Final Report for the Remote Exploration and Experimentation (REE)
Program’s Testing of the Intel Pentium III (P3), AMD K7
Microprocessors and the Myrinet Network Hardware'

James W. Howard Jr., Kenneth A. LaBel, Martin A. Carts, Ronald Stattel,
Charles E. Rogers, Timothy L. Irwin, Zoran Kahric and J. Anthony Sciarini

I. INTRODUCTION

Many future NASA missions will require extensive on-board computation capability
which raises the issue of availability, cost and capability of radiation hardened or
radiation tolerant microprocessor systems. Radiation hardened computer systems are
often costly and are actually two or three generations behind in computational
capability, a significant shortfall for missions that may require state-of-the-art (SOTA)
capability.

To confront these issues, NASA instituted the Remote Exploration and
Experimentation Project (REE) with the goal of transferring commercial supercomputer
technology into space using SOTA, low power, non-radiation-hardened, commercial-
off-the-shelf (COTS) hardware and software to the maximum extent possible.

As part of this project, the radiation response of the Intel Pentium IIT (P3) and AMD
K7 microprocessors and their associated bridge chips were evaluated. This final report
summarizes the Total Ionizing Dose (TID) response (both proton and cobalt-60) and
single event effects (proton and heavy-ion) observed. This report also summarizes the
results observed for the Myrinet network hardware. Not included in this report is a
final proton test conducted after the conclusion of the project. The test report for this
test is included in the CD distribution and should be referenced for final proton data.

Included are the test reports for all testing, all raw data, all test and analysis
software developed for the testing and a copy of all papers and presentations based on
this project.

II. TESTING

A. Querview

To investigate the radiation sensitivity of the Pentium III and K7 microprocessors,
total ionizing dose (both Cobalt-60 and protons) and single event effects (both with
protons and heavy ions) testing must be done. Our plan was to utilize the GSFC total
dose facility for the Cobalt-60 exposure and external facilities for the proton and heavy-
ion testing. The advantage is that the TID testing at GSFC can be done in parallel with
the single event testing. Indiana University Cyclotron Facility was used for the proton
testing mainly for its convenience and availability. UC Davis was used for the Myrinet
testing. The Texas A&M University Cyclotron was used for the heavy-ion testing, as it is
the only currently available facility in the United States that can supply ion beams with
sufficient energy to penetrate the die substrate.

The devices used in this project are detailed in three tables. Table I gives the
pertinent information for all the Pentium III devices, Table II for the AMD K7 devices
and Table III for the Myrinet network devices.

' This work was performed at NASA /GSFC for the Remote Exploration and Experimentation Project. This project is part of
NASA's High Performance Computing and Communications Program, and is funded through the NASA Office of Space Sciences.

TABLE I

Pentium III DEVICE UNDER TEST (DUT) TABLE

Device Vendor Rated Speed Operating Speed Package Source Test Type Package Markings
Pentium I Intel 550 MHz 550 MHz SC242 Protons SEE gggé ﬁ%}gﬂ/ 1657 51 D0090495-
PentiumIII Intel 550 MHz Unbiased SC242 Co-60 TID gggéﬁ%&y 11 £3g5é3g3%0493'
Pentium Il Intel 650 MHz 650 MHz SC242 Protons SEE 8;83/, %)551{53914111\16}% SLioials
Pentium III Intel 650 MHz Unbiased SC242 Protons TID 8?% 2;&{53914111\]61553 1rsnlc1'géosoljgli-\/
Pentium I Intel 650 MHz 650MHz SC242 Protons TID 8*132{ fg{ﬁ%{ﬁ?g SLoI0als
Pentium Il Intel 650 MHz Unbiased 5C242 Co-60 TID 82(1)1/ fg{ﬁ?ggﬁfgg irSI}Cl'gé%OEiS%
Pentium Il Intel 650 MHz Unbiased SC242 Co-60 TID gg% fg{ﬁf’gﬁfgg iicl'ggsofgﬁ
Pentium I Intel 700 MHz 700 MHz SC242 Protons SEE gggé ﬁ%}gﬂ/ 1657 S1 90160187~
Pentium I Intel 700 MHz 700 MHz SC242 Protons SEE gggé ﬁ%ﬁgg;ﬁ;@%ﬁ%ﬁww%
Pentium T Intel 700 MHz 700 MHz SC242 Protons TID 382415&/52%/ LESY oL oae01s7-
Pentium Il Intel 700 MHz Unbiased 5C242 Co-60 TID gggé ﬁ%}%{/ 11 rffyggéﬁﬂéimw'
Pentium T Intel 750 MHz 500,750 MHz SC242 Protons SEE gggé ﬁ%}%/ 1657 51 90260050-
PentiumIII Intel 800MHz 533,800 MHz SC242 HI SEE 500 é ﬁ%}gg/ O S L 0221
Pentium Il Intel 800 MHz 800 MHz 5C242 Co-60 TID ggg{ ﬁi/]}g(y 11 ﬁfg;égﬁ;‘;alw'
Pentium T Intel 850 MHz 850 MHz SC242 Protons SEE 888{ %5}161{1%]’[% L65V 51 10280100-
Pentium Il Intel ~ 850 MHz 566,850 MHz SC242 Protons SEE gggé fﬁgﬁg 15?;{3;91 gﬁ%‘ﬁo'
Pentium I Intel 850 MHz Unbiased SC242 Co-60 TID gggé %75}161{;9?001{1 LO5V S1 10280400-
Pentium T Tntel ~ 850MHz 566,850 MHz SC242 Protons SEE gggé 23}611/1}831/I}e'25¥n5c1'919022%07%4
Pentum Il Intel ~ 933MHz 466,700,933 MHz SC242 Protons SEE 3 ! Zééé%ﬁ Qléx ?;g?gg%‘ilf@
Pentium Il Intel 933 MHz 466,700,933 MHz ~ SC242 HI SEE ggzé 2C5(6)/51T3§ Qléx ?;goggos‘ilfm
Pentium I Intel 933MHz 466,700,933 MHz ~ SC242 HI SEE gggé %5}?1{1};3; I/I}ez\lln’slg 11040081
Pentium Il Intel 933 MHz Unbiased 5C242 Co-60 TID gggg 2c5(63/51T?£ /Rll'éx ?;29598%‘57' o
Pentium Il Intel 933 MHz Biased SC242 Co-60 TID gigé f}i{ﬁsz l/r}eZYnslg ,})})O‘é‘ﬁ%(
PentumIll Intel ~ 933MHz 700,933MHz ~ PGA370 Protons SEE 03 i 258%/4113[%/ 17V LO45A581-
Pentium Il Intel 933MHz 700,933 MHz SC242 Protons SEE gggé 25P6h/ﬂl§’;’ é ilﬁz\s/iiicl%)%mgﬁi(K
Pentium Tl Intel 933 MHz 933 MHz PGA370 HI SEE 0% é 2?\% 1153 éiZI\\//[E L109A567-
Pentium Il Intel 933 MHz 933 MHz PGA370 HI SEE 33% 25c6 ({ Sltig’lélcz 55%55\}\/2512?;%1
Pentium T Intel 1GHz 07510GHz PGA370 Protons SEE (1)22(2)/ 25164/1\}131):3/ 175V Ql12A279-
Pentium Il Intel 1GHz 075, 1.0GHz PGA370 Protons SEE (1)822/ é%4ﬁ%3 f175V QI11A242-
Pentium I Intel 1GHz 1GHz PGA370 HI seE 1000 / 1%/?:12 ‘1/3,‘3{ Gy, QeAR
Pentium Il Intel 1GHz 1GHz PGA370 HI SEg 1000/256/133/175V Q118A892-

