

MANAGEMENT CONSULTING

SOFTWARE ENGINEERING

MODELING AND SIMULATION

INFORMATION ASSURANCE

Maintainability: The Forgotten "ility", **Essential for Long Term Mission Success**

Joseph Fragola, Valador NY Blake Putney, Valador CA Donald Pettit, NASA JSC

History of Maintainability

- Past space programs, Apollo and Gemini, used disposable hardware
- Single use spacecraft require little or no maintainability requirements
- During age of the space shuttle, main focus for repair was on ground replacement.
- Limited attention was given to online or in-flight repair known as the Line Replaceable Unit (LRU)
- Restricted ability to repair critical devices such as life support systems can result in Loss of Mission (LOM) or even Loss of Crew (LOC)

Historical Maintainability Shortcomings

- Orbital Replaceable Unit (ORU) level of repair not achievable following Columbia
- Without online repair long duration flights are limited by logistics
- Long-term operation requirements make Lunar outpost tentative and Mars exploration impossible with current design philosophies
- Without a reliable method of maintenance and repair, current missions such as ISS are vulnerable

Consider the following System Configuration:

Information Architects

Now consider the following Alternative Levels of Maintenance:

- <u>ORU Replacement</u> This method requires replacement of whole chassis. Multiple spare units will be stored on board.
- <u>Scavenging</u> When a failure occurs, the replacing of a full chassis is necessary. In event of a second failure, a chassis will be "scavenged" from the remaining workable components (chassis and cards). Multiple Chassis are carried on board.
- <u>Card Replacement</u> Numerous cards and chassis pieces brought on board. If a failure should occur the defective cards are replaced with spare cards.
- <u>Part Replacement</u> Individual parts and repair kits will be taken on board. These parts are used to repair individual cards themselves.

Distribution of Mass and Failure Rates Within the System

	%		Pareto (% Lambda/%	
Element	Lambda	% Mass	Mass)	
Card 1	40%	7%	6.00	
Card 2	30%	7%	4.50	
Card 3	10%	7%	1.50	
Card 4	6%	7%	0.90	
Card 5	4%	7%	0.60	
Card 6	2%	7%	0.30	
Card 7	2%	7%	0.23	
Card 8	2%	7%	0.23	
Card 9	2%	7%	0.23	
Chassis 10	4%	40%	0.09	

<u>Note:</u> Lambda is the failure rate given in a percentage. The lower the Pareto ratio, the lower the concern to bring a replacement.

Pareto Chart of Mass and Failure Rates By Card Element

Distribution of Failure Rates and Mass by Part

Item	Number	% Failure Rate/unit	% Mass/unit	Total Failure Contribution	Total Mass Contribution	Pareto Failure Rate/Mass
Chassis	1	0.700%	32.000%	0.7%	38.4%	9.1E-07
ChConnectors	10	0.140%	0.200%	1.4%	2.4%	2.9E-06
ChHarness	10	0.070%	0.300%	0.7%	3.6%	9.7E-07
ChHanger	10	0.070%	0.300%	0.7%	3.6%	9.7E-07
Ckt Boards	9	0.724%	0.450%	6.5%	4.9%	7.4E-06
Processor	18	1.228%	0.764%	22.1%	13.7%	4.5E-06
Power	4	8.292%	5.156%	33.2%	20.6%	2.0E-05
Electronics1	5	0.921%	0.573%	4.6%	2.9%	1.6E-05
Electronics2	5	0.921%	0.573%	4.6%	2.9%	1.6E-05
Electronics3	5	0.921%	0.573%	4.6%	2.9%	1.6E-05
Electronics4	5	0.921%	0.573%	4.6%	2.9%	1.6E-05
Electronics5	5	0.921%	0.573%	4.6%	2.9%	1.6E-05
Electronics6	5	0.921%	0.573%	4.6%	2.9%	1.6E-05
Electronics7	5	0.921%	0.573%	4.6%	2.9%	1.6E-05
Other1	10	0.012%	0.008%	0.1%	0.1%	8.0E-06
Other2	10	0.012%	0.008%	0.1%	0.1%	8.0E-06
Other3	10	0.012%	0.008%	0.1%	0.1%	8.0E-06
Other4	10	0.012%	0.008%	0.1%	0.1%	8.0E-06
Other5	10	0.012%	0.008%	0.1%	0.1%	8.0E-06
Other6	10	0.012%	0.008%	0.1%	0.1%	8.0E-06
Other7	10	0.012%	0.008%	0.1%	0.1%	8.0E-06
Other8	10	0.012%	0.008%	0.1%	0.1%	8.0E-06
Other9	10	0.012%	0.008%	0.1%	0.1%	8.0E-06
Other10	10	0.012%	0.008%	0.1%	0.1%	8.0E-06
Misc1	16	0.008%	0.005%	0.1%	0.1%	5.0E-06
Misc2	17	0.007%	0.004%	0.1%	0.1%	4.7E-06
Misc3	18	0.007%	0.004%	0.1%	0.1%	4.5E-06
Misc4	19	0.006%	0.004%	0.1%	0.1%	4.2E-06
Misc5	20	0.006%	0.004%	0.1%	0.1%	4.0E-06
Misc6	20	0.006%	0.004%	0.1%	0.1%	4.0E-06
Misc7	21	0.006%	0.004%	0.1%	0.1%	3.8E-06
Misc8	22	0.006%	0.003%	0.1%	0.1%	3.7E-06
Misc9	23	0.005%	0.003%	0.1%	0.1%	3.5E-06
Misc10	24	0.005%	0.003%	0.1%	0.1%	3.4E-06
Total	- D.	1	1	100%	109%	

