclinometer and 
acceleration information from the base of the robot to compensate for ship motion disturbances.  
Results of the simulation study show over an order of magnitude decrease in the disturbance force 
reflected back to the operator and an order of magnitude increase in positioning accuracy and 
resolution. 
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1. INTRODUCTION 

There is a growing need for robotics in the Navy.  Reduction in personnel with no tolerance for 
reduction in capabilities requires increased levels of both machine automation as well as advanced human 
assistive devices. One example was the development of the Next Generation Munitions Handler (NGMH) 
by ORNL for the armed services [1].  Traditionally, bomb-loading crews consist of anywhere from four to 
eight personnel to load bombs and missiles ranging from 500 to 2000 pounds.  The current technology to 
assist crews is based on crude machines with names such as the “jammer” and “hernia bar”.  With existing 
and projected future reduction in military workforce, the armed services are exploring the development of 
technologies that enable fewer personnel to accomplish the same tasks in the same amount of time.  There 
are a wide variety of potential applications of robotic and human assistive systems on a ship (munitions 
handling, maintenance, damage control, material handling to name a few).  However, the nature of the 
environment provides a host of unique problems.  Specifically, the environment in which the robot operates 
is continually moving.  The motion of the ship generates low frequency disturbance forces on the system, 
both in terms of inertial forces as well as shifts in the direction of gravity.  Subsequently, there is a need for 
the development of advanced control methodologies to compensate for sea state disturbances.  While there 
has been ample research directed towards the design and control of surface vessels, underwater 
manipulators and vehicles, there has been surprisingly little effort devoted toward the design and control of 
robotic manipulation systems operating on a ship experiencing heavy sea states.  A recent exception is crane 
control on ships [2,3,4,5].  The general problem addressed with maritime crane control is that wave induced 
motion of a ship produces a low frequency disturbance on the motion of a crane.  A robotic system, 
operating under motion or force control on a ship, will likewise experience low frequency disturbances that 
can impact the precision and performance of the machine.  This report addresses two fundamental problems 
associated with maritime robotics.  First, the nature of the environment makes it difficult to experimentally 
test competing control methodologies in a laboratory setting.  There are only a handful of sea state 
simulation platforms that have the capacity to hold a moderately sized robotic system.[6,7,8]  However, 
much can be gained by having a high fidelity numerical simulation of a robot that includes ship motion 
disturbances.  The first portion of this report focuses on a high fidelity simulation capability for general 
manipulation systems operating on ships in heavy sea states.  The remaining effort is devoted to an 
exploration of control methodologies devoted to masking sea state disturbances on maritime human strength 
amplification systems. 

1.1. Research Objectives 

The focus of this research was the exploration of fundamental control concepts for wave motion-induced 
disturbance compensation on general manipulation systems.  This includes robotic, teleoperated, and human 
assist devices that are, and will increasingly be, used on-board ships.  Both the frequency and amplitude of 
the disturbances generated on ship-based systems by wave motions are typically variable, either as a direct 
result of changes in the sea motion, or as the result of movement of the system to different locations on the 
ship.  Existing compensation control methodologies are limited in scope and capabilities to fixed frequency 
disturbances on systems with known dynamic characteristics.  Our objective was to develop novel concepts 
and methodologies for compensation control of disturbances that can vary in frequency as well as amplitude 
and are applicable to a very broad class of systems including highly nonlinear time invariant systems. 
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One pervasive problem associated with control design for maritime systems is experimental validation 
of the control performance.  While there are many existing sea state systems (Naval ships), experimental 
validation of control design on sea faring ships is prohibitively difficult due to cost, time, and availability.  
There are existing land-based sea state simulators, however there are still similar difficulties in terms of 
access and flexibility.  Subsequently, one of the preliminary objectives of this research is to formulate a 
simple and efficient methodology to derive the dynamic equations of motion for a multi-degree of freedom 
manipulator moving on a six degree of freedom platform with emphasis placed on numerical simulation.  
The motivation is to develop a basic framework for developing a high fidelity numerical simulation.  We 
begin in Section II with a basic description of models used to describe a variety of sea states.  This is 
followed by an abbreviated analysis of the motion of a marine vessel experiencing wave loading.  The 
results of this section provide some relevant information quantifying the amplitude and frequency of 
disturbances expected for a variety of vessels operating under various sea states.  We show how the classic 
homogeneous transform, combined with the energy approach can easily be configured to symbolically 
calculate the dynamic equations of motion of a general serial link manipulator operating on the deck of a 
moving ship.  We model the ship motion as a six-degree of freedom system.  The manipulation system is 
coupled serially to the ship model.  Elements of the homogeneous transform can be used to symbolically 
compute the position, velocity, angular position, and angular velocity vectors of the center of mass of each 
link and the payload of the manipulator.  This basic methodology is applicable to any symbolic computation 
program.  However, we use Matlab and the Symbolic Toolbox and show through two examples how the 
resulting symbolic equations of motion can be easily integrated with Simulink to provide a numerical 
simulation of the system.  In section III, we exploit this simulation capability to explore position and force 
control issues of a general maritime manipulation system.  We begin with a detailed description of one 
example system:  an existing three degree of freedom human amplification system.  The simulation model 
includes detailed modeling of the nonlinear dynamics of both the arm and hydraulic actuation system.  As a 
preliminary example, we explore the impact sea state disturbances have on the accuracy of the system under 
position control.  We then explore the potential for using Repetitive Learning Control (RLC) to suppress the 
impact of periodic sea state disturbances.  In Section IV, emphasis shifts towards force control, specifically 
human amplification technology.  We provide a detailed description of the basic methodology and use the 
simulation tool to demonstrate the basic characteristics of the system as well as the impact of sea motion.  
As with position-controlled systems, we show how RLC is limited to only periodic disturbances and breaks 
down with realistic waves.  However, we then introduce a simple sensory-based approach to suppress sea 
state disturbances on a force controlled system.  Simulation results show an order of magnitude reduction in 
the disturbance forces reflected to the operator and an order of magnitude reduction in the tracking error.  
The motivation for this work is to develop a platform for testing control algorithms and alternative designs 
for ship-board robotic and human assistive machines. 

2. MARITIME ROBOT DYNAMICS AND CONTROL 

2.1. Wave Motion 

We begin by considering the source of our problem, wave motion.  There has been considerable effort 
devoted towards the modeling and analysis of wave motion.  An irregular wave pattern can be generated 
through a combination of sinusoidal waves of different amplitudes and frequencies.  Since standard waves 
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are characterized as a combination of wave amplitudes and frequencies, it is standard practice to model 
wave motion as an energy spectrum.  The actual units of the spectral model are normalized with respect to 
water density and gravity, thus the units are in terms of displacement squared over frequency.  One popular 
model is the two-parameter Bretschneider wave spectral model used to define the frequency content of 
random sea waves.  The two parameters are, by definition, the significant wave height (H1/3) in centimeters, 
and the modal wave period (T) in seconds.  This significant wave height is defined as the average height of 
the top 1/3 highest waves.  The wave spectral density, S(ωw), is defined in Equation (1). 

442
1/3

/B
5 691/T Band /TH173A  withe

A
)(S
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==
ω

=ω ω−  (1) 

It is common to describe the wave conditions, which include H1/3 and T, in terms of a specific “sea 
state”.  Table I provides a condensed version of the relevant data from the popular Pierson-Moskowitz sea 
condition definition [9].  Figure 1 shows a representative spectrum for sea state 5. 

 
 
 
 

 
 
 
 

Table 1:  Sea state definitions 

 

 

Figure 1:  Sea state spectrum 

The distribution of wave spectral energy as a function of ship heading is considered either to be 
unidirectional (long crested) or spread ±90° about a predominant direction (short crested), shown in Figure 
2.  Equation (2) accounts for the spread of the energy, transforming from long crested to short crested wave 
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models, 
)(S)(cos)/2(),(S 2 ωµ−νπ=νω  (2) 

where µ is the predominant heading of the wave front containing the principal amount of energy and a ν 
represents the variation of wave energy as a function of the predominant direction of the wave front.  There 
are a variety of methods available for the computation of the wave amplitude time history.  It is common 
practice to quantize the above energy spectrum into N equally spaced elements.  The amplitude, ζk, at the 
discrete frequency ωk, is extracted from the spectral energy in Equation (1) and Figure 1.  Equation (3) is 
the discretized expression for long crested waves 

∑
=

γ+ωζ=ζ
N

1k
kEkkLC )tcos()t(  (3) 

where ωEk is the encountered wave frequency and γk is a random phase angle.  The encountered wave 
frequency is actually a doppler shift in the wave frequency, ω, as a function of ship speed (V) and heading 
(µ). 

)cos()g/V( 2
Ek µω−ω=ω  (4) 

The component amplitude, ζk, is computed by: 

∫
ω+ω

ω−ω ζ ωω=ζ
2/d

2/dk

k

k

d)(S2  (5) 

The number of frequencies, N, used to compute the wave time history should be large enough to obtain a 
representative Raleigh distribution of single amplitudes.  Likewise, the increment in frequency, dω, is equal 
to the range of frequencies (ωmax-ωmin) divided by N where ωmax and ωmin are based upon the frequency 
range that provides ample representation of the total wave energy.  The computation of short crested wave 
time history is slightly more complex, accounting for angular spread in wave energy.  The above description 
provides the background necessary for the computation of wave time histories.   