1177 Malay '01 SL5DV

TABLE II
AMD K7 DEVICE UNDER TEST (DUT) TABLE

Device Vendor Rated Speed Operating Speed Package Source Test Type Package Markings
AMD-K7600MTR51B C
K7 AMD 600 MHz 600 MHz SC242 Protons SEE 30019140593
AMD-K7650MTR51B A
K7 AMD 650 MHz 650 MHz SC242 Protons SEE 510017540004
K7 AMD 650 MHz 650 MHz SC242 HI SEE o oD A
K7 AMD 650 MHz Unbiased SC242 Protons TID HNMDATESOMIRSIE A
K7 AMD 700 MHz 700 MHz SC242 Protons SEE ADIKTZOOMIROIE A
K7 AMD 900 MHz 900 MHz SC242 Protons SEE AHND-KII00MNREID A
AMD-K7100MNR53B A
K7 AMD 1 GHz 1 GHz SC242 Protons SEE 006014044
K7 AMD 1GHz 1GHz SC242 Protons SEE ANMDIISOMNREID A
K7 AMD 1GHz 1GHz SC242 HI SEE P aoey oo A
TABLE III
Myrinet Device Under Test (DUT) Table
. . Model Serial .
Device Vendor Location Number Number Other Part Markings
Switch1 Myricom switch =y 13 sw16.85 84312 A-0041 0124
Board 1
Switch2 Myricom g;‘;lrtghz M3-SW16-8S 87091 A-0041 0125
NIC Myricom NIC M3S-PCI64B-2 90110 B-0111 0128
Lanai9 Myricom NIC 9.1 118
SerDeSer Myricom NIC 1.1 123
PCIDMA Myricom NIC 1.3 126
Transceiver Vitesse NIC VCS7146RH 0113LUBAD
TKLB53BA KOREA
SRAM Samsung NIC K7N803601M TKGO12DA KOREA

B. Testing Completed

Testing was done in all three areas: TID, proton single event effects and heavy-ion
single event effects. The TID testing is still in progress as an in-house project in an
attempt to find failure levels. The results as of 2/5/2002 are summarized in the
following results section.

Three separate proton tests were completed on the Pentium III and K7 processors.
An initial test was completed in June of 2000 to understand the issues with testing the
complex processors and to do the initial screening for latchup. In December of 2000 a
follow-on proton test was conducted that built on the knowledge gained from the first
test by greatly enhancing the software so as to be able to fully handle all exceptions.
This allowed for longer duration runs that revealed some limitations in the test software
for the cache tests. These routines were re-written and a final proton test was conducted
in May of 2001. All of these test reports are included with this report.

Two heavy-ion tests were completed. Testing conducted in March of 2001 was based
on the test software from the December 2000 proton testing. The data analysis that
required the re-write of the cache test software for the proton testing was completed
after the March testing. With that in mind and the knowledge gained from the re-
written proton testing software, an additional heavy-ion test was deemed necessary. A
second heavy-ion test for the “Flip-Chip” Pentium III processors utilizing the latest
software was done in October. Both test reports are included in this package.

Finally, testing was done, as an initial proton test, of the crossbar switch device of
the Myrinet network system. In addition, five devices on the Myrinet Network Interface
Card (NIC) were exposed to the proton beam and the system response measured. The
details of this testing is covered in the completely in the Myrinet test report included
with this package. The remainder of this final report will deal exclusively with the
P3/K7 testing.

III. TESTING SYSTEMS

A. Test Hardware

The system hardware for all P3 and K7 tests conducted is approximately the same.
Details of specifics and differences are found in the appropriate test reports. This
section describes the overall test configuration, as is shown in Figure 1.

| RADIATION :>»DUT

User interface

DUT
Computer /
keyboard
monitor
mouse
Cable bundle: including analog — -
signals, power supply and nterf : toz‘l’“ter
motherboard control, PXI User interface mertace
telemetry/ command and ac ontroller /
power keyboard
monitor
mouse

“PXI Controller”
Interface

Figure 1. Overall, block diagram of all P3 and K7 tests.

Test Hardware Configuration

Either during or after each irradiation, Devices Under Test (DUTs) were tested for
functionality and parametrics in a DUT Computer, consisting of a motherboard and
related components. The user interface for this computer resided some distance (from
immediate vicinity to ~50” depending on the test) from the DUT Computer. The DUT
Computer was also connected to the PXI Controller for collecting data and controlling
the DUT Computer.

The PXI Controller resided at some distance from the DUT Computer, which had
similar connections. The location of the PXI Controller, with respect to the DUT
Computer and the user interfaces varies for each test.

The DUT was tested during heavy-ion irradiation. The DUT Computer resided a
minimum of 10 feet from the PXI Controller and the user interfaces. A keyboard,
monitor, and mouse extension was used for the DUT computer but not the PXI
Controller.

The DUT was also tested during proton irradiation. To mitigate spurious neutron
event, the PXI Controller resided from 15 to 45 feet away from the DUT Computer. It
was not located further away, in order that analog sample fidelity be maintained. The
user interfaces were located an additional significant distance further from the PXI
Controller and thus keyboard/monitor/ mouse extensions were used for both it and
the DUT Computer.

For biased irradiations, the setup was similar to the heavy-ion testing setup. For
unbiased TID irradiations, the DUTs were tested after each increment in exposure by
placing them in a DUT Computer sitting immediately next to the PXI Controller and
user interfaces.

DUTs

The Pentium III (P3) is/was available in three different physical form-factors. The
original, the SC-242 form-factor was a module with 242 card edge contacts and
integrated heatsink and fan. By breaking open the module, the bare die was exposed,
though with active layer facedown and 900 micron thick substrate exposed. SC-242
DUTs stand with the plane of the die normal to the motherboard. This and the existence
of pre-manufactured extender boards for the SC-242 make it the most desirable form-
factor for SEE testing.

Unfortunately, the SC-242 module was apparently a more expensive concession to
the inability to efficiently manufacture on-die cache and was eventually obsoleted. All
SC-242 processors tested actually did contain on-die cache. Early in this testing program
the SC-242 module became unavailable.

The second form-factor of the P3 was adopted for all testing except for TID. The FC-
PGA form-factor is a ceramic 370 pin grid array with the die mounted flip-chip and
epoxy-sealed onto the PGA ceramic. The FC-PGA fits into a motherboard zero insertion
force (ZIF) socket with the surface of the die lying parallel to the surface of the
motherboard. An extender for accessing the analog signals was complex beyond the
program’s needs, so analog measurements, which required shunt-resistor insertion,
were abandoned when testing the FC-PGA.

A third form-factor of the P3, the FC-PGA2, is essentially the same as the FC-PGA
except that it has a metal heat spreader on top of it, which also protects the die (the
corners and edges are particularly susceptible to chipping).

B. Test Software

The DUT software is compiled in Microsoft Visual C++ with a Pharlap Linker Add-
in. The tests are written in a combination of C and assembly language. The software is
executed using the Pharlap Real-Time Operating System. The DUT communicates with
the user through a VGA /keyboard interface and a serial port to the test controller
system. All telemetry is echoed to a memory area that is not destroyed upon soft-reset
or short power cycles. This memory is dumped through the serial port to the test

controller after a reboot following a crash of the system. This is performed in an attempt
to recover information lost due to the crash.

The P3 DUT Software is designed to execute one thread at a time with no
preemptive task switching. This is accomplished in the following statement:

EtsSetTimeSlice(0); / | disable preemption

There is an array (radTests) in the main thread that contains information about the
various tests, including the test letter, the test description, a pointer to the test's
executable, a repeat count, a pointer to memory block for the test to use and its size. The
repeat counts are currently always -1 indicating that the test should be repeated until it
is terminated by an external command.

When the DUT Software begins execution, it creates a menu using the test letter and
description from the radTests array. It also adds three hardcoded selections: "@: Toggle
cache enable", "L: Loop through all tests", and "N: Loop through all tests continuously".

The first hardcoded selection switches the cache state between four states:
"Disabled", "Enabled - L1 Data", "Enabled - L1 & L2 data", and "Enabled - All". There is a
memory allocation (malloc) statement at the start of the main program that forces all of
the test memory into a different page than the program executable:

void *fillA=malloc(0x800000),*fillB;

The cache can then be enabled or disabled on these pages separately. Model Specific
Registers (MSRs) in the Pentium are used to achieve this. MSR BBL_CR_CTL3 is used to
enable/disable the L2 cache and MSRs MTRRphysBase0 and MTRRphysMask0 are
used to enable/disable the code page cache.

The second hardcoded selection, "L", executes each test except "M" in the radTests
array two times and then returns to the menu.

The third hardcoded selection, "N", executes "L" continuously pausing once every
ten minutes for the test controller to take voltage/current measurements. When pausing
the DUT Software outputs "MEASURE ..." to the test controller, waits 30 seconds, and
then outputs "END ..." to the test controller.

The tests contained in the radTests array are executed by starting a new thread at the
location pointed to in the array. The main thread turns over execution to this thread and
does not execute again until the test is terminated and the test thread returns execution
to the main thread.

