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M. Sam Shaw†

Los Alamos National Laboratory
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Abstract

The Forest Fire burn model is used in reactive hydro simulations to
describe both initiation and propagation of a detonation wave. Here
we thoroughly review the assumptions of the model, provide a deriva-
tion of the Forest fire rate based on characteristics in analogy with
Whitham-Chisnell shock dynamics, and discuss issues with code im-
plementation.

1 Introduction

Detonation wave phenomena are simulated using the reactive Euler equa-
tions;

∂

∂t


ρ

ρu

ρE

ρλ

+
∂

∂x


ρu

ρu2 + P

ρu(E + PV )

ρuλ

 =


0

0

0

ρR

 , (1)

where ρ is the density, V = 1/ρ is the specific volume, E = e + 1
2
u2 is the

total specific energy, e is specific internal energy, u is the particle velocity,
P is the pressure, λ is the reaction progress variable and R is the reaction
rate. A high explosive (HE) is assumed to be a mixture of reactants and
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products with λ the mass fraction of the products. Moreover, it is assumed
that partly burned HE can be characterized by a mixture equation of state
(EOS), P (V, e, λ), and that the chemical energy is included in e by using a
consistent zero of energy for the reactants and the products EOS. Therefore,
the EOS accounts for energy released in the reaction and there is no source
term in the equation for conservation of energy.

Solid explosives are heterogeneous and have different detonation proper-
ties than gaseous and liquid explosives which are homogeneous; see [Camp-
bell et al., 1961a,b]. Forest fire1 is one of the first burn models aimed at
describing solid explosives. Though the HE is treated as homogeneous, an
“effective” burn rate, rather than a chemical rate, is used to account for reac-
tion due to unresolved hot spots that arise when a heterogeneous explosive is
subjected to a strong compressive wave. The model has been widely applied
to applications involving initiation and propagation of detonation waves in
plastic-bonded explosives (PBX); see [Mader, 1998] and references therein.

The reaction rate for the Forest fire model is assumed to have the form

R = (1− λ)RFF(P ) . (2)

The depletion factor, 1−λ, corresponds to a first order reaction. The function
RFF(P ) is fit to shock-to-detonation transition data; see [Mader and Forest,
1976], [Mader, 1998, sec. 4.1]. The purpose of this article is to review the
model assumptions, to provide a derivation of the Forest fire rate based on
characteristics, and to discuss some of the issues with the implementation and
use of the model. Moreover, the Forest fire analysis determines the rate at
the shock front needed to fit the shock trajectory from initiation experiments.
This rate can be used as a constraint to calibrate parameters for other burn
models.

The assumptions of the model are stated and discussed in sec. 2. The
reactive shock Hugoniot and Pop-plot data play a key role in the derivation
of the Forest fire rate. The reactive locus is described in sec. 3. Typically, the
locus is specified by giving the shock velocity as a function of particle velocity.
A derivation is given for the burn fraction behind a reactive shock. Next,
in sec. 4, the Pop plot and the wedge experiment, on which it is based, are
described. Then a derivation of the Forest fire rate, based on characteristics,
is presented in sec. 5. In addition, the effect of flow gradients on the rate at

1Named after its originator Charles Forest.

2



the shock front is analyzed. Also an analogy is drawn between the Forest fire
analysis and Whitham-Chisnell shock dynamics.

Issues with implementing the Forest fire model in a hydro code are dis-
cussed in sec. 6. The most important is the treatment of a reactive shock
within the context of a shock capturing algorithm. To illustrate the behavior
of the Forest fire model, numerical results for a shock-to-detonation transi-
tion are shown in sec. 7. Simplified burn models, such as Forest fire, have
generic limitations associated with shock desensitization and the curvature
effect. These are briefly discussed in sec. 8. Concluding remarks about ho-
mogenization of a PBX and the reaction zone profile of a detonation wave
for the Forest fire model are presented in sec. 9.

2 Model assumptions

The Forest fire model has been developed and calibrated for plastic-bonded
explosives. These consist of explosive grains held together by a polymeric
binder. The cell size for reactive hydro simulations is typically much greater
than the size of an average grain. Consequently, a homogenized model is used
for the explosive. In addition, a single-step reaction is assumed; reactants to
products.

We note that some PBX formulations, such as PBX 9404, use an energetic
binder. Moreover, it is known that some explosives, such as TATB, have both
fast and slow reactions. Thus, the assumption of a single-step reaction is a
crude approximation used to simplify modeling of an HE.2

The pressure behind a detonation wave is much higher than the yield
strength of the explosive grains. Consequently, for the detonation regime,
it is a reasonable approximation to neglect material strength and treat the
reactants as a fluid. The material properties of both the reactants and the
products are characterized by an EOS. Partly burned HE is assumed to
be described by a mixture EOS, P (V, e, λ), which interpolates between the
reactants (λ = 0) and the products (λ = 1) equations of state.

The Forest fire model is based on three further assumptions; pressure-
temperature equilibrium for partly burned HE, single-curve buildup princi-
ple, and a pressure dependent fitting form for the burn rate. We discuss each

2There is an extension of the Forest fire model for build-up of a detonation wave, see
[Mader, 1998, App. A.10]. This mimics a second reaction by interpolating between two
products EOS.
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of these assumptions in turn.

2.1 Pressure-temperature equilibrium

A mixture EOS requires a closure assumption. If burn is volumetric in nature,
reactants and products would be well mixed. Then it is reasonable to treat
partly burned HE in pressure-temperature equilibrium.

Let subscript ‘1’ denote the reactants and subscript ‘2’ denote the prod-
ucts. Thus, the mass fraction of the reactants is λ1 = 1 − λ, and the mass
fraction of the products is λ2 = λ. The pressure-temperature equilibrium
equation of state, P (V, e, λ), is determined by the equations

V = λ1V1 + λ2V2 ,

e = λ1e1 + λ2e2 ,

P = P1(V1, e1) = P2(V2, e2) ,

T = T1(V1, e1) = T2(V2, e2) .

(3)

If the component EOS are thermodynamically consistent,3 then it can be
shown that Eq. (3) has a unique solution, provided that the domain of the
components include the (P, T ) regime of interest. Moreover, the mixture EOS
is thermodynamically consistent; see for example [Menikoff, 2007]. Hence,
the mixture sound speed is well defined, and Eq. (1) maintains the usual
hyperbolic properties of the Euler equations.

Numerically, a pressure-temperature equilibrium EOS is computed with
an iterative algorithm to solve Eq. (3). Many algorithms restrict the com-
ponent EOS such that the specific heat, CV = ∂T e|V , is constant and the
Grüneisen coefficient, Γ = V ∂eP |V , is a function of only V . Due care is
needed to ensure that each iteration is within the domain of the component
EOS and that the iterations converge. Because of the reactive source terms,
simulations are much more sensitive to numerical errors in evaluating the
mixture EOS for an explosive than for inert materials.

Based on the physical processes that take place at the mesoscale, other
closure assumptions are possible. Reaction in a heterogeneous explosive is
due to hot spots or localized regions of high temperature. Suppose a hot spot
reacts on a short temporal scale and gives rise to a deflagration front. This

3P and T derivable from a thermodynamic potential (such as the Helmholtz free
energy), the specific heat CV = ∂T e|V > 0, and the isothermal sound speed squared
c2
T = −V 2∂V P |T > 0.
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is the underlying physical picture behind the ignition and growth model of
Lee and Tarver [1980]. Across the front, the reactants and products are in
neither pressure nor temperature equilibrium. Typically, the pressure jump
across a deflagration front is small. However, at the Chapman-Jouguet (CJ)
pressure the deflagration speed can be a significant fraction of the detonation
speed [Esposito et al., 2003]. Since ∆P/∆V = −(ρD)2, the pressure jump
across a deflagration front may not be negligible.

A non-equilibrium treatment would require a two-phase fluid model in
order to track the specific energy and specific volume separately for the reac-
tants and products. One possibility for a mixture rule is to track the shock
pressure and replace temperature equilibrium condition with the condition
that the reactants are on the isentrope of the shock state; see [Johnson et al.,
1985]. Another mixture rule assumes that the pressure is a weighted average
of the component pressures;

P (V, e) = λ1P1(V, e) + λ2P2(V, e) .

Simple ad hoc closure assumptions run the risk of a thermodynamic incon-
sistent mixture EOS and unphysical behavior for solutions to the reactive
Euler equations.

2.2 Single-curve buildup principle

Shock ignition of heterogeneous explosives have been studied by measuring
the x–t trajectory of the lead front; see Campbell et al. [1961a]. The tran-
sition to a detonation wave is very abrupt. Consequently, trajectories for
different initiation pressures can be compared by shifting the (x, t) origin to
correspond to the transition point4. It is then observed that the measured
trajectories lie on top of each other. This led to the hypothesis that the x–t
trajectory for a shock-to-detonation transition is independent of the starting
pressure; see [Mader, 1965, App. D, p. 119]. The hypothesis is known as the
single-curve buildup principle.

The most careful test of the principle has been performed on an RDX
based PBX by Linstrom [1966]. Within the uncertainties in the measure-
ments, Lindstrom found that a single trajectory is consistent with the RDX

4The transition point is somewhat fuzzy as it can not be defined more accurately than
the reaction zone width for a steady detonation wave. Typically, this uncertainty is small
compared to the spatial interval over which a trajectory is measured.
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data. Another study by Dick [1981] found reasonable but not perfect agree-
ment among front trajectories for PBX 9404 and PBX 9502. However, Dick
used unpublished data of other researchers and did not propagate uncertain-
ties in the data through his analysis. Later, in subsection 5.2 analyzing the
effect of flow gradients, we infer that the single-curve buildup principle im-
plies the reaction rate at the front dominates the shock acceleration. This is
compatible with the concept that the shock front activates hot spots which
determine the effective burn rate.

An important consequence of the single-curve buildup principle is that
shock ignition can be characterized by the run-to-detonation distance as a
function of ignition pressure. Run distance versus pressure, on a log-log scale,
is known as a Pop plot5. This is discussed in more detail in sec. 4.