 
Figure 2:  Wave fronts 

2.2. Ship Motion due to Sea State 

There has been a great deal of effort devoted towards modeling ship motion due to wave loadings.  
However, the primary focus had been directed towards ship design [10,11,12].  Our motivation for 
understanding ship motion is to quantify the expected magnitude and frequency of disturbance loads for a 
motion and/or force controlled manipulation system.  Subsequently, this section will provide an abbreviated 
explanation of one of the techniques presently used to model ship motion.   
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Figure 3:  Ship displacements 

Figure 3 shows a simplified model of a ship with the corresponding displacements due to wave motion. 
  The motion of the ship is defined by six displacements (surge, sway, heave, roll, pitch, and yaw) at the 
ship’s longitudinal center of gravity, from which motions at all other locations on the ship can be developed. 
 While there are a number of techniques to simulate ship motion, the strip theory of Salvensen et al. is one of 
the more popular approaches to modeling the 6 DOF response for a ship advancing at a constant forward 
speed with arbitrary heading in regular sinusoidal waves [13].  In it’s simplest form, a ship acts as a set of 
filters, called the Response Amplitude Operators (RAOs), that transforms wave motion into the six degrees 
of motion (surge, sway, heave, roll, pitch and yaw).  Each degree of freedom has its own characteristic 
RAO.  As illustrated in the previous section, there is ample information for characterizing the frequency 
content of the waves.  The challenge is to design accurate models of the ship that faithfully characterizes the 
behavior of the ship.  Strip theory is able to provide reliable estimates of RAO’s for a wide range of hull 
forms and sea conditions.  There are three main stages to computing the motion response of the ship.  First, 
divide the ship into a number of transverse sections (or strips), generally from 10 to 40, and compute the 
two-dimensional hydrodynamic coefficients such as added mass, damping, wave excitation and restoring 
force.  Next, integrate these values along the length of the vessel to obtain global coefficients for the coupled 
motion of the vessel.  Finally, the equations of motion for the ship can be solved to give the amplitudes and 
phases of the heave, surge, sway, yaw, pitch and roll motions.  Clearly, the motion of a ship is a complex 
phenomenon and the above description is merely a simplified explanation of one method used for modeling 
ship motion.  The above description is intended to only provide insight into the problem of ship motion 
simulation.  The interested reader is referred to the following list of articles for a deeper understanding of 
ship motion simulation [14,15,16].  Fortunately, there are a number of commercial software packages 
available for the analysis and simulation of marine vessels.  The level of sophistication, as well as 
magnitude of cost, varies dramatically.  The package used for the analysis in the paper is the Simulation 
Time History (STH) and Access Time History (ACTH) programs developed at the Naval Surface Warfare 
Center in Bethesda Maryland and are available through the National Technical Information Service (NTIS). 
  

Roll 

Surge 

Yaw 

Heave 

Pitch 
Sway 
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Table 2:  Ship size/displacement 

 
Table 3:  Ship dimensions 

 
 

Table 2 provides a general description of the expected motion of a ship based upon the sea state and 
vessels length and beam dimensions [15].  A listing of naval and commercial vessels with their respective 
displacement, length and beam dimensions follow this in Table 3.  A full listing of the data on each of the 
above Navy war ships is available through a Navy web site [16].   

2.3. Dynamic Equations of Motion 

At this point, we have the ability to model the motion of a ship as a function of the sea state and vessel.  
We now are interested in understanding the impact this ship motion has on the dynamics of a general 
manipulation system.  Our approach to modeling the dynamics of a robot on a moving platform, such as a 
ship, consists of: modeling the ship motion and robot kinematics with homogeneous transforms, constructing 
kinetic and potential energy terms using these transforms, and symbolically computing the dynamic equations 
of motion via the Lagrange approach.  First, as a review, the homogeneous transform is expressed using the 
traditional Denavit-Hartenberg (D-H) representation found in most robotics texts where the four quantities θi 
(angle), αi (twist), di (offset), li (length) are parameters of link and joint i [17, 18]. 
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The conventional use of the homogeneous transform treats each subsequent transformation as a body 
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fixed rotation and translation.  However, the sea state is generally described in terms of space fixed 
displacements.  e.g. all of the translations and rotations are with respect to the same space fixed reference 
frame.  Referring to Figure 3, roll and surge are about a fixed X-axis, pitch and sway are about a fixed Y-
axis and yaw and heave are about a fixed Z-axis.  We begin by constructing a homogeneous transformation 
using space-fixed rotations and translations for a transformation from the sea coordinate frame to the base of 
the robot.  Equation (7) is the final expression for the displacement of the base of a robot with respect to a 
sea state where cθ is cos(θ) and sθ is sin(θ).  
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We assume for now that the sea states are defined with respect to the base of our robot.  If necessary, 
additional transformations can be included from the coordinate system of the sea state to the base of the 
manipulator.  We also assume that we can define homogeneous transforms from each joint to a point on each 
link where the associated mass properties (mass and inertia matrix) are known.  So, our basic methodology 
consists of using the homogenous transforms to identify the displacements and velocities, both translation 
and rotation, of the center of mass of each link and payload with respect to the manipulators state and the sea 
state.  We extract out of the transforms the vertical displacement of each center of mass for an expression of 
the total potential energy of the system.  Likewise, computation of the system’s kinetic energy is based on 
computing the linear and angular and velocity of each link center of gravity with respect to the inertial 
frame.  Once the kinetic and potential energy terms are derived, we simply use the jacobian() function to 
symbolically calculate the mass matrix and nonlinear dynamic terms following the Lagrange formulation.   

 First, the position of the center of mass for each link, with respect to the system’s inertial coordinate 
system, is computed by post multiplying the displacement of the robot base with respect to the sea, base

seaH , 

by a homogeneous transform from the robot base to the link’s c.g., i
baseH . 
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The potential energy due to gravity for link i is the vertical component ( i
seaz in direction of gravity) of 

i
seax times the mass of the link.   

i
seai

i gzmV =  (9) 
To compute the kinetic energy, we must first derive expressions for the linear and angular velocity of the 

center of gravity for each link as a function of the sea state and states of the manipulator.  We have an 
expression, i

seax in Equation (8), for the position of the c.g. of link i with respect to the sea inertial frame.  
The velocity vector, iv , is computed by multiplying the Jacobian (with respect to the combined states of the 

manipulator i
baseq and sea displacment seaq ) of i

seax , )q,x (J i
sea , by the state velocity vector, q& .  Note from 

equation (10) that seaq is a vector of the sea displacement, i
baseq is a vector of robot joint displacements 
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from the base of the robot (joint q0) to the ith joint (qi).  The displacement vector q  combines the sea state 
displacement with the robot joint displacement vector. 
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The rotational velocity is a little more involved, but can be simplified by again using the homogeneous 
transform.  Starting at the base of the robot, project the net rotational velocity vector forward to the c.g. of 
each link using the rotational component, i

seaR .  We begin by defining the base rotational velocity. 

[ ]yawpitchroll
base    θθθ=ω &&&  (11)

We combine the rotational velocity of the first link (with respect to the link), 1q& , with the projection of 
ωbase to the center of mass of the link, again using the rotational component of the homogeneous transform in 
Equation (7). 

base1
base11 Rq ω+=ω &  (12)

Each subsequent joint consists of projecting the total angular velocity vector of the previous joint to the 
current joint’s coordinate system, using the rotational component of that joint’s homogenous transform, and 
adding the joint angular velocity.   

1i
i

1iii Rq −− ω+=ω &  (13)
We now have expressions for the linear and angular velocity of the center of mass for each link.  The 

total kinetic energy of the system is  

[ ] ii
t
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i
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t
i

N

1i
i IRvvm

2
1

T ωω+= ∑
=

 (14)

where mi is the mass of link i and Ii is the inertia matrix of link i about the center of gravity.  As a final 
step, we add external forces applied to the system.  For now, we assume forces are applied only to the 
joints and tip of the robot.  We use the principle of virtual work to lump these terms together. 
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 (15)

 Equations (9) and (14) provide expressions for the kinetic and potential energy of the system.  We start 
with the classic definition of the Lagrange equations of motion. 
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The first term in Equation (16) can be expanded using the chain rule. 

t
q

qt
q

q
  

t ∂
∂

∂
∂

+
∂
∂

∂
∂

=
∂
∂ &

&  (17) 

Substituting Equation (17) into (16), 
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As with the velocity computation in Equation (10), we can exploit the jacobian() function in Matlab for 
the evaluation of many of the terms in Equation (18).  First, the term ∂T/ q&∂  is the differential of the scalar 
kinetic energy term with respect to the full state velocity vector defined in Equation (10).  This results in the 
vector, Lv, in the script files in Appendix A and B.  The first term in Equation (18) represents the mass 
matrix.  This expression is easily computed by taking the Jacobian on Lv with respect to the full state 
velocity vector. The remaining elements in Equation (18) represent the nonlinear dynamics (coriolis, 
centripetal, gravitational) of the system.  Thus, it should be clear that once the kinetic and potential energy 
terms are defined, it is straightforward to symbolically evaluate the dynamic equations of motion using 
Matlab’s jacobian() function.  The Jacobian for projecting external forces to the generalized coordinates can 
similarly be computed using the tip position of the robot and the jacobian function. 
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Figure 4:  One DOF Model 