The first thing that each test does is to call MarkExceptionReturn(). This subroutine
saves the execution location and stack information as of this call. Any exceptions
encountered while executing the test cause a jump to this location after reporting the
error information. The standard action is to set the restart flag to 1 and then terminate
the thread. After the thread is terminated, the main thread will continue to execute,
check the restart flag, and, if the restart flag is non-zero, will restart the test.

Three types of errors are encountered when executing the test software. Test Specific
Errors are errors that the software is designed to look for based on the function it is
testing (Desired). Program Exceptions are errors that cause the CPU to stop executing
the code immediately. Terminal Errors are those that terminate a test. At the end of this
document is a chart that shows possible reported errors.

Test Descriptions

There are eight tests available for testing the Pentium III components. Each test
sends a keep-alive at approximately a one hertz rate (0.1 Hz for test "H") and sends
error results as they happen. One test is selected for each exposure to the beam and the
software repeatedly performs the test until a pre-determined dose (or fluence) is
reached or the software stops communicating to the user.

Test "A" checks the eight general-purpose registers of the CPU. Three registers are
used by the program to keep track of execution parameters. The ESI register is used to
point to a data area in memory where the values of the five registers under test are
mirrored. The EAX register is used to keep track of the number of executions so that the
keep-alive can be sent at proper intervals. The ESP register keeps track of the stack,
which is used to store information when logging errors.

This test sets five CPU registers (EBX, ECX, EDX, EBP, and EDI) to a baseline value
of 0AAAAAAAA Hex, then continuously checks to see if any of the register values
change. If any values change, an error is reported to the user and an attempt is made to
reset the register to its baseline value. The register is read again to form a new baseline
value. The error report includes the following: the name of the register that changed,
the value it changed to, the baseline before the error and the baseline after the error. The
test then continues. At each keep-alive, the baselines are reset to 0(AAAAAAAA Hex.

This test is designed to catch four error types: "Bit error: 1 changed to 0", "Bit error: 0
changed to 1", "Miscompare: data different by >1 bit", and "Miscompare: data identical".
At TAMU the first two error types were reported as "Miscompare: data different by 1
bit". To determine how to classify this error the telemetry is examined to compare the
values read and expected. The following example is from test "A" telemetry output from

March 2001 at TAMU:

A AAAAAAAAAAAAA.
FAIL Sat Mar 24 03:44:14 2001

00000004

AAAAAABA

AAAAAAAA

AAAAAAAA

END

A A AAAAAAAAAAAA.

The first line after the FAIL statement indicates that the error occurred in the ECX
register. The second line is the value read from the ECX register after the miscompare.
The third line is the expected value for ECX and the fourth line is the value of ECX after
trying to reload ECX with the expected value. In this case the value read from ECX has
a bit that is 1 where a 0 was expected. This error was classified as "Miscompare (data
different by 1 bit)". If the second line were "FFFFFFFF" then it would be classified as
"Miscompare (data different by >1 bit)".

In test "A", an error in one of the registers is expected to result in a "Bit error: 1
changed to 0" or a "Bit error: 0 changed to 1". A hit that causes a register to be reset is
expected to result in a "Miscompare: data different by >1 bit". An error in performing
the compare operation is expected to result in a "Miscompare: data identical".

Test "B" checks the Floating Point Unit (FPU) with a maximum of data transfer to the
FPU. A buffer is loaded with the arguments and expected results for the five operations
tested (fadd, fsub, fmul, fdiv, and fsqrt). For each cycle through the test, the following
sequence is followed: The first operand is transferred to the FPU from memory. The
second operand is transferred to the FPU from memory. The operation is performed.
The result is transferred to memory. The result is transferred back to the FPU and
compared with the expected result. Any errors are saved to a log in memory and
reported to the user at the next keep-alive. The EBX is used to keep track of the number
of cycles run. When EBX passes a constant number of cycles a keep-alive is sent and any
errors are reported.

An error consists of three quadwords: The first is the function identifier (Hex 0:fadd
18:fsub 38:fmul 48:fdiv 60:fsqrt), The second is the result of the operation. The third is
the expected result.

This test is designed to catch four types of errors: "Bit error: 1 changed to 0", "Bit
error: 0 changed to 1", "Miscompare: data different by >1 bit", and "Miscompare: data
identical". The classification is determined in the same manner as that of test "A". An
error in the performance of an operation, the transfer of operands, or a bit change in the
operand registers is expected to result in a "Miscompare: data different by >1 bit". An
error in the transfer of the result or a bit change in the result register is expected to
result in a "Bit error: 1 changed to 0" or a "Bit error: 0 changed to 1". An error
performing the compare function is expected to result in a "Miscompare: data identical".

Test "C" performs a memory test or cache test. If the cache is turned off, it performs a
memory test otherwise, it performs a cache test. If the cache is on, then the cache is
turned off, the memory is loaded with an incrementing pattern and the cache is turned
back on before entering the test. The entire range is loaded with a baseline of
0AAAAAAAAH. The range is 131072 words for the memory test and the L1&L2 cache
test and 8192 words for the L1 only test. The memory is checked word by word. After
each word is checked, its value is changed to the bitwise complement of the baseline. If
the value is not as expected then an error is reported and an attempt is made to reset the
value to the baseline. The error report includes: the location address, the value read, the
baseline and the value after attempting to reset to the baseline. If the value cannot be
restored to the baseline, then checking is disabled for that location until the next keep-
alive. After the entire range is checked, the baseline is changed to its bitwise
complement and checking starts again from the beginning.

Two types of errors occur during the cache tests. Tag errors cause 16 consecutive
words to be in error and bit errors cause one or two bits to be in error in a word. We
have seen three tag error scenarios. The first is that a tag miss occurs and the pattern
from memory is read. The second is that the wrong baseline is read. In addition, the
third is that a random pattern is read. The output from the first two scenarios has been
compressed so that there is one line output that describes what happened for all 16
words. Most tag errors occur once but we have seen some tag errors recur several
consecutive times within a run when testing with L1&L2 cache on.

When the cache test is started, the user is prompted for a test size. The available
sizes are 100%, 50%, 25%, and 1%. The actual size of the test is computed as full cache
(256K for L2 and 16K for L1) times this percentage. When testing the L2 cache, 1% is not
an option since this would reduce the size such that only the L1 cache is utilized.

Because of the high number of bits checked in the cache test, it has the high number
of reported errors. The number of bits tested in the L1&L2 cache test is 2097152*x% data
bits plus 180224*x% tag bits (2277376*x% bits). This test is designed to test the L2 cache

by always retiring data in the L1 cache when it overflows. The data flows through the
L1 cache. The data is transferred to the L1 cache across a 64-bit data bus. The data then
stays in the L1 cache for an average of .008% of the time it spent in the L2 cache. The
L1&L2 cache test tests the entire bit range in 0.464/x%-0.928/x% seconds on a 1GHz
part and multiplied by x/1GHz for an x GHz part.

The number of bits tested in the L1 cache test is 131072*x% data bits plus 12800*x%
tag bits (143872*x% bits). This test tests the entire bit range in 0.0288/x%-0.0577 /x%
seconds on a 1GHz part and multiplied by x/1GHz for an x GHz part.

In all cache tests, the data is transferred to the execution unit from the L1 cache
across a 64-bit bus. In order to determine whether transfer errors are occurring as
opposed to bit flips in storage, we shall add cache tests that test smaller areas of the
cache. We will find error rates at three different sizes for each cache. From this data, we
will determine the part of the rate that is independent of the size (transfer errors) and
the part that is proportional to the size (storage errors).

For test "C" May IU data, there were two possible classifications for a
memory/ cache error: "memory error", "recurring memory error". To determine how to
classify this error the telemetry was examined for repeating entries. If an error repeated
more than 50 times between keep-alives it was classified as "recurring memory error".
All other errors were classified as "memory error".

At the October TAMU, improvements were made to test "C" to give more visibility
into memory/cache errors and to lessen the number of errors from instruction cache
hits. The software was placed in a non-cacheable segment of memory and the telemetry
output was expanded to include the location and contents of memory found in error.
Also test "C" was changed from a process of loading all memory, checking all memory,
loading all memory... to a process of checking one location loading that location
checking the next location... This allowed the data to sit in its location (cache or
memory) for the entire time cycle between checks. In the previous version, the data was
loaded at about the halfway point between checks.