2.2.1 Reactive Hugoniot

The same experiments that are used to determine the Pop plot also measure
points on the Hugoniot locus. Early experiments on PBX 9404 indicated that
in the (up, us)–plane, the locus is a straight line starting at (0, c0) and extrap-
olating near the CJ state; see [Ramsay and Popolato, 1965, fig. 2]. This led
to the further hypothesis that the lead front in a shock-to-detonation transi-
tion is a reactive shock; see [Ramsay and Popolato, 1965] and [Mader, 1970].
Other Hugoniot data for PBX 9404 [Gibbs and Popolato, 1980, pp. 359–362]
do not extrapolate to the CJ state. Nevertheless, the derivation of the Forest
fire model utilizes the reactive shock hypothesis.

The ambiguity of whether or not the lead front is a reactive shock, oc-
curs because of the difficulty in measuring the shock state for an HE. The
shock state is inferred from a measurement of the shock velocity. Typically,
the shock velocity is determined by the transit time for a given distance of
run. If the transit time is not sufficiently small then the reaction over the
measurement interval may be significant. Thus, limited spatial and temporal
resolution can result in a systematic error corresponding to a reactive shock.

2.3 Pressure dependent rate

The essence of the Forest fire model is an analysis that determines the reac-
tion rate at the shock front necessary for the shock trajectory to agree with

5Named after its originator Alphonse Popolato.
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the trajectory derived from Pop-plot data and the single-curve buildup prin-
ciple. An assumption is needed on the spatial gradients behind the shock
front. The original model used the assumption that ∂xP = 0. Later, in
subsection 5.2 we show how to account for the flow gradients. Moreover, the
needed information about the flow gradients can be obtained from velocity
gauge data.

Extending the rate to a general state requires a further assumption on
the fitting form used for the rate. The choice for the Forest fire model is to
take the rate to be the product of a particular function of λ (namely, 1− λ)
and a function of pressure, RFF(P ); i.e., Eq. (2). The rate at the shock
front is used to fit RFF(P ). Later we argue that varying the ‘reaction order’
(i.e., replacing 1− λ with (1− λ)n) could enable the model to fit additional
detonation wave properties; such as velocity gauges or the curvature effect.

The reactive shock locus can be parameterized by a single thermodynamic
variable. The choice of pressure to parameterize the shock locus and hence
the reactive rate, enables the model to be well behaved in numerical sim-
ulations. Acoustic waves provide a feedback mechanism that corrects local
numerical errors in the pressure. In contrast, numerical errors in entropy are
persistent, and affect both the density and temperature.

Plastic-bonded explosives have a small amount of porosity. The ignition
sensitivity of a PBX increases with porosity. One mechanism for generat-
ing hot spots is based on pore collapse; see for example [Mader, 1965] and
[Menikoff, 2004]. Therefore, it is plausible that shock pressure is the driving
force that activates hot spots. Consequently it is reasonable that the effective
reaction rate would be dominated by pressure.

3 Reactive Hugoniot locus

A partly burned Hugoniot locus, with fixed burn fraction λ, is defined by the
Hugoniot equation

e = e0 + 1
2
(P + P0)(V0 − V ) , (4)

where P = P (V, e, λ). As λ increases these loci interpolate from the reactants
Hugoniot locus (λ = 0) to the products detonation locus (λ = 1). The
mixture EOS is assumed to satisfy the condition that the pressure increases
with burn fraction; ∂λP > 0. It can then be shown that the loci in the
(V, P )–plane with different values of λ do not cross.
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A reactive Hugoniot locus can be specified by a us–up relation for the
shock velocity as a function of particle velocity; us(u). For a given u, the
Hugoniot jump conditions determine a point in the (V, P )–plane; namely,
V = (1 − u/us)V0 and P = P0 + ρ0 u us. This point lies on a unique partly
burnt locus. Hence, the value of λ is determined.

The partly burned Hugoniot loci have a subsonic (strong) branch and a
supersonic (weak) branch. The two branches meet at a sonic point, which
we refer to as the CJ state for a partly burned locus. We require a partly
burned reactive shock to be on the subsonic branch; i.e., u + c > us. The
frozen sound speed, c, is determined from the EOS by

(ρ c)2 = −∂V P + P∂eP ,

where the partial derivatives are at fixed λ.
The value of λ on the reactive Hugoniot locus can also be found from an

ODE. It is convenient to parameterize the reactive locus by u. In terms of
the mixture EOS, the shock pressure can be expressed as

Ps(u) = P
(
V (u), e(u), λ(u)

)
.

Then by applying the chain rule to the derivative of the shock pressure with
respect to u, one obtains

dλ

du
=

dP
du
− (∂V P )dV

du
− (∂eP ) de

du

∂λP
, (5)

where the partial derivatives are based on the mixture EOS (see App. A),
and d

du
is the derivative along the Hugoniot locus.

From the shock jump relations

V (u) =
[
1− u

us

]
V0 , (6a)

e(u) = e0 + P0 V0

[
u

us

]
+ 0.5 u2 , (6b)

P (u) = P0 + ρ0 u us , (6c)
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we obtain

dV

du
= −

[
1− u

us

dus

du

]
V0

us

, (7a)

de

du
= u +

[
1− u

us

dus

du

]
P0 V0

us

, (7b)

dP

du
=
[
1 +

u

us

dus

du

]
ρ0us . (7c)

The ODE, Eq. (5), is closed by specifying a us–up relation for the reactive
Hugoniot locus. Typically, it is assumed that us(u) is a linear function;
us = c0 + s u. In the limiting case in which the reactive locus goes through
the CJ state, dus

du
= s = (DCJ − c0)/uCJ, where DCJ is the detonation speed

and uCJ is the particle velocity at the CJ state.
We note that for a single point on the reactive locus, λ(u) can be found

by solving the non-linear equation

P (u) = P (V (u), e(u), λ) ,

where V (u), e(u) and P (u) are determined from the shock jump relations,
Eq. (6), and P (V, e, λ) from the mixture EOS. Integrating the ODE is more
efficient for evaluating the entire locus; i.e., over the interval 0 ≤ λ(u) ≤ 1.

3.1 Example — PBX 9501

Example reactive and partly burned Hugoniot loci are shown in fig. 1. The
loci are calculated from an EOS for PBX 9501. The reactants EOS is based
on Birch-Murnaghan form for the cold curve fit to HMX isothermal com-
pression data [Menikoff and Sewell, 2004] with the initial density and sound
speed adjusted to match PBX 9501. Analogous to the Debye model, CV is
taken to be a function of a scaled temperature, T/θ(V ), where the Grüneisen
coefficient is given by Γ(V ) = −d ln(θ)/d ln(V ). At the initial density, the
temperature dependence of CV is fit to molecular dynamics calculations of
Goddard et al. [1998, fig. 4.13]. A tabular Sesame EOS is used for the prod-
ucts. The table generated by Shaw [2004] is based on PBX 9501 overdriven
detonation wave data [Fritz et al., 1996] and release wave data [Hixson et al.,
2000] for high pressures (P > 20GPa), and cylinder experiment data at lower
pressures. In addition, the reactive Hugoniot locus is based on a linear us–up

relation connecting the initial state to the CJ state.
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A. B.

Figure 1: Hugoniot loci for PBX 9501. A. Partly burned and reactive Hugoniot
loci in (V, P )–plane. Black curve is reactant locus (λ = 0) and red curve is product
locus (λ = 1). CJ states are indicated by open circles. Blue curve is reactive locus
based on linear us–up relation for the case going through the CJ state. Dotted
black line is Rayleigh line through CJ state. B. Reaction progress variable as
function of pressure along reactive locus.

4 Run to detonation

A shock-to-detonation transition is characterized, to a large extent, by the x–t
trajectory of the lead front. Shock initiation trajectories for many explosives
have been measured with wedge experiments; see [Campbell et al., 1961a] and
[Gibbs and Popolato, 1980, part II, sec. 4.1]. Comparison of the trajectories
for different initiation pressures led to the single-curve buildup principle. A
consequence of this principle is that shock initiation can be characterized by
a Pop plot or run-to-detonation distance as a function of initiation pressure.
The wedge experiments, which are the basis for the Pop plot, are described
next.

4.1 Wedge experiment

For solid explosives, it is difficult to measure hydrodynamics quantities in
the interior. The surface, however, is readily accessible to measurement. The
wedge experiment is a clever design for measuring the trajectory of the lead
front for a shock-to-detonation transition. The experimental configuration is
shown in fig. 2. A planar shock wave from an explosive drive system is used

10



Figure 2: Schematic of wedge experiment.

to initiate a wedge shaped test sample of HE. The pressure of the initiation
shock can be varied by adjusting the thickness of the attenuator and the
selection of attenuator material or booster explosive.

Breakout of the reactive shock on the wedge surface changes its reflectiv-
ity. First motion of points along the wedge are recorded with a streak camera.
Breakout of the shock also gives rise to a reflected rarefaction. However, be-
cause of the small wedge angle, the rarefaction does not influence the reactive
front within the test HE. Hence the measured trajectory corresponds to the
motion of a planar wave, i.e., one-dimensional flow.

A typical x–t trajectory for a shock initiated detonation is shown in fig. 3.
The transition to detonation is seen to be very abrupt. A less subjective and
more accurate determination of the transition point can be made using a
global fitting form for the trajectory data; see [Gustavsen et al., 1999] and
[Hill and Gustavsen, 2002].

The data shown in fig. 3 is actually from an experiment that provides
trajectory data equivalent to a wedge experiment but using a newer technique
[Gustavsen et al., 1999]. Rather than an explosive drive system, the initiating
shock is generated by the impact of a projectile launched by a gas gun. A
magnetic tracker gauge is used to determine the front trajectory. In addition,
magnetic velocity gauges measure Lagrangian time histories at a number of
positions. Thus one experiment can provide data on the evolution of the
velocity profile (see fig. 9) during a shock-to-detonation transition, as well as
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Figure 3: Front trajectory for shock-to-detonation transition in PBX 9501. Data
points (dots) and fit (curve) are from Gustavsen et al. [1999, fig. 11]; reproduced
with permission of the authors. Velocity gauge data for the same experiment is
shown in fig. 9.

the front trajectory.