 
We provide two examples to verify this methodology: a simple one degree of freedom system operating 

in a plane and a three degree of freedom system experiencing all six degrees of motion from the sea state.  
The first example is simple enough to verify through hand calculations.  The second example is more 
complex, yet practical.  Figure 4 shows the basic kinematic model of the one degree of freedom system 
experiencing 3 sea states in the X-Y plane.  We are assuming a one DOF system with mass M and rotary 
inertia Iz located at the tip of a link of length L.  The system is experiencing only three of the six sea states:  
surge (xs), heave (ys), and pitch (θs).  The only external force applied to the system is a joint torque, τ, 
applied at joint 1.  Appendix A shows the listing of code used to generate the dynamic equations of motion.  
The two output variables of interest are the MassMatrix and NLT.  The resulting output is listed in Equation 
(19) and can be easily verified by the reader.  Clearly, for this simple case, there is not a great advantage to 
using a symbolic package over hand calculations.   
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(19)

 The power of this approach is more evident as we progress to more complex systems.  Additional 
degrees of freedom only require additional homogeneous transforms.  As a second example, we derive the 
dynamic equations of motion for the 3 degree of freedom system, shown in Figure 5, with the full six degrees 
of freedom from the sea state.  A listing of the code used for computing the dynamics of the strength 
amplifying machine on the deck of a ship is shown in the listing in Appendix B.  It should be clear 
comparing the listings in Appendix A and B that there is only a slight difference in the formulation of the 
transformations, but the methodology for deriving the dynamics is the same.  The resulting equations of 
motion can be partitioned into a compact form, Equation (20), 
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where Mrr is the 3x3 mass matrix for the robot with respect to the robot’s state acceleration, Mss is the 6x6 
mass matrix of the robot with respect to the sea state acceleration, Mrs is the inertial coupling of the sea state 
to the robot state, NLTr is a 3x1 vector of the nonlinear terms (gravitational, Coriolis, centripetal) as a 
function of both the robot’s state and the sea state, Qr is the joint force input vector to the system, Fext is an 
external force vector applied to the end effector and Jt(qr) is the Jacobian from the end effector to the joint 
space.  In order to include the dynamic equations of motion in Simulink, we use Equation (21) to solve for 
the acceleration of the robot’s state vector as a function of all of the inputs (external forces and joint 
torques), system state (position and velocity) and external disturbances (sea state position, velocity, and 
acceleration). 

{ }srsrextr
t

r
1

rrr qMNLTF)q(JQMq &&&& −−+= −  (21) 
While the output of the single degree of freedom, planar case can be listed in Equation (19), the results 

of the dynamic equations of motion for the second system generates 84 pages of c-code and would require 
considerable effort to derive by hand.  One primary concern is the validity of the results.  For now, we can 
only verify the basic methodology by comparing to simple cases.  To date, we have compared the 
methodology to a number of manipulators with stationary bases and achieve the same symbolic results.  In 
addition, we have considered only simple one and two degree of freedom systems experiencing one to three 
degrees of ship motion.  In each case, the symbolic solutions are the same leading us to believe the 
methodology is sound.  An obvious question is “what can you do with 84 pages of c-code?”  Fortunately, the 
code can be directly imported into Simulink through the S-Function builder.  Finally, one might ask “how 
long does it take to simulate a system with 84 pages of c-code?”  The simulation was surprisingly fast.  It 
takes 178 seconds to execute a 120 second simulation with a fixed 0.01 second time step and 4th order 
Runge-Kutta integration.  This was executed on a 750 MHz Pentium III laptop.  The motivation for 
computing the dynamics equations of motion are two fold.  First, by having the dynamics in a symbolic form, 
it is possible to aid in the design process, changing parameters to optimize the system.  Second, a model of 
the system dynamics can aid in increasing the fidelity of simulation for control design and analysis.   
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3. SIMULATION PLATFORM 

The objective of this research is to develop advanced control methodologies to reduce the influence ship 
motion disturbances have on position and force controlled manipulation systems.  As a preliminary 
approach, we use detailed simulation models to explore the impact wave motion has on the tracking 
performance of general manipulation systems.  To increase the fidelity of the simulation, we include not only 
the mechanical dynamics, detailed in the previous section, but include the nonlinear dynamics associated 
with the actuation.  Since our motivation is to develop advanced control methodologies for strength 
amplification systems, our target systems have similar components that are generally found on Human 
Amplification Technology (HAT).  The system modeled in this investigation is displayed in Figure 5.  This 
system has a 500-pound payload capacity and has three active degrees of freedom.  The actuator models 
include nonlinear dynamic modeling of the hydraulic system (servo-valve orifice equations equations, 
asymetric cylinders, fluid compliance …), controls and the dynamic equations of motion computed above.   

 

Figure 5:  Strength Amplifying Machine 

 
The hydraulic actuator models generate force as a function of the servovalve current, actuator position 

and velocity.  The Simulink model of the full HAT controlled system, including the sea state inputs, 
hydraulic models, controls, and dynamic equations of motion is shown in Figure 6.   
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Figure 6:  HAT Simulation Model 

The nonlinear model of the hydraulic manipulator, shown as the LDRD Arm block in Figure 6, is 
expanded in Figure 7.  This model includes auxiliary inputs for system identification.  However, the inputs 
to the model include the desired joint positions, the eighteen elements of the sea state (displacement, 
velocity and acceleration of roll, pitch, yaw, heave, surge, and sway), and the external force applied to the 
robot (from human and/or environment).   

 
Figure 7:  Details of HAT Controller and Manipulator Model 

There are two primary blocks to note in Figure 7.  The first is the System Dynamics block.  This 
contains the c-code generated previously that represents the forward dynamics of the LDRD arm.  The 
second is the Hydraulics block, expanded in Figure 8.  From the expanded hydraulics block, each of the 
three joints has two primary elements:  the servo valve and the actuator.  In the case of the second and third 
joint, there is also a transmission associated with the coupling of the linear actuator with the joint.  The 
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servo valve models, shown in Figure 9, are based on the full nonlinear orifice equations and regulate the 
fluid flow to the actuators as a function of excitation signal (command to the moving coil on the servo 
vavle), the supply and return pressure, as well as the pressure on both sides of the actuator.  The actuator 
model, Figure 10, generates a force based on the position, velocity, and bulk modulus (stiffness) of the fluid. 
 The position and velocity of the actuator come from the dynamic model of the manipulator.  The force from 
the actuator is the excitation to the dynamic model of the manipulator.  There are three elements to the joint 
controllers, one of which is shown in Figure 11.  There is the general joint compensator, the repetitive 
learning controller (which can be switched on or off), and an inner pressure control loop (shown in the 
actuator models).  Hydraulic actuators are generally characterized as type one systems with a lightly 
damped pair of poles.  The pressure control feedback controls the joint damping, much like velocity 
feedback on an electric motor.  The joint position compensators provide adequate motion tracking, with a 
target closed loop bandwidth approaching 3 Hz, the nominal bandwidth of gross human motion.  Finally, the 
repetitive learning controller, detailed shortly, allows easy integration of the learning control with the joint 
compensator.  It should now be clear that, to the best of our ability, the full nonlinear behavior of the 
manipulator is embodied in the simulation of the manipulator.  We now will explore the impact the sea state 
has on the position and force tracking capability of the manipulator.  
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Figure 8:  Details of Hydraulic Actuators 

 
Figure 9:  Details of Servovalve 

 
Figure 10:  Linear Actuator Model Figure 11:  Joint Compensator 

3.1. Impact of Sea State on Conventional Control 

We now consider the impact sea state has on the performance of a HAT system.  By performance, we 
mean accuracy of tip position and perturbations on the force experienced by the operator.  Inputs to the 
system consist of a human command regulating about a single point and a sea state with conditions 
commensurate to a destroyer moving at 20 knots in sea state 5.  Figure 12 shows the force provided by the 
human while attempting to regulate the tip position.  There is the expected DC bias on the Z-direction force 
required to offset the gravitational load.  The payload weight is 2224 N which projects to a human force of 
22.4 N when in static equilibrium (as illustrated in Figure 35).  However, the maximum perturbation, after 
the initial transient, during a 120 second simulation run was 11.38 N, approximately 51% of the actual load. 



15 

 In addition, there are orthogonal disturbances in the X and Y-directions due to the rolling, swaying and 
surging motion of the ship.  The resulting tip motion is displayed in Figure 14, Figure 15, and Figure 16.  It 
is clear that the vertical direction is the most sensitive to the sea state.  The variation in the vertical tip 
position is 22.8 mm.  The tracking error above is a function of two inputs:  the force (due to the sea state) 
applied to the arm and the commanded motion from the force applied by the operator.  In the following 
sections, we will explore alternative control strategies that address compensation of these disturbance 
forces in order to increase the positioning accuracy and reduce the disturbance force reflected to the 
operator.  
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Figure 12:  Human Force w/out Compensation 
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Figure 13:  Tip Force w/out Compensation 
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Figure 14:  X Tip Direction 
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Figure 15:  Y Tip Direction 
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Figure 16:  Z Tip Direction 