In addition, at TAMU, some data output reduction was added. If several
consecutive locations read the wrong baseline or the ram pattern (for cache tests), then
the telemetry output was reduced to one error message followed by "repeated xx
times". Most tag errors now show up as follows (taken from May 2001 IU data):

FAIL Thu May 24 22:05:57 2001
memory test error 01750 1750 repeated 16 times END

For test "C" IU data, there are four possible classifications for a memory/cache error:
"recurring memory error", "tag error", "Bit error: 1 changed to 0", "Bit error: 0 changed to
1". If an error repeated more than 50 times or in more than 50 consecutive locations, it
was classified as "recurring memory error". If an error appeared in 16 consecutive
locations (1 line in the cache), it was classified as "tag error". If an error showed that a
bit was 0 but was expected to be 1 then it was classified as "Bit error: 1 changed to 0". If
an error showed that a bit was 1 but was expected to be 0 then it was classified as "Bit
error: 0 changed to 1". There were several cases where one line of telemetry showed

more than one bit error or tag error as in the following example:

FAIL Wed May 23 04:51:55 2001
memory test error 149EE 0BAEA 0AAAA 0AAAA END
FAIL Wed May 23 23:37:36 2001

memory test error 02010 2010 repeated 32 times END

The first report shows 2 bit errors and the second shows 2 tag errors.

Test "D" launches seven subthreads each with a counter that is reset to zero. Each
thread increments its counter if the counter is less than 11 and then passes control to the
next thread. The main thread then checks, after 50 milliseconds, to see if all of the
counters have reached 11. If not an error is reported to the user. The test repeats
continuously.

The "Task Switch Error" is the only error that this test is designed to catch. This error
will occur if any of the subthreads stop executing.

Test "E" runs through 16K of instructions repeatedly. The instruction sequence is to
increment the eax register from 0 to 3 checking in between each increment to see if the
value is as expected, then to decrement the eax register 3 times and check to make sure
it returns to zero. Any errors are reported to the user and the cache is invalidated.
Thirty of forty-six bytes in the code are continually used during proper execution; 65%
of the 16K are exercised. The ECX register is used to keep track of the number of times
the instructions are repeated. When ECX passes a constant number of cycles, a keep-
alive is sent. The cache is flushed and the test is restarted whenever an error is detected.

Because the test is extremely sensitive to the value in EAX, the test will report a
cache error as soon as the proper sequence is interrupted. The following example shows
how the program responds to such interruption:

This is the error free operation of the test "E" (eax starts at 0):

40 inc eax

3D01000000 cmp eax, 1

OF85E03F0000 jnz erout ;jump not taken
40 inc eax

3D02000000 cmp eax,2

OF85D43F0000 jnz erout

40 inc eax

3D02000000 cmp eax,3
The following two scenarios show how one bit change can affect the operation of
test "E" (eax starts at 0):
41 Inc ecx
3D01000000 cmp eax, 1
OF85E03F0000 jnz erout ;jump taken

003D0100000F add [ecx][eax]+0F000000H, bh

85E0 test esp,eax

3F aas ;adjust al after subtract
0000 add [eax],al

40 inc eax

3D02000000 cmp eax,2

0F85D43F0000 jnz erout ;jump taken

This test is designed to report only one type of error: "cache error". Any sequence
that causes a jump to "erout" will report a "cache error".

Test "F" checks the Floating Point Unit (FPU) with a maximum of operations in the
FPU. A buffer is loaded with the arguments and expected result. The operation tested
is:

cos(cos(cos(sin(sin(sin(sqrt(sqrt(sqrt(sqrt(sqrt(sqrt(a*b))))))))))))

where a=0.123456789 and b=0.987654321. For each cycle through the test, the following
sequence is followed: The first operand is transferred to the FPU from memory. The
second operand is transferred to the FPU from memory. The operations are performed.
The result is transferred to memory. The result is transferred back to the FPU and
compared with the expected result. Any errors are saved to a log in memory and
reported to the user at the next keep-alive. The EBX is used to keep track of the number
of cycles run. When EBX passes a constant number of cycles a keep-alive is sent and any
errors are reported.

An error consists of three quadwords: The first is the function identifier (Hex 78), the
second is the result of the operation, and the third is the expected result.

This test has the same expected errors and causes as test "B". However, since there
are fewer transfers and more time spent with data sitting in the FPU, the frequency of
errors should be different.

Test "G" checks the Matrix Math Extensions (MMX). A buffer is loaded with the
arguments and expected results for the four operations tested (pxor, por, pmul, pmulh,
padds, addps, divps, and mulps). For each cycle through the test, the following
sequence is followed for each operation: The first operand is transferred to the FPU
from memory (FPU registers are used by the Pentium for performing MMX functions).
The second operand is transferred to the FPU from memory. The operation is
performed. The result is transferred to memory. The result is compared with the
expected result. Any errors are saved to a log in memory and reported to the user at the
next keep-alive. The EBX is used to keep track of the number of cycles run. When EBX
passes a constant number of cycles a keep-alive is sent and any errors are reported.

An error consists of three quadwords or five quadwords depending on the function:
The first is the function identifier (0:pxor 1:por 2:pmul 3:pmulh 4:padds, 5:addps,
6:divps, and 7:mulps). For functions 0 through 4, the second quadword is the result of
the operation and the third is the expected result. For functions 5 through 7, the second
and third quadwords are the result of the operation and the fourth and fifth quadwords
are the expected result.

There are four errors that this test is designed to catch: "Bit error: 1 changed to 0",
"Bit error: 0 changed to 1", "Miscompare: data different by >1 bit", and "Miscompare:
data identical". The classification is determined in the same manner as that of test "A".
An error in the performance of an operation, the transfer of operands, or a bit change in
the operand registers is expected to result in a "Miscompare: data different by >1 bit".
An error in the transfer of the result or a bit change in the result register is expected to
result in a "Bit error: 1 changed to 0" or a "Bit error: 0 changed to 1". An error
performing the compare function is expected to result in a "Miscompare: data identical".

Test "H" measures the passage of time in CPU cycles against the ISA bus clock of
8.33MHZ. A timer board has been set up to provide an interrupt every 16383 cycles of
the ISA bus clock. 5000 samples of the number of CPU cycles between interrupts are

recorded and sent to the user after the test is complete in about 9.8 seconds. Then
another test is started.

This test outputs a distribution of the number of CPU cycles between interrupts.
The format of this output is as follows (each entry is in hex followed by a comma):

the number of cycles for the first value in the list

the number of samples below the lowest value in the list

the number of samples beyond the highest value in the list

the increment in number of cycles between entries in the list

the list of values (comma separated) where a series of zeros is output as 0:v (v
being the hex number of times to repeat the 0 entry). There is no comma after the
last value in the list.

* The keep-alive: "H"

Exception Errors

In addition to the errors that the tests are designed to catch, there are several errors
that can occur in any of the tests. The most common of these is the "General Protection
Fault" (GPF). This error occurs when the program is not executing as designed. There
are several events that could cause this:

* The Global Descriptor Table could have been corrupted. We now run all tests
with the GDT stored in un-cacheable memory to minimize the occurrence of a
corrupt GDT.

* The instruction could have been corrupted. We now run all tests with
instructions stored in un-cacheable memory to minimize the occurrence of an
unintended instruction being executed.

* A register could have been corrupted.

* The Arithmetic Unit could have computed an illegal address.

Other errors that can occur in any test are: illegal instruction, divide-by-zero
exception, debug exception, non-maskable interrupt, one byte interrupt (INT3),
interrupt on overflow, bound interrupt, device not available exception, double fault,
coprocessor segment overrun, invalid TSS, invalid segment exception, stack fault, page
fault, coprocessor error, hang, bomb, self reset. The last three of these errors are
classifications that are determined by the manner in which a test terminates. A hang is
the classification for when the DUT stops sending keep-alives and stops responding to
the user. A bomb is the classification for when the DUT display is loaded with a
random pattern. A self-reset is for when the DUT reboots from the disk.

Any of the exceptions can be caused by an unintended instruction sequence due to a
corrupt instruction or the execution of instructions from the wrong location (corrupt
instruction pointer, segment register or GDT). This is very unlikely however since the
instruction sequence for the exception is one in 65536 possible instruction codes.