4.1.1 Initiation pressure

In addition to the front trajectory, one needs to know the initiation or drive
pressure. This is determined as follows. Timing pins or other gauges are used
to measure the free surface velocity of the attenuator. In conjunction with
the EOS of the attenuator, the free surface velocity determines the incident
shock strength in the attenuator. The initial slope of the x–t trajectory
determines the initial shock velocity in the test HE. The intersection of the
Rayleigh line with slope ρHEus and the reflected shock locus in the attenuator
determines the initiation pressure for the test HE. The graphical construction
is illustrated in fig. 4.

The impedance match for the drive pressure also determines a point on
the Hugoniot locus of the test explosive. A leading source of uncertainty is
the measurement of the initial shock velocity. The determination of the initial
slope of the shock trajectory requires fitting data over an interval about the
wedge tip. To facilitate construction the wedge tip may be truncated, thus

12



Figure 4: Example of graphical solution to impedance match for PMMA attenua-
tor and PBX 9501 test HE. Black curve is incident Hugoniot locus for attenuator.
Blue curve is reflected wave locus in attenuator; solid line is shock and dashed line
is rarefaction. Solid red curve is Rayleigh line with slope ρHEus. Dashed red curve
is Hugoniot locus for the HE. The free surface velocity and incident shock in the
attenuator are labeled. The match point corresponds to the initiation pressure for
test HE in the wedge experiment.

blunting the sharp wedge angle. Consequently the initial shock velocity may
actually correspond to the value after a small distance of run during which
some reaction occurs. In addition, the shock velocity is approximated by
either a finite difference form (∆x/∆t) or the derivative of a running average
of x(t). Hence the shock velocity is an average over a non-zero interval.
The extent of the trajectory used to determine the initial shock velocity is
a resolution issue that affects whether the Hugoniot locus is interpreted as
reacted or unreacted.

Alternate techniques are now available to measure the unreacted shock
Hugoniot [Sheffield et al., 2004]. These involve measuring time histories
of the velocity at the HE interface. With a resolution of a few ns, one
can distinguish the initial shock velocity from the subsequent change due to
reaction. Also available are techniques for isentropic compression to high
pressure. In a PBX, isentropic compression generates fewer and weaker hot

13



spots than shock compression. Thus, the reactants EOS can be based on
isentropic compression data rather than Hugoniot data; see [Hooks et al.,
2006, Baer et al., 2006].

4.2 Pop plot

Distance-of-run to detonation can be fit to a straight line on a log-log plot
[Ramsay and Popolato, 1965];

log10

[
(P − P?)/Pref

]
= a− b× log10[x/xref] (8)

where P? represents a pressure threshold. This is known as a Pop plot. The
reference dimensions Pref and xref correspond to the choice of units for pres-
sure and length, respectively. The threshold pressure was added by Linstrom
[1966] to achieve a better fit at low pressures to data on a RDX based PBX.
Typically, wedge data does not extend to low pressures and the Pop plot is
fit with P? = 0.

Wedge data for many explosives can be found in Gibbs and Popolato
[1980, part II, sec. 4.1]. In addition, they give Pop plot parameters with
units of Pref = 1GPa and xref = 1mm. Example Pop plots are shown in
fig. 5 for three explosives. PBX 9501 and PBX 9404 are both HMX based
explosives. Their Pop plots show that the formulation of a PBX (binder
and grain distribution) can affect the sensitivity, especially at low pressures.
PBX 9502 is an insensitive explosive based on TATB. For a given pressure, it
has larger distance of run than the more sensitive HMX based PBXs. Since
the Pop plot curves can cross, the sensitivity of different explosives do not
necessarily have a strict ordering.

We note that data points from wedge experiments are usually limited to
distances of run in the range of 1 to 20mm. Difficulties occur for small run
distances (high drive pressures) due to the accuracy at which the transition to
detonation point on the x–t trajectory can be determined, and for large run
distances (low drive pressures) due to rarefaction from the side of the wedge
or pressure gradient in the drive system. With careful design and a large test
sample, distance of run measurements can be extended up to 40 or 50mm.
Sensitive explosives require thick attenuators in the drive system and have a
fairly uniform drive pressure. Measurements for insensitive explosives require
thin attenuators and may be affected by pressure gradient from Taylor wave
in the booster explosive.

14



Figure 5: Example of Pop plots for three explosives. Red, green and blue lines
are for PBX 9501, PBX 9404 and PBX 9502, respectively. Solid lines correspond
to domain of fit to experimental data, and dashed lines are extrapolation. Solid
diamonds are at CJ pressure of each explosive and circles denote data points. Fit-
ting parameters and data points are from Gibbs and Popolato [1980]: PBX 9501,
p. 115 and table 4.17; PBX 9404, p. 93 and table 4.18; PBX 9502, p. 126 and table
4.31. In addition, for PBX 9502, triangles are data points from [Dick et al., 1988,
table I].

For the reactive shock model, in principle, distance-of-run to detonation
goes to zero at the CJ pressure, i.e., x → 0 as P → PCJ. It is noteworthy
that the experimental Pop plot extrapolated to CJ pressure gives a value for
the distance of run comparable to the reaction zone width. For example, on
the PBX 9501 Pop plot, the distance of run at the CJ pressure is 0.13mm,
while the experimental value for the reaction zone width is about 0.025mm at
λ = 0.90; see [Menikoff, 2006] and [Gustavsen et al., 1998a,b]. The reaction
zone width introduces a length scale. It can be used to shift the origin of the
x–t trajectory. This helps to regularize the rate R(P ) at PCJ constructed in
the next section.

Similarly, the time-to-detonation can be fit with a straight line on log-log
plot. In principle, distance-to-detonation and time-to-detonation determine
us(P ) for a reactive shock. But the inaccuracy due to uncertainties in the
measurements is severe. As an example, for PBX 9501 [Gibbs and Popolato,
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1980, p. 115]

log(P ) = (1.10± 0.04)− (0.51± 0.03) log(x) ,

log(P ) = (0.76± 0.01)− (0.45± 0.03) log(t) .

It follows that us = dx
dt

= dP/dt
dP/dx

can be expressed in terms of P as

us ∝ P [ 1
0.45±0.03

− 1
0.51±0.03 ] ∝ P 0.26±0.26 .

Clearly the uncertainty is too large for this expression to be useful.
Alternatively, the shock velocity can be determined from the x–t trajec-

tory, and then using the single-curve buildup principle associated with the
shock pressure at the corresponding distance of run. In other words, us(P )
can be determined from the shock trajectory and the Pop plot. The shock re-
lation, P = P0+ρ0upus, would then determine a self-consistent us–up relation
for the Hugoniot locus of the reactive shock.

To illustrative these relations, we use the Hugoniot locus in fig. 1 and the
Pop plot in fig. 5 to calculate the x–t trajectory for PBX 9501. For a linear
us–up relation, the shock velocity in terms of the pressure is given by

us(P ) = 1
2

(
c0 +

[
c2
0 + 4s (P − P0) V0

]1/2)
.

From Eq. (8) for the Pop plot, P (x) = 10a

xb . Hence us(P (x)) determines the
shock velocity as a function of distance. The corresponding time on the shock
trajectory is

t(x) = tCJ +
∫ x

0

dx

us(x)
,

where relative to the Pop plot x is replaced by−x in order that the detonation
transition occurs at x = 0 and t = tCJ. It is natural to take tCJ = xCJ/DCJ

where xCJ is the distance of run on the Pop plot at the CJ pressure. The
result, shown in fig. 6, is comparable to the measured trajectory in fig. 3. Also
shown in fig. 6 is the reaction progress variable. The abrupt transition to
detonation is due to the rapid change in λ as the reaction rate increases with
shock pressure. This is the analog of an induction time for a homogeneous
explosive with an Arrhenius rate.

The corresponding shock velocity and time-to-detonation for the model
are shown in fig. 7. As with the standard Pop plot, time-to-detonation is
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Figure 6: Shock trajectory for PBX 9501 computed from Hugoniot locus in fig. 1
and Pop plot in fig. 5.

A. B.

Figure 7: A. Shock velocity versus pressure on reactive Hugoniot locus shown in
fig. 1. B. Blue curve is time-to-detonation corresponding to trajectory in fig. 6.
Red curves are based on fit parameters from Gibbs and Popolato [1980, p. 115];
solid corresponds to range of data and dotted to extrapolation.

nearly linear on a log-log scale. However, as discussed above, linear relations
for both distance-to-detonation and time-to-detonation are not consistent
with the shock velocity. Nevertheless, it can be seen that to a good approx-
imation both variables may be treated as linear.
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5 Reaction rate analysis

The PDEs for reactive flow, Eq. (1), can be written in characteristic form;
see App. B. The characteristic equations have source terms from the reaction
rate. For the forward characteristic, Eq. (26a),

[∂t + (u + c)∂x]P + ρc [∂t + (u + c)∂x]u = (∂λP )R ,

where ∂λ is at fixed V and e. To apply this equation at the shock front, we
decompose the characteristic derivative as

[∂t + (u + c)∂x] = [∂t + us∂x] + (u + c− us)∂x ,

and note that d
dts

= [∂t + us∂x] is the derivative along the shock front. Then
the characteristic equation can be re-expressed as

dP

dts
+ ρc

du

dts
= (∂λP )R−

(
u + c− us

)(
∂xP + ρc ∂xu

)
. (9)

The Forest fire model requires an additional assumption on the flow gradients
behind the front.

The gradient terms and the shock growth terms are partly related by
the shock change equations, App. C. To separate out the effects, we re-
express Eq. (9) in terms of two independent derivatives; dP

dts
and du

dt
, where

d
dt

= ∂t+u∂x is the convective time derivative. First, the momentum equation
in Lagrangian form, Eq. (21b), can be used to eliminate the pressure gradient;
∂xP = −ρdu

dt
. Second, the velocity gradient can be expressed in terms of time

derivatives as

∂xu =
(

du

dts
− du

dt

)
/(us − u) .

After some algebra, Eq. (9) can be re-expressed as

(∂λP )R =
dP

dts
+ ρ(us − u)

[
z2 du

dts
− (z2 − 1)

du

dt

]
, (10)

where z = c/(us − u). We note that z ≥ 1, since the flow behind the shock
front is subsonic. Moreover, z = 1, when the flow behind the shock is sonic;
e.g., at the CJ state.