3.2. Preliminary Experiments with Repetitive Learning Control 

This investigation explores control strategies for both position and force controlled systems 
experiencing severe sea state disturbances.  In the previous section, we illustrated the impact of sea state 
disturbances on a force controlled system, emphasizing the disturbance reflected to the operator and 
reduction in positioning resolution.  Emphasis now shifts to alternative control strategies for attenuating the 
sea state disturbance on position and force controlled systems.  The first series of experiments concentrates 
on position controlled systems.  For our first simulation, we start with a sinusoidal model with a fixed 
frequency for each of the six sea states.  We assume a significant wave height of 7 ft and average period of 6 
seconds (sea state 5).  For demonstation purposes, the system has a 500 lb payload, has linear position 
control with a gain margin of 10 dB and phase margin of 60 degrees, and is commanded to regulate the 
initial joint configuration.  Under these sea states, the vertical and horizontal tracking error (displayed in 
Figure 18, Figure 20, and Figure 22) exceed 1 inch.  We then introduce a Repetitive Learning Controller 
(RLC) with a fixed delay (Td) that is the same as our simulated wave period.  Details on the design of an 
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RLC, see Figure 17, (specifically the filters q(s) and b(s)) can be found elsewhere in the literature.[17,18]  
Without the RLC (Figure 18, Figure 20, and Figure 22), the amplitude of the tip position error is 1.3 mm in 
the X direction, 3.05 mm in the Y-direction and 4.05 mm in the Z-direction.  With the RLC (see Figure 19, 
Figure 21, and Figure 23), the error reduces to 0.11 mm in the X-direction, 0.23 mm in the Y-direction and 
0.33 mm in the Z-direction.  These results would indicate a clear advantage to using RLC for compensating 
for the periodic disturbance of wave motions.  However, while the sea state, as illustrated in Figure 1, is 
generally characterized as periodic and sinusoidal, there is some noticable varition in the amplitude and 
frequency of the ship motion. 
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Figure 17:  RLC Joint Control Strategy 
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Figure 18:  X-Position, simple waves, no compensation 
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Figure 19:  X-Position, simple waves, with RLC 
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Figure 20:  Y-Position, simple waves, no compensation 
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Figure 21:  Y-Position, simple waves, with RLC 



17 

0 20 40 60 80 100 120
1.2

1.205

1.21

1.215

1.22

1.225

1.23

1.235

1.24

1.245

Time (sec)

Z-
P

os
iti

on
 (

m
)

Desired Tip Position 

Tip Position 

 
Figure 22:  Z-Position, simple waves, no compensation 
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Figure 23:  Z-Position, simple waves, with RLC 
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Figure 24:  X-Position with realistic wave motion 
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Figure 25:  X-Position with RLC and realistic wave motion 
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Figure 26:  Y-Position with realistic wave motion 
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Figure 27:  Y-Position with RLC and realistic wave motion 



18 

0 20 40 60 80 100 120
1.2

1.205

1.21

1.215

1.22

1.225

1.23

1.235

1.24

1.245

Time (sec)

Z-
P

os
iti

on
 (

m
)

Desired Tip Position 

Tip Position 

 
Figure 28:  Z-Position with realistic wave motion 
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Figure 29:  Z-Position with RLC and realistic wave motion 

 
We now repeat the same series of simulations.  However, we replace the periodic wave disturbance 

with a more representative disturbance generated by the SMP program.  Figures 24, 26 and 28 show the 
response of the system using the same conventional control as used previously.  Likewise, Figures 25, 27, 
and 29 show the system response when using a fixed period RLC algorithm.  Clearly, the variations in the 
wave period negatively impact the performance of the fixed time delay RLC.  There are some time segments 
(from 90 to 120 seconds) where it appears there is some benefit to using RLC.  However, the variable 
nature of the wave period degenerates the tracking capacity of the RLC.  Attempts were made to track and 
adapt to the variable frequency of the disturbance.  However, the disturbance frequency does not vary 
slowly with respect to time and making adaptation futile.  A detailed analysis of the sensitivity of RLC is 
provided in Appendix C. 

4. MARITIME FORCE CONTROL 

Our emphasis now shifts towards force control with specific emphasis on the impact of sea state 
disturbances on human amplification systems.  We begin with a basic description of human strength 
amplification technology and include simulation results to demonstrate the basic characteristics of a general 
strength amplification system, specifically human strength amplification and contact stability.  This is 
followed by an investigation of the impact of sea state disturbances on HAT systems and an exploration of 
alternative control methodologies to mask these disturbances from the operator. 

4.1. Baseline Performance of HAT System Simulation 

We now transition from position controlled manipulation systems to force controlled systems.  Our focus 
is on a Force-Force control strategy to realize strength amplification.  We begin with a basic description of 
the HAT control strategy.  Next, we show through simulation the characteristics of a HAT control 
architecture on a dynamic model of the system in Figure 5.  Finally, we illustrate our primary problem:  the 
influence sea states have on the performance of a HAT controlled system. 

HAT controlled systems basically consist of a robot with two force inputs:  the force from the payload 
and the force from the human.  The force-force control strategy, Equation (22), amplifies the human force 
vector, Fh (α is the amplification factor), and strives to balance this amplified human force with the payload 
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force, Fe.   
 

eh FFF −α=∆  (22) 
 
There are a wide variety of control strategies that enable force-force control and human 

amplification.[19]  A few examples are illustrated in Figure 30, Figure 31 and Figure 32.  The primary 
motivation is to control the manipulator so that it drives the force error to zero.  However, there are many 
other aspects to the control of a strength amplification system beyond the tracking and amplificication of 
human forces.  First, safety is always a primary concern.  As an example, the Next Generation Munitions 
Handler, Figure 33, was designed to enable a single human to carry and manipulate a payload in excess of 
2000 lbs.  Contact stability and fault tolerence are high priorities.  The control architecture should enable 
loss of human excitation (accidentally let go of system).  Such systems are designed to provide human 
interaction with the payload and environment.  Subsequently, the system requires a closed loop bandwidth 
similar to gross human movements (approximately 2 Hz) as well as sub-millimeter positioning resolution.  
All of these characteristics must be considered in the control design.  For this study, we adopt the 
Accomodation Control architecture. 
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Figure 30:  Explicit Force Control 

 
 
 
 
 
 

 

Figure 31:  Accomodation Control 

 
 

Figure 32:  Acceleration Control 

 

 
Figure 33:  ORNL's Next Generation Munitions Handler 

One of the challenges faced with this study is assessing the performance of a human controlled system 
through simulation.  Human behavior and physical response is a complex phenomenon.  However, Flash and 
Hogan suggested that planning multi-joint movements takes place in the Cartesian space rather than the joint 
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space of the limbs.  This approach, the equilibrium trajectory hypothesis, models human forces as a stiffness 
relationship between a target trajectory and actual trajectory of the limb[20].  Clearly, human stiffness 
varies from subject to subject, limb to limb, configuration to configuration.  However, from the studies of 
Flash, a good approximation would be a diagonal stiffness matrix with a magnitude of 500 N/m.  For our 
HAT controlled simulations, human commands are modeled, shown in the left portion of Figure 6 as a force 
vector that is the product of a human stiffness matrix and the cartesian tracking error (error between where 
the human wants the tip of the robot to be and the actual tip position of the robot).  For the HAT control, the 
human force vector is amplified by the gain alpha and compared to the measured tip force of the robot.  This 
force error is passed through  an accomodation matrix, generating a desired tip velocity of the robot.  The 
manipulator Jacobian provides the transformation from a desired tip velocity to the desired joint velocity, 
which is subsequently integrated and fed into the manipulators joint controller.   This is the essense of the 
HAT control methodology.  We will now provide further details into the modeling of the hydraulic actuators 
with the combination of the dynamic equations of motion described previously. 

As a baseline, we consider the performance of the HAT system using only conventional control 
techniques.  The first simulation simply looks at the force amplification, without any sea state disturbances.  
Figure 34 and Figure 35 display the tip and human applied force when the system starts.  The initial transient 
is due to the immediate gravitational loading on the arm and quickly damp out.  The amplified human force 
balances the tip force (due to the gravitational load of the payload) with the appropriate amplification factor 
of 100. 
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Figure 34:  Tip force when stationary 
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Figure 35:  Human force when stationary 

 
The next aspect of the HAT control is motion tracking.  When unconstrained, the human applied force 

directs the motion of the arm, in Cartesian space, scaled through the accommodation matrix.  In the 
simulation, we are interested in the decoupling of Cartesian motion.  The motion of the tip should be in the 
direction of the force applied to the arm by the human.  Figure 36 through Figure 41 show the response of the 
arm when isolating one Cartesian motion at the operator input.  It is clear that, when unconstrained, the HAT 
system operates with the appropriate behavior.   
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Figure 36:  Tip Response to X-Direction Command 
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Figure 37:  X-Direction Human Command 
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Figure 38:  Tip Response to Y-Direction Command 
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Figure 39:  Y-Direction Human Command 
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Figure 40:  Tip Response to Z-Direction Command 
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Figure 41:  Z-Direction Human Command 

 
One final concern is contact stability of the HAT system.  When the system contacts a hard surface, it 

should not only be stable, but not exhibit oscillatory behavior.  Any contact vibration should die out rapidly 
and not exhibit a bouncing characteristic.  To test contact stability, we model the environment as a nonlinear 
spring representing a surface that has zero stiffness in one direction and large stiffness in the opposite 
direction.  The operator commands motion in the y-direction.  The trajectory consists of a trapezoidal 
trajectory in which the target position is slightly behind the wall, ensuring contact.  The magnitude of the 
surface stiffness is set at the 1.12e6 N/m which is slightly larger than the mechanical stiffness of the last link 
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of the arm.  This should provide a good approximation for contact with a hard surface.  Figure 42 shows the 
various stages of the human applied force.  Figure 43 shows the corresponding tip position.  There is an 
initial transient when the arm is loaded and all initial conditions are zero.  Next, the operator commands a 
constant velocity in the y-direction.  This command manifests itself as the momentum force profile from 3 to 
4 seconds.  The desired velocity is 65 mm/sec during contact with the wall.  The force continues to increase 
while the trajectory (representing the desired motion of the human) continues into the wall, and levels out.  
As desired, the human contact pressure (approximately 26 N) is 100 times lower than the force measured in 
the y-direction on the manipulator.  So, this series of simulations demonstrates contact stability with force 
amplification. 
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Figure 42:  Human Force during contact 