The "illegal instruction" exception can also be caused by execution of an illegal
instruction but is less likely because most of the values are valid instructions and
executing an unintended instruction is more likely to end up in a GPF.

The "divide-by-zero exception" can also be caused by a divide by zero but is very
unlikely because the event would have to load a zero into the divisor immediately
before a divide instruction or an unintended divide would have to be executed with a

divisor value of zero. Test "H" is designed to perform two divides per keep-alive. Test
"A","B","F", and "G" are designed to perform only one divide per keep-alive. Test
"C","D","E" are designed not to do any divides.

The "Debug exception” has no additional causes.

The "non-maskable interrupt" can also be caused by the NMI input signal being set.

The "one byte interrupt (INT3)" can also be caused by an INT3 instruction but is less
likely because there is one code in 256 that performs the instruction and it would have
to be an unintended instruction.

The "interrupt on overflow" can also be caused by an INTO instruction but is less
likely because there is one code in 256 that performs the instruction that triggers this
and the overflow flag must be set when it is executed.

The "BOUND interrupt" can also be caused by a BOUND instruction but it is less
likely because there is one code in 256 that performs a boundary check and it would
have to be an unintended instruction. In addition, the actual boundary check would
have to fail.

The "Device not available exception" can also be caused by a failure in detecting the
math coprocessor. This would have to be a transient that occurs at precisely the same
time that the CPU is trying to detect the coprocessor.

The "Double fault" can also be caused by an exception in the exception handler.
Since we are using the same exception handler for the "double fault", the exception in
the exception handler is likely to cause an infinite number of calls to the handler and
either continuously report an incomplete failure message or hang. The following
combinations can cause a "Double fault":

1. Contributory Exception followed by Contributory Exception.
2. Stack Fault followed by either a Contributory Exception or a Stack Fault.

Contributory Exceptions divide-by-zero exception
Invalid TSS
Segment not present exception

Stack Fault
General Protection Fault

The "Coprocessor segment overrun" has no additional causes.

A corrupt GDT or TSS can also cause the "Invalid TSS" or "Segment not present
exception". Since these are stored in memory, it is less likely to occur.

The "Stack Fault" can also be caused by a corrupt GDT, TSS, stack segment register
or stack pointer. This is more likely than "Invalid TSS" and "Segment not present
exception" because if the stack is accessed outside of valid memory this fault is
generated instead of the GPF that is generated for other segments.

A corrupt GDT or TSS can also cause the "Page Fault". There are three causes of a
page fault: Writing to a read only page, Accessing a page which is not in physical
memory, or Accessing a page to which the current program does not have access.
Additional information is present in the error code:

- Bit 0 indicates whether (0) the page was not present or (1) there was an access
rights violation or use of a reserved bit.

- Bit 1 indicates whether (0) the program was attempting a read or (1) the
program was attempting a write.

- Bit 2 indicates whether (0) the program was executing in supervisor mode or
(1) the program was executing in user mode.
- Bit 3 indicates whether (0) the fault was not caused by a reserved bit violation
or (1) the fault was caused by a reserved bit violation.
At IU, we recorded one "Page Fault". It was caused by a write to a page that was not
present.
The "coprocessor error" has no additional causes because the coprocessor is
disabled from generating this error.

IV. TESTING METHODOLOGIES

A. TID Test Process

To completely characterize the P3/K7 DUT for TID effects requires numerous
parametric measurements, too numerous to measure without specialized test
equipment beyond the scope of this project. This level of characterization is not
necessary for the needs of this project. To this end, it is sufficient to monitor the voltages
and currents to the microprocessor, the instruction timing (to monitor the processor for
timing critical operations), and microprocessor functionality.

This total ionizing dose response was measured for both protons and Cobalt-60.
Proton testing was carried out at the Indiana University Cyclotron Facility (IUCF) using
198 MeV protons incident on the test structure with fluxes ranging from 10° to 10’
protons/cm?/sec. This proton TID testing was done in conjunction with the proton SEE
testing. Cobalt-60 testing was done at the GSFC Radiation Effects Facility (REF) with
dose rates ranging from 3 to 10 krads(Si)/day.

The same test hardware used for SEE testing was used to accomplish the
measurements mentioned above. For biased testing, the entire motherboard assembly is
placed in the Cobalt chamber with all but the DUT heavily shielded. For unbiased
testing, the DUT is placed in a test jig with grounded pins and removed from the
chamber periodically into the full test setup for data collection.

Data collection consists firstly of the seven voltages and currents available through
the extender card. Secondly, the DUT is fully exercised utilizing all the tests developed
for SEE testing. Finally timing is monitored using a measurement of the access time of a
data line and through the use of the Timer Card hardware and software.

B. Single Event Effects Test Process

The SEE test process includes methods to test for all aspects of single event effects
(latchup, functional interrupts, upsets, etc.). As a number of these effects are sensitive to
the software being run and may be sensitive to numerous other conditions, detailed
control of the Device Under Test is required. To this end, an extensive operating system
would serve no purpose. Therefore, testing is done with a minimal operating system
and a test executive. This is to allow for low-level testing of sections of the processor.

Testing uses various software routines to isolate sections of the microprocessor (e.g.,
registers, cache memory, floating-point and MMX units). Additionally, numerous
processor speeds are tested in an attempt to investigate frequency dependent events.
This is done using processors of various rated clock speeds and running these
processors at a lower than rated Front Side Bus (FSB) frequency.

The main part of the test flow is placing the DUT in a known operating state,
waiting for something to happen and then dealing with it. Figure 2 shows a flowchart of
the methodology used once an event happens. The flowchart shows that five event
types are expected: end of test fluence, single event functional interrupt (SEFI), system
resets (radiation induced), single event latchup (SEL), and non-fatal errors (some error
is produced but it does not immediately induce a functional interrupt or system reset).
Once one of these conditions is seen and identified, the test goal is to gain information
about what exactly happened and to recover the DUT to a known state.

Test
Execution

“OK” “Self-Reboot” “SEFI’, “LU” “NFE”
No / N\
ry , r urs,
(more) Telemetry ceases Error occurs
events system hung is trapped
Fluence or Time Single Event High \Non-FataI Errors/
limit reached Functional Currentis
Interrupt detected Erroris
logged,
Beam: OFF
Beam: OFF test
continues
A
(Latch Up
DUT: OFF
(automatically)
Screen| Blanks, Not OK
displays] boot
process Beam: OFF
A
\ Self-Reboot /
Beam: OFF
QK
A
Collect memory Not OK (DUT
card telemetry declared dead)
\
A 74
Y
DUT: OFF

Figure 2. SEE Testing flowchart showing the expected possible outcomes from a Single
Event and the methodology used in dealing with these events.

It is important to understand the definition of a functional interrupt as used here.
The main routine of the test executive software was written to handle all the exceptions
the processor could throw. So, in addition to looking for errors produced in the specific
test being run, the test software handles any other generic exception. In general, if the
exception can be handled (after the exception is recorded the process restarts correctly)
it is classified as a non-fatal error (NFE). It should be noted that if these exception-
handling routines were not present these events would result in the test software being
halted. So, within this work, a SEFI is an event that causes the processor to lock up,
reset, have continuous exceptions, or go into some unknown, unrecognizable state.

C. Thermal Considerations

When operating under normal conditions with the caches enabled, the Pentium III
draws in excess of 20 watts of power. If left in that state with no cooling, the processor
will not even boot.

Also, The Pentium III and AMD K7 die, as procured as a COTS parts, are flip chip
solder bubble bonded die to the DUT daughter cards. Since the beam must hit the die
directly, the packaged heat sink and cooling fan must be removed. In its place a water-
cooled jacket, which is thinned to 10 mils over the die, is used.

The large thermal source is also the reason that the die cannot be thinned, as has
been done with other flip chip parts. The thick substrate is the main thermal path for
removal of heat from the junctions. Thinning this would place excessive thermal
stresses on the die and most likely lead to structural failures.

D. Die Thickness Issue

As pointed out above, these parts are flip chip solder bubble bonded die. This places
the sensitive regions of the processor approximately 900 microns deep in the silicon die
with respect to the heavy-ion incidence point (See Figure 3). Thermal issues compound
this by requiring cooling material in the beam line, as well. Therefore, only high energy
and high Z beams are capable of penetrating and giving higher Linear Energy Transfer
(LET) values in the sensitive regions.