Next we can use the chain rule to replace

du

dts
=

dP

dts
/
(

dP

du

)
h

,
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where the derivative along the Hugoniot locus, (dP/du)h, is given in terms
of the us–up relation for the reactive Hugoniot by Eq. (7c). Substituting this
relation plus the momentum jump condition, ρ(us− u) = ρ0us, into Eq. (10)
yields

(∂λP )R =

1 +
ρ0 us z2(

dP
du

)
h

 dP

dts
− ρ0 us

(
z2 − 1

)du

dt
.

The time derivative of the shock pressure can be expressed as a spatial deriva-
tive of the shock trajectory dP

dts
= us

dPs

dx
. This can be determined from Pop-

plot data. The Lagrangian time derivative of the velocity, du
dt

, can be deter-
mined from velocity gauge data.

The original derivation of the Forest fire model by Mader and Forest
[1976] assumed that the pressure gradient at the front is zero. A zero pres-
sure gradient is equivalent to du

dt
= 0. After substituting Eq. (7c) for the

Hugoniot derivative, the rate at the shock front with the zero pressure gra-
dient assumption can be expressed as

R0 = (∂λP )−1

1 +
ρ0 us z2

1 + u
us

dus

du

 us
dPs

dx
. (11)

Alternatively, the same rate can be determined from the shock change equa-
tions; see App. C.

More generally, including the pressure gradient, the rate at the front can
be expressed as

R = (1− g)R0 , (12)

where

g =
[
z2 − 1

]  1 + u
us

dus

du

1 + u
us

dus

du
+ z2

 [ du
dt

V0
dPs

dx

]
. (13)

Typically, the third factor is positive and less than 2. In this case, the original
Forest fire assumption leads to an upper bound on the rate; i.e., R ≤ R0.
Moreover, the first factor can be written as z2−1 = (z+1)(c+u−us)/(us−u),
and the factor c+u−us suppresses the effect of the pressure gradient because
the flow behind the reactive shock front is near sonic. This is quantitified in
a following subsection.

Up to this point, the analysis for the rate at the front is general. It can be
applied to any burn model, even with the reactive Hugoniot locus replaced
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by the unburnt or reactant Hugoniot locus. That is to say, equations (11)–
(13) determine the rate at the shock front needed to fit shock-to-detonation
transition data. This provides a constraint that can be used when calibrating
rate parameters.

5.1 Forest fire rate

Utilizing Eq. (8) for the Pop plot (with x replaced by −x),

dPs

dx
= b

P − P?

x
= b 10−a/b [(P − P?)/Pref]

1+1/b Pref

xref

. (14)

Moreover, the reactive Hugoniot can be parameterized by the pressure. Hence,
at the front, R can be parameterized by the shock pressure. The Forest fire
model assumes that there is a global rate of the form, Eq. (2),

R(P, λ) = (1− λ)RFF(P ) ,

and fits the function RFF to the rate at the front with λ from the reactive
shock Hugoniot; i.e., RFF(P ) = Rfront(P )/[1−λs(P )]. Moreover, the original
formulation, that neglects the pressure gradient, uses R0, Eq. (11), for the
rate at the front. In the next subsection we show that g is small, and hence
R0 is the dominant factor in the rate.

We note that the rate R0 is proportional to dPs/dx and that the pressure
derivative, Eq. (14), does not vanish at the CJ pressure. Two limiting cases,
which dependent on whether or not the reactive Hugoniot ends at the CJ
state, are instructive. First, suppose that the reactive Hugoniot does end
at the CJ state. Then RFF(P ) would have a singularity at P = PCJ since
λ = 1. The singularity is due in part to extrapolating the Pop plot and the
fact that a first order rate gives rise to an exponential tail. In contrast, a
rate proportional to (1−λ)n with n < 1 would lead to a finite reaction zone.
The singularity could then be removed in a consistent manner by modifying
the Pop plot. For example, one can take a transition distance x1 such that
the pressure on Pop plot corresponds to point on reactive shock locus with
λ = 0.95, and then redefine distance of run for x < x1 by

x = xCJ + A(PCJ − P )1−n ,

where the parameters A and xCJ are chosen such that P (x) and dP/dx are
continuous at x = x1. By construction, both dP/dx and (1− λ) would go to
zero at the CJ state and RFF(PCJ) would be finite.
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Figure 8: Forest fire rate for PBX 9501 using for distance of run-to-detonation
log10(P/GPa) = 1.10− 0.51 log10(x/mm) from Gibbs and Popolato [1980, p. 115].
Solid blue curve is the total reaction rate, R0, and red curve is pressure dependent
rate factor, RFF, with λ cutoff at 0.95 to avoid singularity. Dashed blue line is
chemical rate based on reactant shock temperature and Arrhenius rate compatible
with measured reaction zone profile for steady planar detonation wave. Circles
denote bulk rate at shock pressure corresponding to the CJ and VN states.

Alternatively, suppose in the (up, us)–plane the reactive Hugoniot passes
to the left of the CJ state and ends on the Rayleigh line through the CJ state
with λ < 1. Then Eqs. (11) and (14) would give finite values for RFF(P )
up to a pressure slightly larger than PCJ. The steady reaction zone profile,
discussed in sec. 6.2.1, would have the form shown in fig. 11 in which the
lead shock pressure exceeds the CJ pressure but is less than the VN spike
pressure. This is compatible with the experimental observation for initiation
experiments that the shock velocity does not overshoot the detonation speed.
Both of these prescriptions regularize the rate near PCJ by using an ad hoc
extrapolation of data and neglect the asymptotic appoach to steady state.
There is no physical reason to prefer one regularization over the other.

As an example, the Forest fire rate for PBX 9501 is shown in fig. 8. It
has been regularized by the simple expediency of limiting λ to be less than
0.95 . We observe that the plot of the rate at the front is approximately
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linear on a log-log scale. This indicates that the dPs/dx factor from Eq. (14)
dominates the expression for the rate in Eq. (11). Moreover, from the Pop
plot for PBX 9501, b = 0.51, and the pressure exponent is 1 + 1/b = 3. This
is nearly the slope of the front rate shown in fig. 8.

It is important to note that the derived rate depends in part on the choice
of EOS model. For example, the PBX 9501 rate shown in fig. 8 is about 3
times larger near the CJ pressure than the rate for PBX 9404 shown in
[Mader, 1998, fig. 4.6, p. 199]. PBX 9404 has a similar high HMX content to
PBX 9501, but due to a different binder is more sensitive at shock pressures
below 10GPa. The difference in the Forest fire rates is partly due to the Pop
plots shown in fig. 5 and partly due to the EOS models.

The measured reaction zone profile for PBX 9501 has the form of a clas-
sical ZND detonation [Gustavsen et al., 1998a,b]. Also shown in fig. 8 is the
chemical rate based on reactant shock temperature from an EOS model and
Arrhenius rate parameters compatible with the measured CJ wave profile
[Menikoff, 2006]. We note that below the CJ pressure, the bulk chemical
rate is less than the Forest fire rate. This is an indication that reaction is
dominated by hot spots. However, at the von Neumann (VN) spike state, the
chemical reaction is sufficiently large to dominate a steady propagating det-
onation wave. In this regard, PBX 9501 may be an exceptional case because
its high HMX content leads to a large detonation velocity and consequently
the VN spike temperature is higher than for other PBXs. The increased
detonation velocity has a large effect on the bulk rate since the chemical rate
is very sensitive to temperature

5.2 Gradients behind shock front

In numerical simulations, as noted by Lunstrom [1988] and discussed in sec. 7,
the gradients behind the lead shock front become large as a detonation wave
is approached. Large gradients are also observed in velocity gauge data for
PBX 9501 shown in fig. 9. We note that by the last gauge, the wave has tran-
sited to a detonation. The peak velocity is nearly the same as the CJ state
velocity (2.17 km/s) of PBX 9501 based on the EOS. Velocity Interferometry
System for Any Reflector (VISAR) measurements with high temporal reso-
lution (1 ns) show a VN spike velocity (3.55 km/s) matching that computed
from the EOS [Gustavsen et al., 1998a,b, Fedorov, 2002, Menikoff, 2006]. The
gauge record is an example in which limited resolution, from the response
time of the gauge, gives the appearance of a reactive shock.
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Figure 9: Lagrangian velocity time histories for shock initiation of PBX 9501
at input pressure of 5.15GPa. The initial positions are 0.5 mm apart. Magnetic
velocity gauge data is from Gustavsen et al. [1999, fig. 6]; reproduced with per-
mission of the authors. The x–t trajectory for the same experiment is shown in
fig. 3.

The velocity gauge data determines the particle acceleration, du/dt, be-
hind the shock front. This can be used to correct the rate at the shock front
by accounting for the gradients in the flow. The relative effect on the rate,
equations (11)–(13), from the flow gradients is characterized by the quan-
tity g. It can be split into two factors; one from the EOS and a second from
the ratio of the particle acceleration to the shock acceleration. For our PBX
9501 example, these quantities are shown in fig. 10. We observe that the
ratio of the accelerations is less than two and that the EOS factor is less
than about 0.25 . Consequently, g can be as large as 0.5 . Hence, the flow
gradients can lower the rate at the front by up to 50%. However, due to
the numerical implementation of the Forest fire model, as discussed in sec. 7,
simulations display significantly smaller gradients than those inferred from
the velocity gauge data. Moreover, as noted earlier, the lead EOS factor is
z2−1 = (z +1)(c+u−us)/(us−u). Thus, the effect of the flow gradients on
the rate is suppressed when the flow behind the shock front is nearly sonic.