0 2 4 6 8 10 12
-0.5

0

0.5

1

1.5

2

Time (sec)

Ti
p 

P
os

iti
on

 (
m

)

X-Position 

Z-Position 

Y-Position 

Figure 43:  Tip position during contact task 

4.2. Ship Motion Compensation for Force Control Strategy 

In earlier sections, we illustrated the impact ship motion has on the tracking performance of a position 
controlled manipulation system.  First, it was clear that the disturbance was low frequency in nature.  
Second, while the disturbance appears to be sinusoidal, the frequency is time varying.  Our analysis and 
simulations illustrated the potential for Repetitive Learning Control if the period of oscillation was fixed.  If 
the period of the disturbance was slowly varying, there is potential for adapting the target period.  However, 
there may be significant variation in the period in less than 2 cycles of the disturbance complicating any 
attempt at RLC adaptation.  The impact of ship motion becomes more significant when dealing with force 
control architectures.  With position control, the disturbance forces due to ship motion only influences the 
system response through the dynamics of the manipulator.  With a force control architectures, the force 
disturbance has potentially two avenues to influence system response:  the system dynamics and the 
feedback of the disturbance force to the force control.  Finally, with a HAT controlled system, there is the 
possibility for a third avenue for the disturbance force to influence the response of the system:  the human 
command.   Inertial (due to accelerations due to the sea state) and variations in the gravitational force (due 
to rolling and pitching motion of the ship) generate significant variations in the interaction force between the 
robot and payload.  These forces are not only part of the feedback strategy in Equation (22), but also cause 
the system to deviate from its target configuration.   Hogan and Flash described force commands from a 
human as a Cartesian stiffness control analogy[20].  If the human simply tries to hold the system stationary, 
variations in the systems configuration will cause the human to feel a reflection of the inertial and 
gravitational effects, which is the objective of the original control strategy.  However, it is quite possible 
that these disturbance forces, while part of the environment, are not beneficial to the execution of the tasks 
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and actually serve as a third avenue for the ship motion to disturb the performance of the system.  As an 
example, Figure 46 through Figure 48 show the tip position of the system at sea state 5 when the operator is 
trying to hold the system stationary. Figure 45 shows the resulting interaction force between the payload and 
manipulator, measured by the force sensor.  If the HAT control architecture is working properly, the 
operator will feel a scaled version of this force as illustrated in Figure 44.  Our objective is to identify a 
control approach that can effectively mask off this ship motion disturbance force that is reflected back to the 
operator. 
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Figure 44:  Human Forces at Sea State 5, No 

Compensation 

0 20 40 60 80 100 120
-3500

-3000

-2500

-2000

-1500

-1000

-500

0

500

Time (sec)

Ti
p 

Fo
rc

e 
(N

) Z Direction Force 

X and Y Direction Force 

 
Figure 45:  Tip Force at Sea State 5, No 

Compensation 
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Figure 46:  X-Position, No 
Compensation 
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Figure 47:  Y-Position, No 
Compensation 
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Figure 48:  Z-Position, No 
Compensation 

 
It is clear that, while attractive from the simplicity standpoint, the performance of the RLC will not 

sufficiently improve the fidelity of a ship-based HAT system.  The advantage of the RLC approach is the 
lack of sensory feedback.  If the period of the excitation is know and fixed, the RLC exploits the joint 
sensory feedback for mitigation of the periodic error signal.  Unfortunately, while the sea state appears 
periodic, the frequency of the disturbance can shift by relatively large amounts from period to period.  
Attempts at adaptive RLC, varying the period of the RLC as the disturbance frequency varies, work only 
when the shift in disturbance frequency is slow.  Subsequently, we must explore other avenues for mitigating 
the sea state disturbance.  The basic problem is very similar to the work in noise cancellation.  Widrow 
describes the feasibility of canceling noise in speech signals, specifically the problems with cockpit noise 
in flight.  Engine noise contains strong periodic components, rich in harmonics, that occupy the same 
frequency band as the pilot’s speech.  These problems are very similar to the ship motion disturbance where 
the frequency and intensity are comparable to the command signals.  For noise cancellation, a second 
microphone is placed at a suitable location in the cockpit to measure the ambient noise free of the pilot’s 
speech.[21]  We adopt a similar strategy, called from here on the Ship Motion Compensation for Force 
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Control Strategy (SMCFCS),  for the reduction in ship motion disturbances on a force controlled 
manipulator.  Instead of measuring background acoustical noise with a microphone, we measure background 
ship motion using accelerometers and inclinometers on the base of the manipulator.  There are two slight 
modifications that must be considered.  First, we are primarily interested in removing the disturbance force 
from the force sensor at the end of the robot.  With acoustic noise cancellation, the noise measurement and 
speaker were both acoustical signals.  For the force signal cancellation, the noise measurement is based on a 
displacement sensor (accelerometers and inclinometers) while the actual signal of interest is a force signal. 
 Therefore, the algorithm has the additional constraint of transforming the noise measurement to a predicted 
force measurement.  Second, the coordinate frame of the force transducer at the end of the robot is most 
likely in a different configuration than the accelerometers and inclinometers.  Since the basic HAT control 
architecture is force based, it is straightforward to feedforward an effective sea state force to mask off the 
resulting inertial and gravitational loads.  Note in Figure 31 that the force comparison between the human 
and payload is executed in the Cartesian frame.  If we know the effective impedance of the payload, the 
disturbance force can be computed directly in the Cartesian frame if the accelerometers and inclinometers 
are calibrated with respect to this configuration on the robot’s platform.  The basic feedforward term for the 
noise cancellation is provided in Equation (23).  This term represents the effective force due to the sea state, 
FSeaState, defined with respect to the base of the robot.  The first term represents the inertial forces due to the 
sea state while the second term accounts for the change in the gravitational field due to the ship 
configuration.  The actual force error filtered through the accommodation matrix is expressed in Equation 
(24) where tip

baseR  is simply the coordinate transformation for the base frame to the end-effector frame where 
the force signal, Fsensor, is measured. 
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Figure 49 through Figure 53 display the response of the system with the addition of SMCFCS.  Table 4 

provides a comparison of the performance of the system, using the same operating conditions and sea state 
described in the previous simulations, under different levels of feedback.  It is clear that this approach to 
noise cancellation looks promising.  We must consider the fact that we assumed perfect knowledge of the 
payload mass.  In addition, we did not account for any possible errors or dynamics in the sensing of the 
accelerations and inclination.    
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Table 4:  Control Performance Comparison 

Strategy Force Variation (N) Position Variation (mm) 
No Compensation ∆Fx=3.587 ∆xtip=7.2 
 ∆Fy=3.825 ∆ytip=7.7 
 ∆Fz=11.384 ∆ztip=22.8 
SMCFCS w/Vertical Acceleration ∆Fx=3.420 ∆xtip=6.8 
 ∆Fy=3.646 ∆ytip=7.3 
 ∆Fz=1.246 ∆ztip=2.5 
SMCFCS w/X, Y, Z Acceleration ∆Fx=2.366 ∆xtip=2.5 
 ∆Fy=2.102 ∆ytip=4.2 
 ∆Fz=1.242 ∆ztip=2.5 
SMCFCS w/X, Y, Z Acceleration and  ∆Fx=0.951 ∆xtip=1.9 
Inclination ∆Fy=0.777 ∆ytip=1.6 
 ∆Fz=1.217 ∆ztip=2.4 
SMCFCS w/X, Y, Z Acceleration and  ∆Fx=0.598 ∆xtip=1.2 
Inclination and RLC ∆Fy=0.774 ∆ytip=1.5 
 ∆Fz=0.847 ∆ztip=1.7 
It is clear that the SMCFCS with full acceleration and inclination feedback provides significant 

improvement in both the tracking (an increase in sensitivity by a factor of 9.5) and force reflection 
(reduction of disturbance force by a factor of 9.4).  The fact that these two improvements are so similar 
should not be a surprise.  As noted earlier, the motion of the tip is due to two stimuli: the disturbance force 
and the command.  The SMCFCS masks off the disturbance force in the HAT algorithm that generates 
motion commands to the manipulator.  So, the SMCFCS eliminates the disturbance from the command that 
significantly reduces the relative motion between the ship and the operator.  The SMCFCS framework is 
based in the inertial frame of the robot (the same frame as the HAT methodology), instead of the joint space. 
 This dramatically simplifies the complexity of the algorithm.  It may be possible to further reduce the 
sensitivity of the system to the sea state.  However, the disturbance forces and tracking performance are 
bordering on human sensitivity.  Any additional gain would not be perceived by the operator.  The only 
motivation would be operation at sea states 6 and higher.   
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Figure 49:  Human Forces at Sea State 5, 

SMCFCS 
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Figure 50:  Tip Force at Sea State 5, 

SMCFCS 
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Figure 51:  X-Position, 
SMCFCS 
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Figure 52:  Y-Position, 
SMCFCS 
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Figure 53:  Z-Position, 
SMCFCS 

