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Technologies that support Technologies that support 
life predictionlife prediction

Sensor Feature Extraction/Sensor Fusion
⎯ Time synchronous averaging, peak and level-shift detection, etc. 

Belief networks, neural networks, pattern classifiers, and 
statistical methods. These methods currently exist.

Component Health Estimation 
− Need to have models which relate the available evidence to 

component TTF or RUL.  Methods include trend analysis and 
case-based reasoning (e.g., IF the altitude is X and the speed is 
Y and the sensor reading is Z and the maintenance status is W, 
then the component time to failure is V.) 

− Classical reliability analysis, some analytical approaches in a 
few areas 

Consequence Analysis
− Most prognostic systems focus solely on predicting remaining 

life
− Understanding how potential maintenance actions affect system 

level decisions in terms of cost, availability, mission 
effectiveness, etc. is a complex problem  

− Simulation
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Prognostics Goal: Prognostics Goal: 
Update TTF DistributionUpdate TTF Distribution
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TTF Distribution

Updated 
TTF Distribution
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Note:  The updated TTF Distribution may be based on 
a more severe mission profile, sensor indications, 
inspection results, etc. or a combination of these. 
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Example Prognostics ApproachExample Prognostics Approach

Conservative Threshold

Actual Sensor Data

Projection of Sensor Trend

Historical “bad” data

Estimate of Mean of Updated TTF

Current Time

Value of Sensor Feature



Center for System Reliability

Fuzzy Logic
Procedural rule-base expert systems
Scripts, frames, case-based reasoning
Neural networks, Bayesian networks
Genetic Algorithms
Statistical Process Control Methods
Pattern classification, clustering algorithms
Estimation methods – Kalman filters, Regression
Bayesian updating

AlgorithmsAlgorithmsAlgorithms
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BBN for Lube Problems (Metal and BBN for Lube Problems (Metal and 
Nonmetal chips) in Gearbox OilNonmetal chips) in Gearbox Oil

F_FERRO_CHIPS

S_MAG_CHIP_DET C_OIL_FILT_CLOG

S_VIS_INSP S_DELTAP_IND

BEARING_FAILGEAR_FAIL MANUF_FAIL
SEAL_FAIL

MED_1_FAIL MED_2_FAIL

F_NONFERRO_CH

• A BBN is a graphical network 
that represents probabilistic 
relationships among variables.    

• Used for statistical inference: 
The user must specify the 
probabilities of events, and 
conditional probability tables.  
The user then observes some 
evidence and wishes to infer  the 
probabilities of other events, 
which have not as yet been 
observed.

• Computational tools for solving 
the posterior probability 
distributions have been 
developed over the past ten 
years. 
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BBN Specification of BBN Specification of 
Conditional ProbabilitiesConditional Probabilities

Prob(S_MAG_CHIP_DET|F_METAL_CHIPS) Normal Intermediate Severe 
Clean  .95 .05 .05 
Few Chips .04 .8 .1 
Many Chips .01 .15 .85 

Conditional Probability:  Prob(S_MAG_CHIP_DET|F_METAL_CHIPS) 

Prob(S_DELTAP_IND|C_OIL_FILT) Clean Partial Clog Full Clog 
No Pop .98 .4 .02 
Pop  .02 .6 .98 
Conditional Probability:  Prob(S_DELTAP_IND |C_OIL_FILT_CLOG) 

• Specify conditional probabilities and prior probabilities of “root nodes”

• Can propagate evidence up or down the tree

• Observe data (leaf nodes), propagate evidence to determine the probability 

of being in a failure state
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BBN for Lube Problems (Metal and BBN for Lube Problems (Metal and 
Nonmetal chips) in Gearbox OilNonmetal chips) in Gearbox Oil

 
Updated probabilities with three 
evidence sources  

   
Prior Probabilities
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SelfSelf--Organizing MapsOrganizing Maps

• SOMs are similar to neural networks, but they are based on the principle of competitive learning.  Over 
the course of training, one cell becomes sensitized to a region of input signal values, and suppresses 
the sensitivity of the cells around it to the same input .  Thus, each cell in the network is activated by a 
different constellation of sensor input values.  

• The Self in Self Organizing Maps refers to the fact that the network trains itself, without any 
preconceived ideas of what the final outcome should be.

• Much of the SOM’s power lies in its ability to reduce the dimensionality of an input vector space, 
while still retaining the distance relationships within that space.

• SOMS provide a mapping from input to output space, need some type of classification algorithm such 
as a clustering algorithm to classify the data.

Cluster Map with normal data (pink)
and oil leak data (black)
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SelfSelf--Organizing MapsOrganizing Maps

 
TESTING DATA 

Class 1 (dark blue) represents oil-leak classification.  
Class 2(light blue) represents tooth wear.  
Class 3 (green) denotes normal data files.  
Class 4 (orange) represents gear misalignment.  
Class 5 (brown) is undesignated.