In addition, we observe from the velocity gauge data shown in fig. 9 that
at early times (t . 0.75µs) the lead shock velocity tracks the envelope of
the previous velocity gauges. This implies that the particle acceleration is
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Figure 10: Effect of pressure gradient on reaction rate for PBX 9501. Top plot is
the acceleration of shock front, V0 dPs/dx, from the Pop plot. Symbol are particle
acceleration du/dt behind the shock front estimated from the velocity gauge data
shown in fig. 9. Bottom plot is the equation of state factor in g (first two factors
in Eq. (13)) for the contribution of the gradient term on the rate, Eq. (12). The
x-axis is the particle velocity along the Hugoniot locus.

about the same as that from the shock acceleration, i.e., du
dt
≈ du

dts
. We can

use this approximation to estimate g. By replacing dPs

dx
with du

dts
, Eq. (13)

can be expressed as

g =

 z2 − 1

1 + u
us

dus

du
+ z2

 [ du/dt

du/dts

]
.

Consequently, the first factor, which depends only on the EOS, is a reasonable
estimate for the relative effect of the gradients on the rate.

The velocity gauge data provides more information than just the slope
behind the lead shock. This is discussed further at the end of sec. 7. Here we
note that Lagrangian analysis have been applied to gauge data; see [Forest
et al., 1989]. Incorporating the rate at the front from Pop-plot data and the
Forest fire analysis should improve the accuracy of the Lagrangian analysis.

In principle, even without velocity gauge data, the flow gradient can be ac-
counted for in a self-consistent manner with an iterative scheme. Neglecting
the gradients, i.e., starting with R0, can be consider as an initial approxima-
tion for the Forest fire rate RFF. This can be used in a numerical simulation

24



of a shock-to-detonation transition to compute the gradients behind the front
as a function of shock pressure. Then ∂xP = −ρdu

dt
can be used in equations

(12) and (13) to determine a better approximation for RFF. In practice this
has not done.

The analysis of the effect of the flow gradients provides insight into the
single-curve buildup principle. If g � 1, then the rate at the shock front
totally dominates the shock acceleration. Even when only small, say g . 1

2
,

the flow gradients immediately behind the front may be largely determined
by the reaction initiated by the shock front. This is consistent with the
idea that the lead shock activates hot spots at nucleation sites (e.g., pores
associated with porosity in a PBX), which then burn on a fast enough time
scale to be unaffected by flow gradients. In either case, the shock trajectory
would be independent of the driving conditions.

The flow gradients may be important for insensitive explosives, in which
the rate does not dominate the behavior of the shock front. If the gradients
are important for determining the rate then the single-curve buildup principle
should break down, in which case the Pop plot would depend on the initiation
system. There is, however, the possibility that the single-curve buildup would
still appear to hold. To illustrate this point, suppose the buildup curve is
identified with the shock trajectory from a low pressure initiation experiment
with a long run-to-detonation distance. If higher pressure wedge experiments
have an initial pressure gradient, from the explosive drive system, close to
that of the buildup curve at the corresponding pressure, then the shock
trajectories would be, to a good approximation, the same as the buildup
curve. Hence, the single-curve buildup principle would appear to be valid,
even though for other experiments the flow gradient could have a significant
effect.

5.3 Shock dynamics

There is an interesting analogy to Whitham-Chisnell shock dynamics [see
Whitham, 1974, sec. 8.1] for a shock wave propagating in a duct with variable
cross sectional area. A source term arises in the characteristic equations from
the change in area. Thus, dA/dx plays a role analogous to the reaction rate.
For duct flow, the source term is specified and the forward characteristic
equation determines the shock strength as a function of area. The Forest
fire model, on the other hand, uses the forward characteristic equation in the
reverse manner; the shock strength is given and used to determine the source
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term, i.e., the reaction rate.
Compared to the Guderley solution, shock dynamics is a very good ap-

proximation for a converging shock. This is because the converging shock
front accelerates and outruns interactions generated by the backward char-
acteristics. Similarly, reaction accelerates a shock wave. Moreover, the state
behind a reactive shock is approaching the sonic condition (CJ state) which
would decouple the reaction zone from the flow behind. The Guderley solu-
tion has a limiting characteristic which plays an analogous role to the sonic
condition for a detonation wave.

The exact Guderley solution requires that the far boundary condition is
compatible with the similarity solution. However, independent of the bound-
ary condition, a converging shock asymptotically approaches the portion of
the Guderley solution between the shock front and the limiting characteris-
tic. The single-curve buildup principle plays an analogus role to the limiting
characteristic of the Guderley solution for a converging shock. This provides
some intuition for a key assumption of the Forest fire model.

6 Implementation issues

Key issues for implementing the Forest fire model are related to the singular-
ity in the derived rate at the CJ pressure, and to the assumption of a reactive
shock. These issues are discussed next.

6.1 Fitting form for rate

In the original Forest fire model, Mader and Forest [1976] fit ln[RFF(P )] to
a polynomial in P with up to 14 coefficients. We note from fig. 1B and
fig. 8 that both λ and lnR are smooth functions of P . In fact, as discussed
previously, R(P ) is nearly linear on a log-log plot. Moreover, R ≈ constant×
P n with n ≈ 1 + 1/b where b is the slope of the Pop plot. Rather than a
high order polynomial, it would be better to fit λ and R/P n separately to
low order polynomials and express the Forest fire rate as a rational function

RFF(P ) = R(P )/[1− λ(P )] . (15)

Alternatively a cubic spline could be used to fit RFF. Splines are now a well
developed method for approximating functions, and are efficient to evaluate.
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At λ = 1, Eq. (15) is singular. One way to regularize RFF is to apply
a cutoff; for example, to replace λ with min(0.95, λ). In fact, to avoid diffi-
culties with incomplete burn, codes typically burn the remainder of any cell
with λ above a cutoff of about 0.95; see for example [Mader, 1998, p. 197] or
[Shaw and Straub, 1981, pp. 215–220].

Another way to regularize RFF is to modify the reactive Hugoniot locus
such that the CJ pressure corresponds to a smaller wave speed than the CJ
detonation speed. For a linear us–up relation, this amount to using a smaller
value of s than (DCJ−c0)/uCJ, which results in a higher compression ratio for
a given shock pressure. Combined with extending the Pop plot and applying
Eq. (12), the rate can be extended slightly beyond PCJ. It is important
to note that neither Hugoniot data nor Pop-plot data extend up to the CJ
pressure. Therefore, any regularization is necessarily ad hoc.

The factor 1− λ in Eq. (2) would correspond to a first order reaction for
a homogeneous material. For a heterogeneous explosive, the reaction rate is
due to hot spots, and an ignition and growth burn mechanism is plausible. In
this case, reaction is dominated by deflagration fronts triggered by hot spots.
The dependence of the rate on the reaction progress variable can then be
associated with the area of the burn front; for example, λ2/3 for outward hole
burning or (1 − λ)2/3 for inward grain burning. We note that the exponent
for grain burning is less than 1. Consequently, a steady wave would have a
finite reaction zone width. This is in contrast to a first order reaction which
has an exponential tail. Modifying the reaction order used for the Forest
fire rate has been suggested by Starkenberg [1993, p. 999]. As discussed in
later sections, the reaction order can be used as fitting a parameter to obtain
better agreement with either the curvature effect or velocity gauge data.

6.2 Reactive shock profile

The Forest fire model was developed and has been used in hydro codes with
a shock capturing algorithm based on artificial viscosity. The typical imple-
mentation introduces an inconsistency with the derived rate. Namely, the
Forest fire rate assumes a discontinuous reactive shock with a value of λ at
the shock front from a specified reactive Hugoniot locus, while the code im-
plementation allows burning within the numerical shock profile and does not
constrain λ to be on the reactive locus at the end of the shock profile. This
inconsistent treatment of the reactive shock can have a significant effect on
the rate at the shock front due to the 1− λ multiplier in Eq. (15).

27



In contrast to a ZND wave profile, a steady detonation wave for the
Forest fire model, as implemented in a hydro code, has a continuous profile
usually associated with a weak detonation. A continuous profile is an implicit
requirement of the Forest fire model since the derivation of the rate leads to
a domain well below the VN spike pressure.

The standard operating procedure for simulations with the Forest fire
model is to tune the viscous coefficient on the grid being used such that
a planar steady detonation wave profile ends at the CJ state rather than a
point on the weak branch of the detonation locus. In addition, for Lagrangian
algorithms, the reaction rate is typically taken to be a function of the stress,
i.e., sum of the pressure plus the viscous pressure; see for example, [Shaw
and Straub, 1981, p. 219]. This has two important consequences. First,
the model depends on the form of the numerical dissipation used for shock
capturing, and hence the solution is implementation dependent. Second,
the viscosity must be adjusted with the cell size in order for the solution to
converge under mesh refinement. Since the choice of the viscous coefficient
is imprecise, convergence studies would be somewhat subjective.

In addition, the Forest fire model was developed in the 1970s when the
available computing power limited the mesh resolution that could be used.
The cell size, in effect, introduced a length scale which can have a significant
effect on the results of a simulations. In order for the Forest fire model
to be well posed, the dissipation required for the detonation profile needs
to be included as an integral part of the model. We suggest utilizing a
viscous pressure analogous to the von Neumann-Richtmyer artificial viscosity.
Namely, to replace P in the reactive flow equations (1) with P+Q, and choose
for the viscous pressure

Q = −νρ

[
c + r

∣∣∣∣`du

dx

∣∣∣∣
]
`
du

dx
, (16)

where ν is a dimensionless viscous coefficient, r is the ratio of quadratic to
linear viscous terms, and ` is a length scale.

The continuum mechanics viscosity can be reduced to the usual form of
numerical artificial viscosity by taking ` to be the cell size and replacing `du

dx

with ∆u, i.e., the velocity difference across a cell.6 The effective coefficient

6Modern shock capturing algorithms aim at minimizing the number of cells in the nu-
merical shock profile. One method for Eulerian algorithms is to construct a piecewise
linear velocity from the values of velocity at the cell centers, then to replace ∆u in the
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of dynamic viscosity7 is proportional to ν ρ c `. For an artificial viscosity, it
decreases with grid resolution. The purpose is to provide sufficient dissipa-
tion for shock stability. In contrast, our motivation for using Eq. (16) is to
introduce a length scale for the burn model in the continuum equations by
relating ` to the reaction zone width independent of the computational cell
size.

6.2.1 Detonation wave profile

It is instructive to analyze the detonation wave profile for the continuum
PDEs. The general case, with viscosity, heat conduction and mass diffusion
has been worked out; see Gasser and Szmolyan [1993] and references therein
to earlier work. The problem is much easier when only viscosity is considered.
In this case, it can be reduced to a system of only two ODE and the phase-
plane can be readily visualized.