B Distance = 900 ym

Figure 3. Photograph showing a close up cross section of the P3 die. Depicted here is the
die thickness (900 microns) between the backside of the die and the front edge where
the solder bubbles are clearly visible.

V. DATA ANALYSIS SOFTWARE

The data sets generated from single event testing contain enormous amounts of data
due to the large test matrix. It was necessary to generate software to deal with these
large data sets and to analyze the data under all test conditions. A database form was
chosen for this analysis. The database initially reads all of the test conditions, then
allows to user to scan through the telemetry files. The user marks locations within the
telemetry files with error annotations that are then stored in the database with those
associated test conditions.

After each telemetry file has been annotated, the database can be queried via
Structured Query Language (SQL) commands to extract only those conditions to be
analyzed. Depending on the detail of the SQL commands, either the event rate (or cross-
section) can be calculated directly or the selected data from the database can be
exported in tabular format for other software to continue the analysis.

Figure 4 and Figure 5 show a sample screen shot for the telemetry file analysis and
the SQL data extraction process, respectively.

Iu P3 Radiation Test Analyzer FILE = D:\Junk}lU 00 DeciDatay_P3%001215\BUNOG7P3 933 1

Functions
Get Mew File " Mo Header compare Sync to delta time
Serial Port Results temon Contents Results
FAIL Fri Dec 15 15:53:00 2000[dt= 33 =] ﬂ START PCI Memary Dump il
Cache emor EMD 1/ |IPCI Memary initialized.
Test Letter:E keep alive = 3 times
FAIL Fri Dec 15 15:55:03 2000[dt= 36 =] Intel inzide TSwW121400 FriDec 15 15:58:27 2000(dt=0 1)
Cache emor EMD Signature: BE3 Serial #: 000303COCFEAFCAT
Test Letter:E keep alive =12 times Frequency = 700 Meazured at 700 Cache Enabled - Both L1 and L2
Test Letter:E keep alive = 25 times
FAIL Fri Dec 15 15:55:12 2000[dt= 45 =)
Cache emor EMD FAIL Fri Dec 15 15:58:50 2000[di= 23 =]
Test Letter:E keep alive = 4 times Cache emor EMD
Test Letter:E keep alive = 9 times
FAIL Fri Dec 15 15:55:15 2000[dt= 48 =) EFAIL Fri Dec 15 15:58:53 2000(dt= 22 £
Cache emor EMD
Test Letter:E keep alive = 8 times General protection fault occured
EFAIL Fri Dec 15 15:53:23 2000(dt= 56 z) Error Code = 00000000k
> [||CS:EIP 0078: 00033238 il
| | LH | LH

Status

Fiun Log File Report an Erar] All Errars from this run] Error info for this file] Frogram Status 'Window]

Source File Link Software Test Time of erar Error line number Mates far this emmar Error Index New efar
208 E [33 526 ‘ :l | &7] Moo |

[7x]

Error Reported

Index |Ern:|rF| eportedT ext Cauzel |Eause2
34 Stack fault
36 Page fault

38 Coproceszor error

e

<]

- _l
w Cache erar

KN f

Figure 4. Screen shot of the telemetry analysis software.

Iu SOL Test Form =1
SD:‘ S:::T;\dr;sequals el Pariar T ard From RL!n Thiz grmr dezcrption Diescrption
| Emor Reported equals Cache smor and g E:itr:i- ": ;IS:MZL:::; g IF:IEl: [w BeamOnDeft|y’ fecDose
[w DOUT Speed [Time
Emor Reported equals £7% I Beam On Tim Iw* HTor Reportet |1 Fluence W OUT OPSod
[V Delta Tima (3 v F”"MTESIFESEW Delta Doze [
E REeE e [SEF r
Counts valid anly if buttan H ite 1o File ; Dot W NumNFE
Courit Total count = 10 # Brors = 1
Total Fluence = 4814
S0L Results
MihereAndihen |FiIeName |RLIN |Softu.|ar\eTest | ErorReported Text |Flu3-c |Fluence ﬂ
Dec 1L R UMO4H P2 _933_1 H E Cache emor S5500000 21480
] Dec 1L RUMOH P2 _932_1 41 E Cache emor 5200000 2140
| |oec 0 RUNO42P3_833_1 42 E Cache emor 53100000 1340
] Dec 1L RUMO42P2_932_1 41 E Cache emor G9100000 1240
] Dec 1L RUMO2P2_ 92321 41 E Cache emor G9100000 1240
] Dec 1L RUMOGTP2_933_1 67 E Cache emor 62300000 Taa0
W RUMNDETP3_933_1 &7 E Cache emor £2300000 7850
D 1L RUMNOGTP3_833_1 67 E Cache emor G2300000 Ta80
] Dec 1L R UMOGTP2_932_1 67 E Cache emor G2300000 vae0
] Dec 1L RUMOGT P2 _9332 1 &7 E Cache emor G2200000 FaR0
] Dec 1L RUMOGTP2_933_1 67 E Cache emor 62300000 Taa0
] Dec 1L RUMOGTP2_932_1 &7 E Cache emor G2300000 Faa0
| |oec 0 RUMNOGTP3_833_1 67 E Cache emor G2300000 Ta80
: Dec 1L R UMOGTP2_932_1 67 E Cache emor G2300000 vae0 -
[LH

Figure 5. Screen shot of the SQL data extraction software.

VI. RESULTS

A. Total lonizing Dose (TID)

Intel P3 and AMD K7 parts were exposed to the total dose environment at the IUCF
proton facility and the GSFC Radiation Effects Facility (Cobalt-60). The results of this
testing are summarized in Table IV for the P3 devices and Table V for the K7 devices. It
should be noted that the one DUT rated at 550 MHz is 0.25 ym technology, while all
other DUTs tested are 0.18 ym technology.

The parts in unbiased and biased states tested at IUCF were exposed to proton doses
with various increments up to approximately 100 krads(Si). After each dose, all parts
passed all functional tests and the monitored voltages and currents did not change. No
parametric timing measurements were done in these tests. These tests, if possible,
would be expected to be sensitive to dose. The parts, however, did not degrade in
timing sufficiently to fail any of the functional tests that were performed.

Total dose testing using the Cobalt-60 source at GSFC was stopped on 3/8/02, due
to the GSFC Facility shutting down for maintenance. Several P3 devices, in an unbiased
condition, have been exposed to various doses, one in excess of 3700 krads(Si). They
have shown little sign of degradation in either supply currents or timing and
functionality testing. Biased testing of one Pentium III DUT did functionally fail after
exposure to an approximate dose of 511 krads(Si). A replacement part was tested under
bias, and had exceeded a dose of 573 krads(Si) when it was finally removed.

TABLE IV
Pentium III DEVICE UNDER TEST (DUT) TABLE

Device Rated Speed Test Condition Source LeEZFs O(Si?rl;leds)
P3 800 MHz Biased Co-60 *511
P3 933 MHz Biased Co-60 573
P3 550 MHz Unbiased Co-60 336
P3 650 MHz Unbiased Co-60 336
P3 650 MHz Unbiased Co-60 3700
P3 700 MHz Unbiased Co-60 336
P3 850 MHz Unbiased Co-60 697
P3 933 MHz Unbiased Co-60 2100
P3 550 MHz Biased Protons 49
P3 650 MHz Biased Protons 52
P3 650 MHz Biased Protons 4.4
P3 700 MHz Biased Protons 100
P3 700 MHz Biased Protons 5.5
P3 700 MHz Biased Protons 8.9
P3 750 MHz Biased Protons 14.3
P3 850 MHz Biased Protons 0.3
P3 850 MHz Biased Protons 13.3
P3 850 MHz Biased Protons 47.5
P3 933 MHz Biased Protons 16.9
P3 933 MHz Biased Protons 46.7
P3 933 MHz Biased Protons 34.4
P3 1 GHz Biased Protons 45.3
P3 1 GHz Biased Protons 32.5
P3 650 MHz Unbiased Protons 26

* Functional Failure Dose.
TABLE V
AMD K7 DEVICE UNDER TEST (DUT) TABLE

Device Rated Speed Test Condition Source Leszﬂ 0(s1<111‘1;1eds)
K7 600 MHz Biased Protons 4.4
K7 650 MHz Biased Protons 3.6
K7 700 MHz Biased Protons 0.5
K7 900 MHz Biased Protons 7.2
K7 1 GHz Biased Protons 3.2
K7 1 GHz Biased Protons 0.1
K7 650 MHz Unbiased Protons 100

There were plans to expose the AMD K7 processors, both biased and unbiased, to
Cobalt-60. However, after the poor showing the parts made at the heavy-ion facility (see
next section), it was determined to remove the AMD K7 parts from this study.