Center for System Reliability

Frequency Domain Signal ComparisonFrequency Domain Signal Comparison
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30 seconds => Problem Detected

False Positive rate set at 1/1000

H0: Mean frequency amplitude within 10% of baseline

Preliminary Results of Hypothesis Testing AlgorithmPreliminary Results of Hypothesis Testing Algorithm

JFS Motoring Test During Oil Leak
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Estimation of Remaining Useful LifeEstimation of Remaining Useful Life

Each failure mode can be in a variety of states
Each state has an associated Time-to-Failure 
distribution with pdf fi(t)
Remaining Time-to-Failure distributions, ri(t), are 
calculated by conditioning on the failure mode 
surviving to time tnow: 

Overall distribution of RUL, g(t) calculated by 
weighting component states:
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Estimation of Remaining Useful LifeEstimation of Remaining Useful Life
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Note:  Sandia has developed analytic formulas for calculating the CDF and PDF of a 
“wearout distribution.”  This is a three part distribution characterized by a percent of 
failures during burn-in, a percent of failures during constant failure rate period, 
and a normal end-of-life distribution.
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Performance Metrics:
Mission Completion Prob.

Maintenance Cost
Downtime
Availability

Parts Requirements

Performance Metrics:
Mission Completion Prob.

Maintenance Cost
Downtime
Availability

Parts Requirements

Simulated 
Sensor Data

Virtual System
Reliability Model

Virtual 
System

Planned Use Schedule

Simulated 
Failure and 

Repair Events

Motivation
•Real system experiences failures and repairs 
too infrequently to support PHM

•Require capability for high-speed, realistic, 
reliability simulation of system to be monitored

- Support PHM design & testing

- Provide platform for realistic demos

- Analyze consequences of maintenance 
decisions

A software tool that simulates the behavior of a system 
including failures, maintenance, and sensor signals

Simulated 
Mission 
Profile

Scenario Generation

Virtual System SimulatorVirtual System SimulatorVirtual System Simulator



Center for System Reliability

ExampleExample

Based on data from pressurized water reactors (PWRs) 
in the United States during the period of 1990 – 1995
Dataset represents 739 failures during 3,307,081 
operational hours and 135,742 hours of outage time 
from 69 plants
Assumed that each PWR required four weeks of 
scheduled outage time every 18 months for refueling. 
MTBF is 4170 hours and MTTR is 171 hours for the 
PWRs represented by the dataset.  
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Example ScenarioExample Scenario

On June 10, 2002, vibration sensors indicate that a 
turbine failure appears likely to occur in 1 to 2 weeks.  
In this case, excessive vibration would be expected to 
cause the turbine to trip.  
The Consequence Engine evaluated two cases: 
− 1) run to failure (trip)
− 2) turbine maintenance scheduled within a day of 

the warning indication.
The two cases are compared based on the cost of lost 
electricity generation using the wholesale price 
projections.  
The expected (i.e., mean) cost of lost generation for the 
run-to-failure scenario is about $6.7M whereas the 
expected cost when maintenance is scheduled 
immediately is about $2.9M
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Example ScenarioExample Scenario
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Vary Maintenance TimingVary Maintenance Timing
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Virtual System SimulatorVirtual System Simulator

Discrete-event simulation capability 
− simulate failures, maintenance actions, downtime, etc. 

Spares model determines time at which a part 
will be available
Capability to allow for different operational 
states (e.g., partially mission capable vs. up 
or down).  We have implemented this through 
“success paths” in the underlying fault tree.  
Optimization capability:  can optimize 
performance measures with respect to 
decision variables such as 
− Maintenance times, intervals, false positives, false 

negatives
− Stocking levels, restock times, etc. 
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Mean Maintenance CostMean Maintenance Cost
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Consequence ExampleConsequence Example

Probability of ADG Failure per Year per A/C
as a function of false negative inspection rate
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This graph can be used to determine the required precision of a prognostic system to maintain a 
certain reliability level.  If, for example, an annual failure probability for the ADG per aircraft was 
desired to be 0.5% or less, the accuracy of a prognostic system with a 3500 hour time change 
interval would require a false negative probability of around 3%. 
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SummarySummary

It is probably only feasible to develop prognostics for a 
limited set of failure modes
PHM requires much data tracked at the serial number 
level
PHM requires data collection on a fleet of “good” parts 
to see normal signatures
PHM also requires seeded fault testing and collection 
of field failure data to determine abnormal signatures 
PHM requires testing and verification of algorithms to 
minimize false positives and false negatives
Development of features or metrics that can detect 
gradual aging and long-term trends is difficult.  
However, features to determine catastrophic failure 
modes are more feasible to develop, but lead-time is a 
critical issue.
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State of PHM “Science”State of PHM “Science”

Sensor Feature Extraction/Sensor Fusion
− There are many algorithms and approaches for data fusion, including 

neural networks, case-based reasoning tools, and statistical 
methods. 

− However, ALL of these methods rely heavily on having a large 
knowledge database which is often not available

Component Health Estimation is the most difficult
− We do not have a good way of linking physics-of-failure models to 

components such as electronic circuit boards, gearboxes, etc.   
− We do not understand how to integrate various types of evidence 

about a part (such as age, condition, current flight parameters, etc.) 
to update the age 

Consequence Analysis
− Most prognostic systems focus solely on predicting remaining life
− Understanding how potential maintenance actions affect system 

level decisions in terms of cost, availability, mission effectiveness, 
etc. is a complex problem  