For a steady planar wave, the mass and momentum equations imply that

∆(P + Q) = −m2∆V = m∆u , (17)

and together with the energy equation imply that

∆e = (P0/m + 1
2
∆u)∆u , (18)

where m = ρ0(D−u) is the mass flux, and ∆ denotes the change in a variable
across the wave. When the material ahead of the wave is at rest and with
Eq. (16) for the viscous pressure, the detonation wave profile is determined
by the ODEs

d

dξ
u = − c

2 r `

[(
1 + 4r

∣∣∣∣ Q

ν ρ c2

∣∣∣∣
)1/2

− 1

]
sgn(Q) , (19a)

d

dξ
λ = − R(λ, P + Q)

D − u
. (19b)

Here ξ = x−D t is the spatial coordinate in the frame moving with the wave,
and D is the wave speed in the lab frame. The other variables are obtained

formula for Q by the discontinuity at the cell boundary. Alternatively, numerical dissipa-
tion can be introduced using approximate Riemann solvers for the flux at cell boundary,
rather than with a viscous pressure.

7Dynamic viscosity has units of pressure× time.
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from algebraic equations (17), (18) and the EOS:

V = V0 − u/m ,

e = e0 + (P0/m + 1
2
u) u ,

P = P (V, e, λ) ,

Q = m u− P + P0 .

The initial state, at ξ = ∞, is denoted by the subscript ‘0’.
In the (u, λ)-phase-plane, the weak and strong points on the detonation

locus and the initial state8 are fixed points for which the right hand side of
Eq. (19) vanishes. For the analysis of the ODE trajectories, a key role is
played by the loci in the phase-plane corresponding to the intersection in the
(V, P )–plane of the Rayleigh line, P − P0 = m2(V0 − V ), with the weak and
strong branches of the partially burned Hugoniot loci. From Eq. (17), the
Rayleigh line corresponds to Q = 0, and from Eq. (19a) to d

dξ
u = 0. Moreover,

d
dξ

λ ≥ 0 since the reaction rate R ≥ 0. It follows that in the phase-plane
du
dλ

> 0 if and only if the state lies between the weak and strong branches of
the the partially burned Hugoniot loci. As a consequence, the strong point
on the detonation locus is a stable fixed point and the weak point is a saddle
point. At the CJ detonation speed, the weak and strong points coincide. As
a fixed point, the CJ state is stable for trajectories approaching from high
pressure and unstable when trajectories approach from low pressure.

Example trajectories in the (u, λ)–plane and (V, P )–plane for PBX 9501
at CJ wave speed, as the viscosity coefficient ν is varied (with ` = 0.05mm
and r = 0.5), are shown in fig. 11. The trajectories vary with viscosity as
follows:
(i) For small viscosity, there is a viscous shock profile to nearly the von
Neumann spike state, followed by reaction along the Rayleigh line to the CJ
state. This corresponds to the ZND profile.
(ii) For larger values of the viscosity, there is a competition between viscous
and reactive time scales that results in a non-monotonic profile with peak
pressure below the von Neumann spike pressure.
(iii) There is a unique value of the viscous coefficient such that the pressure
within the wave profile to the CJ state is monotonic. It is natural to base

8To avoid the so called cold boundary problem, we assume a small cutoff pressure below
which the rate vanishes. This is equivalent to assuming that the trajectory for the wave
profile at the initial state has slope dλ/du = 0.
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A. B.

Figure 11: Phase plane for steady viscous detonation wave in PBX 9501 at CJ
wave speed. Trajectories shown for viscosity of ν = 0.001, 0.01, 0.35, 5 (varying
with blue tint). Dashed line does not end at fixed point and hence does not
correspond to steady profile. A. Red curve is image of Rayleigh line; dashed and
solid are weak and strong branch, respectively. B. Black curve is unreacted shock
locus, and red curve is detonation locus; dashed and solid are weak and strong
branch, respectively. Dotted black line is Rayleigh line. Red and black symbols
denote CJ and von Neumann spike states, shock.

the Forest fire model on this value for the viscosity.
(iv) For still larger values of the viscous coefficient, the trajectory crosses
the weak branch of the Rayleigh line and does not end on the detonation
locus. These trajectories are not valid steady state profiles. The solution
to the time dependent PDEs for an underdriven wave, would have a lower
detonation speed for which the detonation profile would end on the weak
branch of the detonation locus.

The unique CJ detonation wave profile with a monotonic pressure is
shown for PBX 9501 in fig. 12. The reaction zone width is an important
quantity. To avoid the precursor tail we take the spatial origin — some-
what arbitrarily — to correspond to a pressure of 0.1GPa. We note that the
viscous pressure at the spatial origin is much larger, order of 1GPa. With
this choice, the width of the reaction zone for the Forest fire model is about
0.05mm. This is comparable to the experimental value of 0.025mm based
on VISAR measurements; see [Menikoff, 2006] and references therein. For
the Pop plot, on which the rate is based, the run distance at the CJ pres-
sure is 0.13mm. The model reaction width can be varied with the form of
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Figure 12: Detonation wave profile for PBX 9501. Red and blue curves correspond
to Forest fire rate with viscous shock and discontinuous lead shock, respectively.
For viscous profiles, spatial origin corresponds to pressure of 0.1 GPa. For the
pressure plot, black, red and dashed red curves are P , P + Q and Q, respectively.
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the viscous pressure, such as parameter r in Eq. (16), or with the reaction
order for the rate. This freedom can be used to adjust the magnitude of the
curvature effect discussed in sec. 8.2.

Several remarks are in order:
(i) The Pop plot does not determine the steady reaction zone width. The
distance of run extrapolated to the CJ pressure only gives an indication of a
relevant length scale for the Forest fire model. For a reactive shock, the width
would literally be zero. The actual width reflects an inconsistency between
the reactive shock assumption and the implementation of the model with a
continuous profile. Moreover, a shock capturing scheme can not distinguish
the reaction in the shock profile from subsequent reaction that accelerates a
reactive shock to a detonation wave. Because of the inconsistency between
the assumption and implementation, the model will not reproduce the Pop
plot exactly.
(ii) The viscous pressure Q peaks at λ ≈ 4%. Reaction in the shock rise is
enhanced by taking the rate to be a function of P +Q, and is in keeping with
the assumption of a reactive shock. If instead the rate in Eq. (19) is taken
as a function of P , then the viscous coefficient needed for the unique mono-
tonic detonation profile would be over an order of magnitude larger and the
reaction zone width in excess of 1mm. We note that the advection step in
an Eulerian simulation is diffusive, and some implementations of the Forest
fire model do use a rate as a function of P rather than P + Q.
(iii) Suppose one were to use only an artificial viscosity with fixed value of
viscous coefficient. Then as the mesh is refined and the effective viscous
coefficient decreased, the reaction zone profile would approach the ZND pro-
file; blue curve in fig. 12. On the other hand, suppose both an artificial
and continuum form of viscous pressure were used. Then on coarse meshes
the artificial viscosity would dominate and a simulation would be similar to
present implementations. But on fine meshes, when Eq. (16) dominates, the
solution should converge to the continuum solution with the steady profile
shown in fig. 12. It is important to note that when the continuum Q dom-
inates the reaction zone, the PDEs would have a parabolic character. The
stability criterion for an explicit algorithm would then be ∆t < (∆x)2/(ν c `)
rather than the hyperbolic CFL condition, ∆t < ∆x/c. Consequently, either
a very small time step or an implicit algorithm, such as backward Euler,
would be needed on very fine meshes.9

9For an artificial viscosity, ` = ∆x, and the condition for a stable parabolic time step
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Other forms of numerical dissipation have been used for shock capturing
algorithms. In particular, Godonov algorithms use approximate Riemann
solvers. On coarse meshes with a fast reaction rate, weak detonation waves
with continuous profiles can occur in simulations; see Colella et al. [1986].
In contrast to artificial viscosity methods, the dissipation in a Godunov al-
gorithm can be increased only a limited amount by reducing the scheme to
first order. Consequently, under mesh resolution the solution for a steady
detonation wave would converge to a ZND profile. Thus the original Forest
fire model could only be applied with a Godonov scheme on coarse meshes.
Explicitly, introducing a viscous dissipation into the Forest fire model enables
the model to be well posed independent of the numerical dissipation used by
a shock capturing algorithm.

One possible approach for introducing a consistent reactive shock with a
shock capturing alorithm would be to construct an artificial rate that tracks
the reactive Hugoniot on shock rise. This could be done as follows. Let
λr(P ) denote the value of λ on the reactive shock Hugoniot as a function of
pressure. Calculate dP/dt and update λ with a modified rate,

max
[
R(λ, P ),

dλr

dP
· dP

dt

]
.

On a sufficiently fine mesh, the dP/dt term should dominate in the shock
profile, while the usual rate should dominate elsewhere. Naturally, this idea
would require further study to test whether it works, or could be modified
to work, on problems of interest.

Finally, we note that Starkenberg [1993] implemented the Forest fire
model in a 1-D code with a true discontinuous reactive shock by tracking
the lead front. Tracking is considerably more difficult in 2-D. In addition,
there are issues with multiple shocks and the curvature effect, discussed in
the next section, which would be difficult to overcome with front tracking.

7 Numerical example

To illustrate some of the properties of the Forest fire model we have run a
shock-to-detonation simulation for PBX 9501. The calculation uses a Go-
dunov algorithm with the continuum viscosity described in the previous sec-
tion. The viscous reactive profile is resolved with an adaptive mesh. The

is proportional to the hyperbolic time step.
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shock is driven by a piston with velocity of 0.7 km/s. This case corresponds
to the gas gun experiment by Gustavsen et al. [1999] with shock trajectory
and velocity gauge data shown in figs. 3 and 9.