The limited proton TID testing seems to indicate that these generations of AMD K7
processors are TID hard to greater than 100 krad(Si). However, based on substantial
data collected via proton and Cobalt-60 exposure, the Intel Pentium III processors are
extremely tolerant to total dose, with unbiased parts surviving in excess of 3.7 Mrads(5i)
and biased parts surviving in excess of 500 krads(Si).

B. Single Event Effects

Both P3 and K7 processors were evaluated for SEE response. This included exposure
to protons at the IUCF and heavy ions at Texas A&M University (TAMU) Cyclotron.
The result summaries from the test reports are reported here.

Protons

Single Event Latchup

Sixteen different P3 processors (one 550 MHz, three 650 Mhz, three 700 Mhz, one 750
Mhz, three 850 MHz, one 933 MHz in SC242, two 933 MHz in PGA370, and two 1 GHz
in PGA370) were run at fourteen different clock speeds. Seven different AMD K7
processors (one 600 Mhz, two 650 MHz, one 700 MHz, one 900 Mhz, and two 1 GHz)
were run at five different clock speeds. During these tests, the processors were running
one of the tests in the test executive (tests were varied) and exposed to proton fluences
(per run) that varied from 1.5 x 10° to 3.3 x 10" protons/cm? The parts were tested in
683 conditions (processor speed, various cache on/off, ECC on/off, and software
executing). In all of the testing, no evidence of latchup was observed (presence of
latchup would be indicated by a sharp increase in I_Vcc_core). There were two of the
883 cases that required a hard boot (power cycle) to resume normal operations.

Single Event Functional Interrupts (SEFI)

Figure 6 shows the Pentium III (P3) SEFI cross-sections as a function of the DUT
operating speed and cache state. The curves in blue are the “cache on” data and the
curves in red are for “cache off.” The solid symbols are data from the first complete test
run (proton test #2). The plus and star symbols are from the third proton test run. The
solid symbol data show a rather dramatic difference between cache on and off. The
third proton test (with the better DUT software) still shows a difference but not as
dramatic and not as a large a cross-section for the “cache on” condition. This third data
set possibly shows a slight speed dependence, but the variation in the data does not
allow that to be said with any confidence.

Figure 7 shows the same cache on/off data from the second proton test run for the
AMD K7 parts. Again, the data shows a higher sensitivity in the “cache on” case and no
speed dependence.

Single Event Upsets — Non-SEFI

Next to be considered is the exception cross-section (i.e., those events, if not handled,
would lead to a SEFI). Figure 8 shows the data for the exceptions as a function of the
DUT operating speed and cache state. As above, the blue data is the cache on condition
and the red data the cache off condition. The solid symbols are the older data and the
plus and star data are the most recent data.

10"

SEFI Cross Section (sz)

101 -

--- L1 Cache Only
— L1 & L2 Cache On
— Cache Off

—— Cache Off - Test #3
=i Cache On - Test #3

1 1 1 1

|

-12 |
10 400 500

600 700 800 900

Processor Speed (MHz)

1000

1100

[
Q,
o
T

SEFI Cross Section (sz)

-10 1 1 1

1 1

500 600 700 800

900 1000 1100

Processor Speed (MHz)

Figure 6. SEFI cross-section of the Pentium Figure 7. SEFI cross-section of the AMD
III processor as a function of the operating K7 processor as a function of the operating

clock speed.

Exception Cross Section (sz)

clock speed.

10°

—_
oI

L %

—_

S
—_
(=)

—_

S,
—
—_

-12 |

—e— P3 Cache On

- P3 L1 Cache On

—— AMD K7 Cache On
—— P3 Cache Off

—o— AMD K7 Cache Off
—— P3 Cache Off - Test #3
=% P3 Cache On - Test #3

500

600

700

800 900 1000

Operating Speed (MHz)

1100

Figure 8. Exception cross-section of the Pentium III processors as a function of DUT
operating speed.

The final data to be presented is for upsets based on tests A through G. This data is
shown in Tables VI and VII.
The data shown in Table VI for test C shows that not only are the cache bits
themselves sensitive to upset, but the cache tags are as well. Additionally, the cache tags

have an upset mode that appears to be multiple bit upsets in the tags. Of interesting
note is that this mechanism is only present for the L1 & L2 Cache case. This case, as
discussed in the software section, is a test of the L2 cache only. This seems to indicate
that the L1 cache and L2 cache are not of the same technology or different architecture is
employed when the L2 cache is enabled.

Another issue of concern is the difference in bit error rates in the cache that is not
seen in the tags. For the per-bit tag errors for the L2 cache, upset rate is about one and a
half to two times that for the L1 cache (more testing would be required to verify
whether this factor is statistically significant). For the actual cache bits, though, the
difference is on the order of 10 to 20 times. However, here the L1 cache is the 10 to 20
times more sensitive than the L2 cache. This same difference is observed in the heavy-
ion testing that is discussed later. It turns out that the ratio of L2 bits tested (or at least
thought were tested) to the 100% L1 bit size is about 12. If it were assumed that only
100% L1 bits were actually tested in L2, then the cache bit errors would be very similar
between the L1 and L1 & L2 cases.

Investigation into architecture difference and possible software errors is still
ongoing but it is possible that the differences are real and that the L2 cache is a different
technology from the L1 cache and therefore may have a different upset rate. However,
no discussion on the validity of the different cache claim can be made without
knowledge of the hardware from Intel. This information was not immediately available
and may not be available at all. Additionally, this upset rate difference can change with
new technology devices that may change cache technologies as well.

TABLE VI
Per Bit Cache Cross-sections from Test C
DUT | Cache Single Tag Multiple Tag Cache Bit
Speed | State Errors Errors Errors
1000 Off 0 0 0
1000 L1 Data 2.8x10™ 0 3.88x 10™
1000 L1&L2 45x10™ 9.36 x 1077 2.64x10™"°
933 Off 0 0 0
933 L1 Data 2.33x10™ 0 4.07 x 10™
933 L1&L2 3.39x10™ 2.11x10™ 243x10™"
850 Off 0 0 0
850 L1 Data 1.9x10™ 0 2.89x10™
850 L1&L2 3.83x10™ 3.54 x 10 157 x 107"

The main item to be seen in Table VII is that very few events were actually observed,
except for Test E. Collection of this data was problematic, as the SEFI rate was

sufficiently high as to impact the lengths of the runs. This data for all tests but test E
(since test E tests the Instruction Cache, its operation is required) was taken with the
Cache Off or the SEFI would have been too high to collect any significant data.

An important item to note is that the Test E cross-section shown in Table V is the
per-bit cross-section and that it is very close to the per-bit cross-section for the L1 data
cache from Test C. This result is consistent with the concept that both L1 caches should
be the same technology and therefore have the same upset sensitivity.

TABLE V
Total Cross-sections for Other Tests
DUT | Test Number of Fluence Cross-section (cm?)
Upsets (p/cm?) (cm?/bit) for Test E
P3 A 1 2.39 x 101! 419 x 101"
P3 B 0 2.56 x 10" <391x10"
P3 D 1 3.96 x 101! 2.52 x 1012
P3 E 562 3.22 x 101 1.33x 10"
P3 F 6 3.92 x 101 1.53 x 10!
P3 G 4 2.62 x 101! 1.53 x 10!
Heavy Ions
Single Event Latchup

Seven different P3 processors (one 800 Mhz, two 933 Mhz, two 933 Mhz Flip Chip
and two 1 Ghz Flip Chip) and two K7 processors (one 650 MHz and one 1000 MHz) run
at seven different clock speeds (Flip Chip P3 processors and K7 processors were only
run at rated speed). During these tests, the processors were running one of the tests in
the test executive (tests were varied) and exposed to heavy ion fluences (per run) that
varied from 3.1 x 10% to 6.0 x 10" ion/cm?® The P3 parts were tested in 600 different
conditions (Linear Energy Transfer (LET), processor speed, cache on/off, and software
executing) and the K7 parts were tested in 16 different conditions. In all of the testing,
no evidence of latchup was observed (presence of latchup would be indicated by a
sharp increase in I_Vcc_core).