5. CONCLUSIONS AND RESULTS 

This report has described the fundamental problems associated with motion control of manipulation 
systems operating on the deck of a moving ship.  We provided a brief survey of present wave modeling 
techniques and ship motion simulation procedures.  This is followed by a methodology to compute the 
dynamic equations of motion, using energy methods, of a general serial link manipulator on a six-degree of 
freedom base.  We provide as an example a three-degree of freedom manipulator and show, through 
simulation, the impact of wave generated disturbance on the tracking control of this system.  As an example 
system, we developed a detailed model of an ORNL HAT system to demonstrate the impact sea states have, 
through simulation, on a typical human amplification technology system operating on the deck of a ship 
experiencing heavy sea states.  We first demonstrated human amplification through simulation showing 
comparable performance as that experienced on the real system. These simulation studies included force 
tracking, strength amplification, and contact stability.  This was followed by a series of simulations that 
displayed the impact ship motion has on strength amplification on a moving platform.  The test case was a 
strength amplification factor of 100:1 with a 2224 N payload.  The gravitational load experienced by the 
operator is 22.2 N (5 lbs).  At sea state 5, the variation in the vertical load was 11.4 N, 51% of the load.  
This variation in the load generated a disturbance motion of 22.8 mm in the vertical direction, dramatically 
limiting the positioning resolution of the arm during operation.  Our initial  control investigation focused on 
Repetitive Learning Control.  This control methodology is based on the elimination of periodic disturbances 
through a simple feedforward strategy.  The advantage of this approach is its simplicity.  If the disturbance 
period is known and of a fixed period, there is no need for any additional sensory feedback.  If the 
disturbance is periodic, but of an unknown frequency, we can use on-line frequency identification techniques 
to extract the period of the disturbance.   Simulation results demonstrated the feasibility and resulting 
performance.  However, realistic sea state disturbances, while low in frequency, are not purely periodic.  
All of our attempts at frequency adaptation for the Repetitive Learning Control provided negligible 
improvement in the HAT performance when we introduced realistic sea state disturbances to the system. 

Our second approach to masking off the sea state focused on exploiting the force control methodology.  
We assume that the HAT system has a stationary base from which it operates.  This base can be a mobile 
platform, but during sensitive HAT operations, we assume the base is stationary.  The fundamental problem 
that we addressed is that the sea state generated accelerations and shifts in the direction of the gravitational 
field on the system and payload.  The HAT control algorithm is based on sensory feedback of the human 
applied force and the force, measured at the interface between the manipulator and payload, experienced by 
the payload.  This end-effector force signal, which is fed back to the HAT controller, includes all of the 
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disturbance forces (acceleration and gravitational) due to the sea state.  We assume that the mass of the 
payload is known or can be rapidly measured during an initial pick up of the payload.  We also assume that 
we can measure the acceleration and inclination of the base of the robot using conventional accelerometers 
and inclinometers.  We believe these assumptions are valid due to the low frequency nature of the 
disturbances.  We exploit the fact that the HAT control methodology is based on a task space formulation 
(the forces of the human and payload are defined with respect to the Cartesian coordinate frame of the 
robot).  We then use the sensory feedback of the base inclination and acceleration to formulate the 
disturbance force, due to the sea state, experienced by the HAT system.  The control strategy then consists of 
feeding forward this disturbance to mask off its effect on the HAT system.  Simulation results illustrate a 
significant reduction in the disturbance experienced by the operation.  Under the same operating conditions, 
the maximum vertical disturbance force was reduced from 11.4 N to 0.847 N.  In addition, the tip position 
error reduced from 22.8 mm to 1.7 mm. 

There were two fundamental contributions of the research.  The first was the development of a new 
methodology to rapidly compute the full nonlinear dynamic equations of motion of a general manipulation 
system experiencing the full six degrees of disturbances due to a sea state.  We demonstrated how this 
methodology could be easily included in a numerical simulation tool such as Simulink.  Such a tool is 
extremely valuable in terms of exploring design and control issues for maritime systems.  The second 
contribution was the development of a new control algorithm for compensation of sea state disturbances on 
a maritime Human Amplification System.  Simulation studies showed an order of magnitude improvement in 
both the tracking performance and reduction in the disturbance force experienced by the operator.  Future 
efforts are focusing on the experimentally validating this control methodology.  These experiments will be 
based on a large sea state simulator that will induce the inclination and acceleration loads on our ORNL 
IRAD HAT system. 
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Appendix A-1 

syms ai alfai di thi mass g  
syms q1 q1_d q1_dd 
syms roll pitch yaw heave surge sway 
syms roll_d pitch_d yaw_d heave_d surge_d sway_d 
syms roll_dd pitch_dd yaw_dd heave_dd surge_dd sway_dd 
syms th1 th1d th1dd 
syms th2 th2d th2dd 
syms th3 th3d th3dd 
syms L1 I1x I1y I1z M 
 
pi = sym('pi'); 
 
% Symbolically derive motion of base of robot on deck of ship experiencing 
% 6 dof of sea motion (roll, pitch, yaw, heave, surge, sway).   
R1s=[1   0           0; 
     0   cos(roll)   sin(roll); 
     0   -sin(roll)  cos(roll)]; 
 
R2s=[cos(pitch)  0   -sin(pitch); 
     0           1   0; 
     sin(pitch)  0   cos(pitch)]; 
 
R3s=[cos(yaw)    sin(yaw)    0; 
     -sin(yaw)   cos(yaw)    0; 
     0           0           1]; 
 
Hsea=[[simple(R1s*R2s*R3s) [surge;sway;heave;]];[0 0 0 1]]; 
 
% mask off 3 of 6 sea states (keep sea states in x-z plane) 
Hsea=subs(Hsea,'roll',0); 
Hsea=subs(Hsea,'yaw',0); 
Hsea=subs(Hsea,'sway',0); 
 
% compute kinematics of arm, start off by rotating z from vertical to horizontal 
ai=0;alfai=pi/2;di=0;thi=0; 
H1=[cos(thi)   -sin(thi)*cos(alfai)     sin(thi)*sin(alfai)     ai*cos(thi); 
     sin(thi)   cos(thi)*cos(alfai)     -cos(thi)*sin(alfai)    ai*sin(thi); 
     0          sin(alfai)              cos(alfai)              di; 
     0          0                       0                       1]; 
 
ai=L1;alfai=0;di=0;thi=th1; 
H2=[cos(thi)   -sin(thi)*cos(alfai)     sin(thi)*sin(alfai)     ai*cos(thi); 
     sin(thi)   cos(thi)*cos(alfai)     -cos(thi)*sin(alfai)    ai*sin(thi); 
     0          sin(alfai)              cos(alfai)              di; 
     0          0                       0                       1]; 
 
% Homogeneous transform for the robot 
H=simple(H1*H2); 
% Full homogeneous transform of robot include sea state 
H_full=simple(Hsea*H); 
 
% state vector of robot 
q=[th1]; 
% derivitive of state vector 
qd=[th1d]; 
 
% sea state vector 
qs=[pitch;heave;surge]; 
% sea state velocity 
qsd=[pitch_d;heave_d;surge_d]; 
% sea state acceleration 
qsdd=[pitch_dd;heave_dd;surge_dd]; 
 
% velocity computation.  Each velocity is the velocity of the cg of the line wrt base coordinate system 

Appendix A:  Symbolic Computation of 1 DOF System, 3 Sea States 



Appendix A-2 

% velocity of cg of 2nd link 
Ht=simple(Hsea*H1*H2);  % homogeneous transform from base to cg of link 2 
R2c=Ht((1:3),4);    % pull out x, y, z (vector from base to link 2 cg) 
V2c=Jacobian(R2c,[q(1);qs])*[qd(1);qsd];    % calculate velocity of cg of link 2 wrt inertial frame (V = 
dR/dt = dR/dq * dq/dt) 
 
% rotation matricies from base to each associated coordinate system 
R1=transpose(H1(1:3,1:3)); 
R2=transpose(H2(1:3,1:3)); 
 
% angular velocity of each link about cg wrt local coordinate frame 
Q1=[0;0;th1d]+[0;0;qsd(1)]; 
 
% inertia matrix for each link about center of gravity wrt coordinate frame of line (same as homogeneous 
transform, just translated to cg) 
I1=[I1x 0 0;0 I1y 0;0 0 I1z]; 
 
% Payload information (position/velocity) 
Rtip=H_full(1:3,4); 
Vtip=Jacobian(Rtip,[q;qs])*[qd;qsd]; 
 
% total kinetic energy:  T = 1/2 qdot' * I * qdot + 1/2 V' M V 
T=1/2*M*(transpose(Vtip)*Vtip)+1/2*transpose(Q1)*I1*Q1; 
 
% potential energy due to gravity 
V=M*g*Rtip(3); 
 
%========================================================================================== 
% Energy approach:  d/dt(dT/dqd)-dT/dq+dV/dq=Q 
% Note: d/dt() = d()/dq * qd + d()/dqd * qdd.   
% thus, energy expansion:  d(dT/dqd)/dqd * qdd + d(dT/dqd)/dq * qd -dT/dq + dV/dq = Q. 
% first term d(dT/dqd)/dqd is mass matrix, nonlinear terms (coriolis, centripetal, gravity...) 
%========================================================================================== 
 
% calculate dT/dqdot 
dT_qdot=Jacobian(T,qd); 
 
% extract out mass matrix 
MassMatrix= simple(Jacobian(dT_qdot,qd)); 
 