The time evolution of pressure, particle velocity and burn fraction pro-
files are shown in fig. 13. Several features of the profiles are noteworthy:
(i) Though the reaction zone profile is resolved numerically (finest grid with
5 µm cell size), on the 10mm scale of the plot, the lead wave appears discon-
tinuous. (ii) The pressure gradient behind the lead wave is fairly small up to
a shock pressure of about half PCJ, 15GPa. But at higher shock pressures,
there is a significant gradient. The rapid increase in shock pressure implies
that the reactive source term dominates over the gradients for the transition
to detonation. (iii) The rapid final stage of the transition to detonation is
a transient. At the transition, the shock pressure exceeds the CJ pressure
and then on the time scale of the reaction zone (10 ns) equilibrates to the
CJ pressure. The pressure spike gives rise to a left propagating pulse in the
reacting explosive, as seen in the subsequent pressure and velocity profiles.
Moreover, this pulse is slower than the phase velocity for completion of the
reaction in the partly reacted shocked material. (iv) Even for relatively weak
shocks, there is a significant gradient in the particle velocity. The velocity
gradient is a consequence of the shock acceleration, i.e., the shock-change
equation described in App. C.

Lagrangian velocity time histories are shown in fig. 14. We note that
Lagrangian time histories are considerably different than the profiles at fixed
time. Only for a steady wave would they be the same, up to a scale factor
of the axes; x/t = D. Compared to the experimental measurement shown in
fig. 9, shock arrival times at the gauges are in good agreement, because the
model is calibrated to the Pop plot. But the shape of the profiles clearly differ.
The velocity at late time is affected by the boundary condition. The piston
boundary does not allow the explosive to expand against the experimental
flyer plate as the pressure rises due to reaction. More important is the fact
that the particle acceleration behind the shock front is significantly lower
than that from the velocity gauge records. The gauges do perturb the flow.
Nevertheless, the difference behind the shock front is larger than the expected
experimental uncertainty.

There are two likely explanations for the discrepancy in the particle ac-
celeration behind the shock. First is the fitting form used for the rate, in
particular, the assumed λ dependence in Eq. (2). Second is the inconsistency
discussed in sec. 6.2 between the discontinuous reactive shock assumed by

35



Figure 13: Evolution of P , u and λ profiles for shock-to-detonation transition in
PBX 9501. Profiles are at t = 0.5, 1.0, 1.08, 1.1, 1.11, 1.2, 1.4, 1.6 µs. Transition at
t = 1.11 µs is shown as red curve in each plot.
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Figure 14: Simulated Lagrangian velocity time histories for shock-to-detonation
transition in PBX 9501. The initial positions are at x0 = 1, 2, 3, 4, 4.5, 5, 5.5, 6 mm.

the model and the reactive shock profile employed in numerical implemen-
tations. A consequence of the small numerical particle acceleration is that
calibrating the Forest fire rate using Eq. (11), i.e., with the zero pressure
gradient assumption, is compatible reproducing the Pop plot.

This example illustrates a strength and weakness of the Forest fire model.
An advantage of the model is that only limited data — Pop plot and reac-
tive Hugoniot — are needed to calibrate the rate. The flip side is that the
model has no degrees of freedom to fit profile data empirically. Based on the
simplifying model assumption, that the global rate has the same functional
form as it does at the front, there is no reason to expect good agreement
with gauge data, which is affected by the rate behind the front.

A Lagrangian analysis can be used to relate the rate behind the front to
velocity gauge data; see for example Forest et al. [1989]. Alternatively, better
agreement with the velocity gauge data may be obtained by utilizing a more
general fitting form for the rate, such as assuming R = (1−λ)nRFF(P ) with
0 < n < 1, i.e., the rate is not first order in λ. Other burn models, such as
Ignition and Growth [Lee and Tarver, 1980] use a rate of this form. Moreover,
from a detailed examination of the profiles in fig. 13, as the wave builds up
to a detonation most of the burning occurs behind the front. Consequently,
a reactive shock and monotonic or weak detonation profile are not essential
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for matching the front trajectory in a shock-to-detonation transition; see for
example [Lambert et al., 2006, sec. 3]. However, the analysis used to derive
the Forest fire rate would apply and determine the rate at the front needed for
compatibility with Pop-plot data, whether or not the lead shock is reactive.

8 Model limitations

Simplified burn models have their limitations. Inaccuracies result from tacit
assumptions on the hot-spot distribution and an overly large reaction zone
width from lack of resolution. These points are briefly discussed next.

8.1 Shock desensitization

The Forest fire rate is calibrated to Pop-plot data, i.e., shock-to-detonation
transition experiments. Hence it assumes a hot-spot distribution from a
single shock. Other experiments demonstrate that the hot-spot distribution
is affected by the flow. A notable example is shock desensitization, in which
a weak shock can quench a propagating detonation wave [Campbell and
Travis, 1986]. For a PBX, ignition is sensitive to small amounts of porosity.
Presumably, a weak shock can close pores and eliminate potential nucleation
sites for hot spots from subsequent waves. A rate that depends only on
pressure, can not account for this effect.

Simple burn models can be extended by adding another variable to keep
track of the lead shock strength as a function of position, and then adjusting
the rate based on the lead shock strength. One such model is multiple-shock
Forest fire, see [Mader, 1998, sec. 4.3] and [Mader et al., 2002]. An algorithm
for a shock pressure variable can be based on the artificial viscous pressure
which peaks within a numerical shock profile. The Forest fire rate is then
limited to a value corresponding to the lead shock pressure. In effect, the
rate is a function of an additional internal state variable; R(λ, P, Ps). For
a more detailed discussion of burn models motivated by hot spots and the
dependence of the burn rate on lead shock pressure see Johnson, Tang, and
Forest [1985], in particular, their discussion around Eqs. (19) and (20).

We note that the general Forest fire analysis yields the rate at the shock
front required for the shock strength to increase in accordance with the Pop
plot. Any burn model can be used as a functional form for the reaction rate
away from the shock front. The rate at the shock provides an important
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constraint on model parameters.
Several other experiments show that the flow affects the hot-spot distri-

bution, and hence the rate. Noteworthy is the 2-D flow that arises from
detonation diffraction, often referred to as corner turning, which leads to a
pocket of unreacted HE called a dead zone; see [Souers et al., 2004] and refer-
ences therein. Pressure dependent rates alone are not sufficient to reproduce
sustained dead zones; see [DeOliveria et al., 2006].

Isentropic compression techniques have been developed for high pressure
equation of state measurements; see [Hooks et al., 2006, Baer et al., 2006].
Due to the absence of dissipation from shock heating, isentropic compression
would generate fewer and weaker hot spots than shock compression to the
same pressure. Consequently, the Forest fire rate would over-predict the
reaction rate for isentropic compression, or more generally when a ramp
pressure rather than a shock is applied to an HE; see [Starkenberg, 1993].

8.2 Curvature effect

Though the CJ detonation velocity is the minimum wave speed for a pla-
nar detonation wave, rate stick experiments [Campbell and Engelke, 1976]
have shown that curved detonation waves have a lower detonation velocity.
Donguy and Legrand [1981] have performed simulations of rate sticks with
the Forest fire model and compared with experiments using a PBX composed
of 95.5 wt% TATB and 4.5 wt% VITON. They find on coarse meshes that
the simulations display a diameter effect (variation of detonation velocity
with rate stick diameter) larger than the experimental measurements. The
numerical diameter effect appears to converge to the experimental value as
the mesh is refined. They do not, however, specify the form of artificial
viscosity used or how the viscous coefficient is adjusted with cell size.

Over predicting the diameter effect is a generic problem for simulations
when the reaction zone is not sufficiently resolved. It can be explained as
follows. The reaction zone width and front curvature together lead to modi-
fied jump conditions for a quasi-steady detonation wave, see Menikoff et al.
[1996, Eq. (5.1–3)]:

∆[ρ(D − u)] = κw 〈ρu〉 ,

∆
[(

ρ(D − u)
)2

V + P
]

= κw 〈ρ(D − u)u〉 ,

∆
[
e + PV + 1

2
(D − u)2

]
= 0 ,

(20)
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where ∆[f ] = f(x0)− f(x1) is the change of variable f across the detonation
wave, w = x0 − x1 is the reaction zone width, κ is the front curvature, and
〈f〉 = w−1

∫ x0
x1

dx f is the average value of f in the reaction zone. For a
planar front, κ = 0 and Eq. (20) reduces to the standard Rankine-Hugoniot
jump conditions. On a coarse mesh, the reaction zone is not resolved and the
reaction zone width will be artificially large. Since the right hand side of the
jump conditions, Eq. (20), is proportional to κw, a conservative scheme can
not distinguish between an artificially large w and a large κ, and therefore
will over predict the effect of curvature.

We note that the right hand side of Eq. (20) is also proportional to av-
erage quantities within the reaction zone. Compared to other burn models
with a ZND reaction zone profile, the average quantities will be lower for the
typical implementation of the Forest fire model since the density ρ increases
monotonically from the initial state rather than decreasing monotonically
from the von Neumann spike state. The smaller average quantities can com-
pensate for a larger reaction zone width. Thus, the Forest fire model can give
rise to the same curvature effect as other models having a smaller reaction
zone width.

Moreover, the reaction order of the rate affects the reaction zone width.
The reaction order for a heterogeneous explosive can be viewed as a param-
eter related to the area of a burn front resulting from a hot spot. It can be
adjusted to better fit data on the curvature effect; see for example [Lambert
et al., 2006, sec. 3]. Comparison with velocity gauge data can then be used
as a consistency check.

Two additional points are worth noting. First, a tracked reactive shock,
as Starkenberg [1993] implemented in a 1-D code, would have a zero reaction
zone width and hence the conservation laws would imply the absence of a
curvature effect. Possibly, the curvature effect could be obtained utilizing a
partly resolved reaction zone [Bdzil and Davis, 1975] in which the tracked
reactive shock models a fast reaction for the bulk of the burn fraction and
then the final slow reaction for the remainder of the burn fraction is resolved.
Second, for just propagation of a detonation wave, the Detonation Shock
Dynamics (DSD) model can be used; see [Bdzil and Stewart, 1989, Aslam
et al., 1996]. The model incorporates the curvature effect; detonation velocity
as a function of local front curvature, D(κ). Since DSD assumes a quasi-
steady detonation wave, it is not suitable for initiation problems, which are
inherently transient in nature.
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9 Concluding remarks

Compared to other burn models, a distinguishing property of the Forest fire
model (as usually implemented) is that the reaction zone for a steady deto-
nation has a continuous profile, usually associated with a weak detonation,
rather than a ZND profile. The Forest fire model is aimed at solid explosives,
in particular plastic-bonded explosives. One might expect that the detona-
tion front would be irregular due to heterogeneities within the explosive, and
a homogenization based on averaging hydrodynamic variables transverse to
the direction of wave propagation to give a smooth profile.