Pareto Distribution of Failure Rates and Mass

System Reliability as a Function of Mass For Alternative Repair Strategies

<u>Note:</u> Lambda * T = 1.0 is the standard for a typical Long Duration Mission to Mars. T is the time of the mission.

Assessment of Maintenance Strategy #1

- Pareto chart indicates that prioritization of spares may be most effective method of maintenance
- Mass efficient strategies should focus on components that tend to have a higher failure rate to mass ratio

Assessment of Maintenance Strategy #2

- Significantly lower probability of failure for a given mass
- Required to carry cards that are less likely to fail
- More feasible when failures are uniformly distributed across elements
- System must be designed to allow crew to disassemble components
- Diagnosing specific failure of a component could be a risk

Analytical Interpretation

Assessment of Maintenance Strategy #3

- Slight failure probability benefit when bringing up optimized sets of elements (cards, etc.)
- Allows more high-priority spares to be carried aboard
- Must have reliable data of relative failure rates of the cards

Assessment of Maintenance Strategy #4

- Optimized to achieve lowest system failure probability with a given mass
- Improvement over the card level maintenance strategy
- Most practical approach for mass constrained maintenance

International Space Station

- Standard procedure for repair practice requires removal of the failed unit and replace it with a spare
- Fairly easy to replace however instructions are said to be too detailed in nature
- This "ancient" process is inefficient, instructions may take longer to read than to execute the repair
- Limited availability of instruction manuals
- Ground crews must anticipate a malfunction in order to write up a detailed instruction manual
- Post Space Shuttle Columbia Accident, this method of repair was put to the test
- Spare parts were not always readily available
- Nearly three years of grounded Shuttle's led to serious issues

Omega Speed Master Watch Failure Example

- Sophisticated Omega watches failed while in orbit
- No other way to accurately tell time
- Time keeping aboard the Shuttle/ISS is a critical part of mission success
- A crew member brought a Casio spare watch which was eventually used for spare parts by astronaut Donald Pettit
- Don has sufficient skills in watch repair and began to "salvage" what he could from both of the watches
- Ground control did not believe a "zero g" repair was possible
- Entire repair was filmed, left ground control crew in shock
- This in flight repair, served as proof for potential low level repair capabilities

In-flight Component Repair

Astronaut Donald Pettit repairing the Omega Watch

Freezer Failure Example

- ISS freezer used for storing biological samples failed
- Considered a dead ORU
- Could take years before another freezer could be shipped
- It was left up to the crew to attempt to repair the broken freezer
- A general instruction manual was up-linked to the ISS
- During the crews spare time they completed the repair in about two weeks
- Crew improvised and finally fixed six of the eight thermal electric coolers which were malfunctioning

Freezer Repair

Individual screen shots of the defective freezer

Snowmobile Failure in Antarctica

- Antarctic team (ANSMET) searches for meteorites 200 miles from the south pole
- Snowmobiles are used to move camp every two weeks
- An electrical fire caused one of the snowmobiles to be useless
- McMurdo Ops offered little help
- Team decided they would attempt to repair the snowmobile on their own
- Wire was stripped from a backup beeper and used to rewire the ignition.
- Repair was successful despite a few design accoutrements no longer operated

Snowmobile Repair

Burned Wires of the snowmobiles ignition