% now finish off with remaining terms 
NLT1=simple(Jacobian(dT_qdot,[q])*[qd]); 
NLT2=simple(Jacobian(dT_qdot,transpose(qs))*qsd); 
NLT3=simple(Jacobian(dT_qdot,transpose(qsd))*qsdd); 
NLT4=simple(transpose(-1*(Jacobian(T,q)))); 
NLT5=simple(((Jacobian(V,q)))); 
NLT=simple(NLT1+NLT2+NLT3+NLT4+NLT5); 
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syms ai alfai di thi mass g  
syms q1 q1_d q1_dd 
syms roll pitch yaw heave surge sway 
syms roll_d pitch_d yaw_d heave_d surge_d sway_d 
syms roll_dd pitch_dd yaw_dd heave_dd surge_dd sway_dd 
syms th1 th1d th1dd 
syms th2 th2d th2dd 
syms th3 th3d th3dd 
syms L1 L2 L3 L4 L1c L2c L3c L3x L3h L3y L4c 
syms I1x I2x I3x I1y I2y I3y I1z I2z I3z 
syms m1 m2 m3 
 
pi = sym('pi'); 
 
% Symbolically derive motion of base of robot on deck of ship experiencing 
% 6 dof of sea motion (roll, pitch, yaw, heave, surge, sway).  Use DH parameters 
% to describe this motion in terms of homogeneous transforms. 
R1s=[1   0           0; 
     0   cos(roll)   sin(roll); 
     0   -sin(roll)  cos(roll)]; 
 
R2s=[cos(pitch)  0   -sin(pitch); 
     0           1   0; 
     sin(pitch)  0   cos(pitch)]; 
 
R3s=[cos(yaw)    sin(yaw)    0; 
     -sin(yaw)   cos(yaw)    0; 
     0           0           1]; 
 
Hsea=[[simple(R1s*R2s*R3s) [surge;sway;heave;]];[0 0 0 1]]; 
 
ai=-L1;alfai=pi/2;di=0;thi=th1; 
H1=[cos(thi)   -sin(thi)*cos(alfai)     sin(thi)*sin(alfai)     ai*cos(thi); 
     sin(thi)   cos(thi)*cos(alfai)     -cos(thi)*sin(alfai)    ai*sin(thi); 
     0          sin(alfai)              cos(alfai)              di; 
     0          0                       0                       1]; 
 
ai=L2;alfai=0;di=0;thi=th2+pi/2; 
H2=[cos(thi)   -sin(thi)*cos(alfai)     sin(thi)*sin(alfai)     ai*cos(thi); 
     sin(thi)   cos(thi)*cos(alfai)     -cos(thi)*sin(alfai)    ai*sin(thi); 
     0          sin(alfai)              cos(alfai)              di; 
     0          0                       0                       1]; 
 
ai=L2c;alfai=0;di=0;thi=th2+pi/2; 
H2c=[cos(thi)   -sin(thi)*cos(alfai)     sin(thi)*sin(alfai)     ai*cos(thi); 
     sin(thi)   cos(thi)*cos(alfai)     -cos(thi)*sin(alfai)    ai*sin(thi); 
     0          sin(alfai)              cos(alfai)              di; 
     0          0                       0                       1]; 
 
ai=L3x;alfai=0;di=0;thi=th3-pi/2; 
H3=[cos(thi)   -sin(thi)*cos(alfai)     sin(thi)*sin(alfai)     ai*cos(thi); 
     sin(thi)   cos(thi)*cos(alfai)     -cos(thi)*sin(alfai)    ai*sin(thi); 
     0          sin(alfai)              cos(alfai)              di; 
     0          0                       0                       1]; 
 
ai=L3h;alfai=0;di=0;thi=th3-pi/2; 
H3h=[cos(thi)   -sin(thi)*cos(alfai)     sin(thi)*sin(alfai)     ai*cos(thi); 
     sin(thi)   cos(thi)*cos(alfai)     -cos(thi)*sin(alfai)    ai*sin(thi); 
     0          sin(alfai)              cos(alfai)              di; 
     0          0                       0                       1]; 
 
ai=L3c;alfai=0;di=0;thi=th3-pi/2; 
H3c=[cos(thi)   -sin(thi)*cos(alfai)     sin(thi)*sin(alfai)     ai*cos(thi); 
     sin(thi)   cos(thi)*cos(alfai)     -cos(thi)*sin(alfai)    ai*sin(thi); 

Appendix B:  Symbolic Computation of 3 DOF System, Full Sea State 
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     0          sin(alfai)              cos(alfai)              di; 
     0          0                       0                       1]; 
 
ai=L3y;alfai=0;di=0;thi=pi/2; 
H4=[cos(thi)   -sin(thi)*cos(alfai)     sin(thi)*sin(alfai)     ai*cos(thi); 
     sin(thi)   cos(thi)*cos(alfai)     -cos(thi)*sin(alfai)    ai*sin(thi); 
     0          sin(alfai)              cos(alfai)              di; 
     0          0                       0                       1]; 
  
ai=L4;alfai=-pi/2;di=0;thi=th4-pi/2; 
H5=[cos(thi)   -sin(thi)*cos(alfai)     sin(thi)*sin(alfai)     ai*cos(thi); 
     sin(thi)   cos(thi)*cos(alfai)     -cos(thi)*sin(alfai)    ai*sin(thi); 
     0          sin(alfai)              cos(alfai)              di; 
     0          0                       0                       1]; 
  
H=simple(H1*H2*H3*H4*H5); % Homogeneous transform for the robot 
H_full=simple(Hsea*H);    % Full homogeneous transform of robot include sea state 
 
q=[th1;th2;th3];       % state vector of robot 
qd=[th1d;th2d;th3d]; % derivitive of state vector 
    
qs=[roll;pitch;yaw;heave;surge;sway]; % sea state vector 
qsd=[roll_d;pitch_d;yaw_d;heave_d;surge_d;sway_d]; % sea state velocity 
qsdd=[roll_dd;pitch_dd;yaw_dd;heave_dd;surge_dd;sway_dd]; % sea state acceleration 
 
 
% velocity computation.  Each velocity is the velocity of the cg of the line wrt base coordinate system 
% velocity of cg of 2nd link 
Ht=simple(Hsea*H1*H2c);  % homogeneous transform from base to cg of link 2 
R2c=Ht((1:3),4);    % pull out x, y, z (vector from base to link 2 cg) 
V2c=Jacobian(R2c,[q(1:2);qs])*[qd(1:2);qsd];    % calculate velocity of cg of link 2 wrt inertial frame (V 
= dR/dt = dR/dq * dq/dt) 
 
% velocity of cg of 3rd link 
Ht=simple(Hsea*H1*H2*H3c); 
R3c=Ht((1:3),4); 
V3c=simple(Jacobian(R3c,[q;qs])*[qd;qsd]); 
 
% rotation matricies from base to each associated coordinate system 
R1=transpose(H1(1:3,1:3)); 
R2=transpose(H2(1:3,1:3)); 
R3=transpose(H3(1:3,1:3)); 
 
% angular velocity of each link about cg wrt local coordinate frame 
Q1=[0;0;th1d]+qsd(1:3); 
Q2=simple(R2*R1*Q1+[0;0;th2d]); 
Q3=simple([0;0;th3d]+R3*Q2); 
 
% inertia matrix for each link about center of gravity wrt coordinate frame of line (same as homogeneous 
transform, translated to cg) 
I1=[I1x 0 0;0 I1y 0;0 0 I1z]; 
I2=[I2x 0 0;0 I2y 0;0 0 I2z]; 
I3=[I3x 0 0;0 I3y 0;0 0 I3z]; 
 
% Payload information (position/velocity) 
syms M_payload; 
Rtip=H_full(1:3,4); 
Vtip=Jacobian(Rtip,[th1;th2;th3;roll;pitch;yaw;heave;surge;sway])*[th1d;th2d;th3d;roll_d;pitch_d;yaw_d;hea
ve_d;surge_d;sway_d]; 
 
% total kinetic energy:  T = 1/2 qdot' * I * qdot + 1/2 V' M V 
T=(1/2*transpose(Q1)*I1*Q1 + 1/2*transpose(Q2)*I2*Q2 + 1/2*transpose(Q3)*I3*Q3 + ... 
    1/2*m2*transpose(V2c)*V2c + 1/2*m3*transpose(V3c)*V3c) + 1/2*M_payload*(transpose(Vtip)*Vtip);; 
 
% potential energy due to gravity 
V=m2*g*R2c(3)+m3*g*R3c(3)+M_payload*g*Rtip(3); 
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% calculate dT/dqdot 
dT_qdot=Jacobian(T,qd); 
 
% extract out mass matrix 
MassMatrix= simple(Jacobian(dT_qdot,qd)); 
 
% now finish off with remaining terms 
NLT1=simple(Jacobian(dT_qdot,[q])*[qd]); 
NLT2=simple(Jacobian(dT_qdot,transpose(qs))*qsd); 
NLT3=simple(Jacobian(dT_qdot,transpose(qsd))*qsdd); 
NLT4=simple(-1*transpose((Jacobian(T,q)))); 
NLT5=simple(((Jacobian(V,q)))); 
 
% translate to C-code 
MassMatrix_cc=ccode(MassMatrix); 
NLT1_cc=ccode(NLT1); 
NLT2_cc=ccode(NLT2); 
NLT3_cc=ccode(NLT3); 
NLT4_cc=ccode(NLT4); 
NLT5_cc=ccode(NLT5); 
 
% calculation of jacobian from tip frame to joint space 
LDRDJacobian=simple(Jacobian(H(1:3,4),[th1;th2;th3])); 
LDRDJacobian_cc=ccode(LDRDJacobian); 
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There are a great many tools available for the synthesis and analysis of linear control systems.  In the 
following sections, we explore the frequency response representation of a basic repetitive control 
algorithm.  This analysis will provide insight into why a repetitive control algorithm can improve the 
tracking performance of simple linear controller for harmonic reference signals, while at the same time 
reject disturbance signals of the same frequency at the same time.  