Some experiments do show front irregularities from hot spots, see for ex-
ample [Plaksin et al., 2002] and references therein. Other experiments have
measured the reaction zone of high HMX content PBXs, such as PBX 9501,
using a velocity interferometry technique [Gustavsen et al., 1998a,b, Fedorov,
2002]. Their data displays a ZND profile which is compatible with an Arrhe-
nius reaction rate based on bulk shock heating [Menikoff, 2006]. The VISAR
spot size for the high resolution measurements is a fraction of a mm or a few
times the average grain size. Other experimental techniques using the light
intensity from a shock front [Loboiko and Lubyatinsky, 2000] give informa-
tion on the average behavior of the reaction zone. However, the nature of
the averaging is not clear. Determination of a homogenized or average pro-
file would require high resolution data (1 ns temporal resolution and 10µm
spatial resolution) over a mmwide region of the detonation front. Until such
data becomes available, despite the derivation for the reaction rate, Forest
fire should be regarded as an empirical model.

The Forest fire rate is calibrated to Pop-plot data or shock initiation ex-
periments on distance-of-run to detonation. Other empirical models can fit
Pop-plot data; see for example [Starkenberg et al., 2006]. To objectively
compare Forest fire with other models, one first has to eliminate the imple-
mentation dependence. To this end we proposed in sec. 6.2 incorporating
a dissipative mechanism needed to get a well defined reaction zone profile
directly in the Forest fire model.

Comparisons among models should also be done with mesh converged
solutions. Coarse mesh solutions are of practical importance, but the mesh
size needed for a desired accuracy should be a separate issue. However,
resolution and model predictions may be coupled if model parameters are
empirically fit based on coarse mesh solutions. As discussed in sec. 8.2,
the numerical reaction zone width affects propagation of curved detonation
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waves. The steady CJ reaction zone width of a model is the critical length
scale for setting the numerical resolution.

Finally, we note that the Pop plot for a given explosive depends on the
initial temperature, since an explosive is more sensitive when hot than cold.
Simple burn models can not account for such changes in sensitivity. Typi-
cally, different rate calibrations are used for a hot and a cold explosive. In
effect, a hot and a cold explosive of the same material are modeled as dif-
ferent explosives. Similarly, a PBX is more sensitive when pressed to low
density than to high density. The variation of the Pop plot with pressing
density has been analyzed by Forest [1978]. Different Pop plots could also
be used for a precompressed PBX to describe shock desensitization. On the
other hand, damage can introduce porosity and sensitize a PBX. One needs
to be cognizant of these limitation when using a model to predict the be-
havior of an explosive for a new application. This is particularly relevant
to accident scenarios since an explosive can be subjected to a wider variety
of initiation stimuli over longer time scales than the design mode for which
model parameters are calibrated.
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Appendix A. Equilibrium EOS derivatives

The ODE for the reactive Hugoniot locus, Eq. (5), requires partial deriva-
tives of the mixture EOS. For the pressure-temperature equilibrium EOS,
the pressure derivatives can be expressed in terms of the derivatives of the
components after the equilibrium equations (3) are solved for the component
states, (Vi, ei). The equilibrium equations are equivalent to minimizing the
Helmholtz free energy

F (V, T ) = λ1F1(V1, T ) + λ2F2(V2, T ) ,

or maximizing the entropy

S(V, e) = λ1S1(V1, e1) + λ2S2(V2, e2) .
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The resultant mixture EOS is complete and thermodynamically consistent,
provided that the component EOS are thermodynamically consistent.

We first consider partial derivatives at fixed λ. It can be shown that the
mixture isothermal sound speed is determined by

1

(ρ cT )2
=

λ1

(ρ1 cT1)
2

+
λ2

(ρ2 cT2)
2
.

The specific heat CV =
(

∂e
∂T

)
V

and the Grüneisen coefficient Γ = V
(

∂P
∂e

)
V

can be expressed as

CV = λ1CV 1 + λ2CV 2 +
w1w2

w1 + w2

[
CV 1

Γ1

V1
+ CV 2

Γ2

V2

]2
T ,

Γ

V
=

w1CV 1
Γ1

V1
+ w2CV 2

Γ2

V2

(w1 + w2)CV

,

where wi = λi

(ρicTi)
2 . Then the isentropic sound speed is given by the general

thermodynamic relation

(ρc)2 = −(∂V P )e + P (∂eP )V = (ρ cT )2 +
(

Γ

V

)2

CV T .

To determine (∂λP )V,e consider the reactants and products variables to
be functions of λ; i.e., Vi(λ), ei(λ) for i = 1, 2. Taking d/dλ of Eq. (3)
leads to a system of 4 simultaneous equations for dVi/dλ and dei/dλ. Then
∂λP = (∂V P1)dV1/dλ + (∂eP1)de1/dλ. After some algebra one obtains

∂P

∂λ
=

λ1δP1J2 + λ2δP2J1

∆
,

where

δPi = (V1 − V2)(∂V Pi)e + (e1 − e2)(∂ePi)V ,

Ji = (∂V Ti)e(∂ePi)V − (∂eTi)V (∂V Pi)e ,

∆ =
[
λ1(∂V T2)e) + λ2(∂V T1)e)

][
λ1(∂eP2)V ) + λ2(∂eP1)V )

]
−
[
λ1(∂V P2)e) + λ2(∂V P1)e)

][
λ1(∂eT2)V ) + λ2(∂eT1)V )

]
.
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Appendix B. Characteristic equations

The first step in deriving the characteristic equations for reactive flow is to
re-express Eq. (1) in Lagrangian form:

dV

dt
− V ∂xu = 0 , (21a)

du

dt
+ V ∂xP = 0 , (21b)

de

dt
+ PV ∂xu = 0 , (21c)

dλ

dt
= R , (21d)

where d
dt

= ∂t + u∂x is the convective time derivative. From Eq. (21a) and
Eq. (21c), the energy equation can be express as

de

dt
+ P

dV

dt
= 0 . (22)

For a pressure-temperature equilibrium EOS, the mixture entropy is

S = λ1S1 + λ2S2 ,

and the fundamental thermodynamic identity in differential form is

de = −P dV + T dS + (∆G) dλ , (23)

where ∆G = G2−G1, G = e+P V −T S is the Gibbs free energy and the sub-
scripts 1 and 2 denote the reactants and products, respectively. Substituting
into Eq. (22) leads to the entropy equation

T
dS

dt
= −(∆G)

dλ

dt
= −(∆G)R . (24)

Both the entropy equation (24) and the reaction equation (21d) are in char-
acteristic form.

To obtain the acoustic characteristics, we begin by transforming the inde-
pendent thermodynamic variables from (ρ, S) to (P, S). In differential form,

dP = c2 dρ + (∂SP )V,λ dS + (∂λP )S,λ dλ ,
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where c2 = (∂ρP )S,λ is the square of the frozen sound speed. Utilizing
Eq. (24), the time derivative of the pressure is

dP

dt
= c2 dρ

dt
+
[
− (∂SP )V,λ

∆G

T
+ (∂λP )V,S

]
dλ

dt
.

From Eq. (23), it can be shown that the term in square brackets is equal to
(∂λP )V,e. Therefore,

dP

dt
= c2 dρ

dt
+ (∂λP )V,eR .

Utilizing Eq. (21a) to eliminate the derivative of ρ, we obtain

dP

dt
+ ρc2 ∂xu = (∂λP )V,eR . (25)

Linear combinations of Eq. (21b) and Eq. (25) lead to the characteristic
equations for the acoustic modes:(

d/dt + c ∂x

)
P + ρc

(
d/dt + c ∂x

)
u = (∂λP )V,eR , (26a)(

d/dt− c ∂x

)
P − ρc

(
d/dt− c ∂x

)
u = (∂λP )V,eR . (26b)

The dimensionless quantity (∂λP )V,e/(ρc2) is known as the thermicity; see
[Fickett and Davis, 1979, p. 78].

Appendix C. Shock-change equation

Gradients in the flow variables behind a reactive shock can be related to the
change in strength of the shock and the reaction rate. We start with the
Lagrangian form of the flow equations (21b–d) and Eq. (25) substituted for
the mass equation (21a). The time derivative along the front is

d

dts
=

d

dt
+ (us − u)∂x .

Substituting d/dts for d/dt, the flow equations yield a system of linear equa-
tions for the flow gradients;

us − u −ρc2 0 0

−V us − u 0 0

0 −PV us − u 0

0 0 0 us − u





∂xP

∂xu

∂xe

∂xλ

 =



dP
dts
− (∂λP )V,eR

du
dts

de
dts

dλ
dts
−R

 .
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The matrix on the left hand side can be inverted to yield

∂xP

∂xu

∂xe

∂xλ

 =



−us−u
w2 −ρc2

w2 0 0

− V
w2 −us−u

w2 0 0

−PV 2

(us−u)w2 −PV
w2

1
us−u

0

0 0 0 1
us−u





dP
dts
− (∂λP )V,eR

du
dts

de
dts

dλ
dts
−R

 , (27)

where w2 = c2 − (us − u)2.
For a shock-to-detonation transition, the time derivatives at the shock

front are determined by the Pop plot and the reactive Hugoniot. There are
4 equations for 5 unknowns; 4 gradients and the rate. Hence the Forest
fire model requires an additional assumption to determine the rate. For the
original derivation [Mader and Forest, 1976], the assumption is that ∂xP = 0.
In this case, the first element of Eq. (27) gives

(∂λP )R =
dP

dts
+

ρc2

us − u

du

dts
.

This is equivalent to the characteristic equation (10) with du
dt

set to zero. In
fact, with ∂xP = −ρdu

dt
, the first element of Eq. (27) is equivalent to Eq. (10).
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