Simplified Model 

Our initial intention was to explore the sensitivity of repetitive control methodologies to variations in 
the disturbance frequency.  Specifically, how much variation in the disturbance frequency is allowable 
before the repetitive control either provide no benefit or even degrades performance.  As an example, we 
explore the simplest model, a first order plant and controller with a series repetitive control, shown in 
Figure 1.  This is actually representative of a wide array of controlled plants operating in the vicinity of 
their crossover frequency. 

 
Figure 54:  Simplified Plant Model 

To begin, we look at the frequency response of the reduced repetitive control element. Equation (25) 
shows the basic transfer function representation of the repetitive control element in Figure 54.   

Tj-rc e - 1
1

  )(jG ω=ω  (25) 

At ω = 2π/T, Grc approaches infinity.  Essentially, the repetitive control is providing infinite gain at the 
target frequency without numerically requiring high gains.  Unlike conventional approaches to high gain 
feedback, the use of the repetitive control provides the benefits of high gain feedback, but only at a specific 
frequency without sacrificing stability.   

There are a number of methods to approximate delay type functions.  Beghi (1997) provides insight into 
alternative methods for approximating delay elements in feedback.  We now focus on a similar approach for 
approximating the transfer function of the RC algorithm outlined above.  Equation (25) can be reordered to 
provide an input output relationship between the error signal, e(t), going into the element and the modified 
error signal coming out of the RC element. 

)Tt(e~  e(t)  (t)e~ −+=  (26) 
Figure 41 shows the resulting waveform of Equation (26) when assuming e(t) is a unit step function.  It 

is possible to decompose Figure 41 into three separate elements:  a ramp, a step, and a sawtooth waveform. 
 Figure 42 shows the resulting components. 

 

Appendix C:  RLC Sensitivity Analysis 
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By expanding the waveform in Figure 55 to the three elements, it becomes trivial to identify by 

inspection the resulting time response equation assuming the input to the system is a step input u(t). 

+ 

y(t) 

y(t) 

t

y(t) 

1

y(t) 

Figure 55:  Step Response of RLC Element 

Figure 56:  Components of overall response 
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We can then easily transform to the frequency domain. 
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Therefore, we can express the resulting transfer function of Equation (28) by removing the step 
component (1/s) from Equation (27). 
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We can now combine terms in an effort to have an expression that provides the resulting poles and zeros 
of the system. 
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First, Figure 57 displays the resulting step response of the Grc(s) for N=2, 5, 10, and 20. 

 
Figure 57:  Comparison of step response 

Figure 57, assuming T=1 sec, shows that there is good agreement between the theoretical step response 
in Figure 55 and the step response due to the approximation.  It is clear from the model in Equation (30) that 
the system’s poles consist of an infinite set of complex conjugate pair spaced on the jω-axis at ω=2πi/T.  
Unfortunately, it is not as straightforward to extract the zeros of the system.  Figure 58 shows the pole-zero 
map of Grc(s) as a function of variations in N as before. 
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Figure 58:  Pole-Zero map of Grc 

It is clear that for every pair of poles on the jω-axis, there is a complementary complex conjugate pair 
zeros in the left half plane.  Increasing the model order retains the lower order pole-zero pairs.  Additional 
information can be gained by investigating the system’s frequency response.  Figure 58 and Figure 59 show 
the frequency response of three variations of Equation (25).  The first display in both figures is the exact 
magnitude and phase of the transfer function.  Many times, it is advantageous to have an approximate model 
representing the delay, possible as a series of poles and zeros.  The second display in both figures shows 
Equation (25) with an 8th order Pade approximation of e-sT.  Clearly, the Pade approximation provides an 
excellent representation of the system for the first two pairs of complex poles and zeros, but the system 
rapidly degenerates.  The third displays in both figures shows the same system with an 8th order Fourier 
approximation of the delay derived in Equation (30).  It is clear that, with the same order model as used for 
the Pade approximation, the Fourier model faithfully reproduces the first four modes without any distortion 
of the higher modes as is evident in the Pade approximation.  The importance of this representation becomes 
clear when attempting to utilize conventional control synthesis procedures and bound stability margins for 
the final system. 
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Figure 59:  Comparison of Magnitude 
Response 

Figure 60: Comparison of Phase Response 

System Performance 

We now begin exploring the tracking performance and disturbance rejection capacity of a repetitive 
control strategy.  We focus on implementation of simplified first and second order plants.  Specifically, we 
will quantify the sensitivity with respect to variations in excitation frequency.  Equation (31) describes the 
output as a function of the disturbance, d(t), and input, r(t) in terms of the Laplace variable, s and period of 
disturbance, T. 

D(s)
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  )e -1 ( s
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+
=  (31) 

We will begin by analyzing the disturbance response of the plant.  Equation (32) expresses the frequency 
response of Y(s) as a function of the disturbance D(s) after substitution of s=jω and e-sT = cos(ωT) - j 
sin(ωT), and some minor algebraic manipulation. 
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Figure 60 shows the resulting magnitude of Equation (32) over a small frequency range around the 
disturbance period.  For this example, T = 4 sec, and K = 6.3095 and the frequency varies from 0.1 to 10 
Hz. 
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Figure 61:  Disturbance Response 

The figure clearly demonstrates the desired result, an output with zero amplitude at the disturbance 
frequency.  There is also the corresponding zeros at the higher harmonics.  However, a deviation of only 
12% on either side of the target frequency results in a disturbance response magnitude that is actually greater 
than what would be present without the repetitive control, thus highlighting the sensitivity issue.  Equation 
(33) expresses the frequency response of Y(jω) as a function of the input R(jω), derived from the system in 
Figure 54. 
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Figure 62 shows the corresponding magnitude over a small frequency range around the disturbance 
period.  For this example, T = 1 sec, and K = 6.3095 and the frequency varies from 0.1 to 10 Hz. 

 
Figure 62:  Closed Loop Tracking Performance 

Figure 61 and Figure 62 emphasize two important characteristics of RLC.  First, at the target frequency, 
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the closed loop system has perfect tracking performance while simultaneously rejecting a disturbance of the 
same frequency.  Second, the control designer is faced with the sensitivity of the tracking and disturbance 
response with respect to both variations in the target frequency as well as higher order harmonics.  As 
Figure 61 and Figure 62 illustrate, the system degenerates when the excitation or disturbance frequency 
deviates slightly from this target frequency.  It is possible to resolve the distortion of the closed loop 
transfer function, at the lower frequencies, by applying a complimentary prefilter.  However, we are limited 
to the first and seconds mode.  To operate beyond this would require an extremely high ordered filter to 
generate the large amplitude swings over very small frequency ranges. 

As an example of the time domain response, we use the simulink model in Figure 54 with both the 
reference, r(t) and disturbance, d(t) having the same frequency (1 Hz).  The amplitude of the reference signal 
is 1 while the disturbance has an amplitude of 2.  There is a 72 degree phase (selected randomly) difference 
between the reference and disturbance signals.  The challenge with this example is that the desired 
trajectory has the same frequency as the disturbance.  Traditional loopshaping control approaches assume 
the disturbance frequencies are higher than the desired operational bandwidth of the system.  Subsequently, 
the controller is designed for high gain feedback in the operational frequency range and low gains in the 
frequency range of the disturbance.  The distinct advantage of RC algorithms is that they provide excellent 
disturbance rejection in the operational bandwidth of the system. 

Figure 63:  No RLC Figure 64:  With RLC 

In the above example, the reference input was sinusoidal and was of the same frequency as the 
disturbance.  Figure 63 shows the system tracking without RLC while Figure 64 shows the same system with 
RLC.  Clearly, the RLC provides excellent tracking of a periodic signal even if the disturbance has the same 
frequency as reference signal.  We now follow this with the more conventional step response.  The first 
display, Figure 64, is of a step response at the moment that learning begins.  As before, the magnitude of the 
disturbance is twice the magnitude of the reference command.  The majority of the initial error is due to the 
disturbance.  To illustrate this, the command is delayed for 30 seconds before the step to provide ample 
time for the learning to converge.  The response is displayed in Figure 66. 
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Figure 65:  Step Response Figure 66:  Step Response after Delay 

The forgoing analysis demonstrates the impressive performance of Repetitive Control algorithms when 
tracking sinusoidal commands and/or rejecting sinusoidal disturbances of fixed frequency.  While many 
control methodologies focus on tracking performance and disturbance rejection, Repetitive Control has the 
distinct advantage of providing disturbance rejection of signals that fall within the operational frequency 
range of the controlled system.  It is thus possible to design a system to operate beyond the frequency range 
of the disturbance, for that matter even track commands of the same frequency.  The motivation for this paper 
was to provide a frequency domain explanation of the cost and benefit of RC.  We have provided a new 
modeling approach for the RC that enables easy synthesis with conventional linear control methodologies.  
However, the analysis clearly illustrates that the addition of the Repetitive Control algorithm does distort 
the closed loop frequency response above and below the target frequency.  Subsequent work will 
demonstrate simple loopshaping methods that focus on the design of prefilters to the system that correct for 
the frequency warping.  In addition, there is a need for either increasing the robustness of the algorithm to 
variations or errors in the target frequency or providing some form of adaptation.   
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