It should also be mentioned that the K7 processors had a high current transient on
the core power supply. While these transients were very high (tens of amperes in some
cases), no destructive events were ever observed. In fact, the processors for most
transients continued to work through a series of transients before a reset event would
occur. It should be noted that the same high current transients observed in the proton
testing on the K7 processors were observed with the heavy ions. They were observed on
the same parts that demonstrated them in the proton testing and not seen on the same
parts that did not demonstrate them with protons.

Single Event Functional Interrupts (SEFI)

Figure 9 shows the Pentium III (P3) and AMD K7 SEFI cross-sections as a function of
the effective Linear Energy Transfer (LET). Figure 10 shows the Pentium data, as taken
from Figure 9 (now in pluses and stars), and adds in the most current data set (shown
with solid symbols).

The first observation to make from Figure 9 is the roll-off with LET. The K7
processor shows a significant roll-off after an LET of 15. It should be noted that the
thickness was determined using a P3 part and the K7 part could have a substantially
thicker substrate. The P3 parts do not show this roll-off but most likely would show a
higher saturation cross-section if a longer range, high LET ion were used. As for LET
threshold, every ion used in this test eventually led to a SEFI event. Therefore, the SEFI
LET threshold is less than 0.7 MeV-cm®/ mg.

The next observation to make is the order of magnitude difference between the K7
and the P3 processors. This is also true for the most recent data set shown in Figure 10,
where the Pentium data sets across the two test trips are shown to be consistent. The K7
difference is for the cache off condition only as the cache on condition for the K7 led to a
single event induced reset as soon as the beam was turned on. This did not allow for an
accurate determination of a SEFI cross-section for the K7 cache on state. For even the
cache off state, the rate was high enough that the time to turn the beam off was a
substantial error in the actual SEFI cross-section.

The significant part-to-part variation noted in the high current response, with the
very high SEFI rate, led to the decision to remove the AMD K7 parts from further
consideration (i.e., no additional SEE testing or any Cobalt-60 testing).

-3

10

/
-4 /'//

" SN

—8— 933 MHz P3 Cache Off
——- 933 MHz P3 Cache On
—&— 800 MHz P3 Cache Off |-
—¥— 800 MHz P3 Cache On
—— K7 Cache Off

7 i i i i

0 5 10 15 20 25
Effective LET (MeV-cmzlmg)

Figure 9. SEFI cross-section of the Pentium IIT and AMD K7 processors as a function of
the effective Linear Energy Transfer (LET).

SEFI Cross Section (cm2)
o

W
o

10°
//
10* " o ,//
o l' - 2 '4,, = 3
g I/ T i
-+ |
Q
% 107 i/ / 4
% | // —e— All Cache On
8 /& —m— All Cache Off
o IR/ L1 Data Cache Only
K —¥— L1 and L2 Data Caches Only
10° :*—M ~{/ | 800 MHz Cache Off (Run #1)
-7 =%~ 800 MHz Cache On (Run #1)
I/ ——933 MHz Cache Off (Run #1)
4/ —— 933 MHz Cache On (Run #1)
. 1 [T]
0 2 4 6 8 10 12 14 16

Effective LET (MeV—cm2 /mg)

Figure 10. SEFI cross-section of the Pentium III processors as a function of the effective
Linear Energy Transfer (LET) from both tests.

Single Event Upsets — Non-SEFI

With the above determination in mind, the remainder of this report deals exclusively
with the Pentium III processor. Also, from this point forward, processor speed is not
explicitly shown in the figures. As was stated for previous figures, it is true for the
following figures that no speed sensitivity was observed for any of the tests.

Next to be considered is the exception cross-section (i.e., those events, if not handled,
would lead to a SEFI). Figure 11 shows the data for the exceptions as a function of LET
and cache state for the two heavy-ion tests.

As with the SEFI, the LET threshold is less than 0.7 MeV-cm?®/mg. There does
appear, however, to be a more significant roll-off with LET above an LET of 10 to 15.
The fact that events shown in Figure 10 and Figure 11 are still observed at the higher
LETs, indicates that as long as charge is deposited in the region between 800 and 900
microns, events can occur. It is not necessary for the ion to actually reach the sensitive
region.

Unlike the SEFI cross-section, it can be seen in Figure 11 that there is a strong
dependence on the cache state for the exception rate. There is about an order of
magnitude difference between the cases of “cache off” and any of the “cache on” cases.
There is a small difference when the data caches are enabled, but the primary effect is
seen when the instruction cache is enabled.

10- T T T T T T T T T T T T T T T T
§ 10 - —
(o
.S
©
R
2 107 -
3 —e— All Cache On
c —— All Cache Off
2 L1 Data Cache Only
e 10° —¥— L1 and L2 Data Caches Only| —
$ —#— All Cache Off - Test #1
- —— All Cache On - Test #1

10_7 1 1 1 1 | 1 1 1 1 | 1 1 1 1 | 1 1 1 1

0 5 10 15 20

Effective LET (MeV-cmz/ mg)
Figure 11. Exception cross-section of the Pentium III processor as a function of LET.

The next in line to consider for non-SEFI events are errors during the individual
software tests (Tests A-G, see Software Section). Tests A, B, D, F, and G will be
considered first as in all these cases very few to no errors were observed. Fluences
during these tests were typically in the range of 10° to 10° ions/cm’. Therefore, the
registers, the floating-point unit registers and combinatorial logic and the MMX unit
have very small cross-sections, on the order of a few time 10° cm” or less.

Tests C and E test the data and instruction caches, respectively. These areas of the
die do show a high sensitivity to upsets and will be dealt with separately. The first to be
considered in the instruction cache test, Test E.

Figure 12 shows the per-bit cross-section for the instruction cache as a function of
effective LET for the two device speeds tested. It is easy to observe in Figure 12 that the
cross-section is in the saturation regime over the LET range tested. The possible
exception to this is for the 1000 MHz parts, roll-off may be coming into play for the
effective LET 15 point. As in the SEFI and exception cases, it is difficult to say whether
this is truly roll-off or just statistics. It should be noted, though, that the difference in the
933 and 1000 MHz parts shown in Figure 12 is not seen in the exception or SEFI data.
That is why that data was not plotted as separate device speeds.

We can say with some confidence, though, that the threshold LET will be less than
1.0 MeV-cm?/mg and the saturation cross-section is on the order of 2 x 10® cm?/ bit.

10- T T T T I T T T T I T T T T I

10°

—o— 1000 MHz
-8 933 MHz

Instruction Cache Cross Section (cm2 /bit)

Effective LET (MeV-cm2 /mg)

Figure 12. Data from Test E showing the instruction cache per-bit cross-section as a
function of the effective LET. Shown is the data for both the 933 and 1000 MHz parts.

The final test to be discussed, Test C, tests the data caches. As in the previous proton
testing, the data caches were controlled individually so that two cases were possible,
testing with the L1 Data cache only and testing with both the L1 and L2 Data caches.
Unlike previous testing, these cases were able to be further divided into percentages of
the total cache size (either L1 only or L1 and L2). These percentages were 100, 50, 25 and
1% (except for the L1 and L2 case where the 1% run was not possible as this would
make the L2 cache tested smaller than the L1 cache and the L2 cache would therefore
not be sampled).

As stated in the software section, there are three types of errors that can occur in
Test C. They are recurring memory error, tag error, and bit error (both 1 to 0 and 0 to 1
cases are tracked). With this improved software, recurring memory errors were not
observed in this testing. We believe that previously observed recurring memory errors
were an artifact of the software rather than a true stuck bit.

In addition, in this testing, different types of tag errors were observed, such as single
tag errors, multiple tags in error within the same test loop, and multiple occurrences of
the same tag error across consecutive test loops. The mechanisms for the latter two of
these tag errors are not yet understood or why they almost exclusively only occur for
the case of the L1 and L2 data cache (only two events occurred for all the L1 only cases
as compared to 139 events for the L1 and L2 cache cases, with similar fluence levels of
10° to 10° cm?). Therefore, for the L1 Data cache only, the cross-section for these
multiple tag errors is < 10"’ em®. For the L1 and L2 Data cache case, the cross-section for
each of these multiple tag errors is approximately 2 — 4 x 10" cm®.

The final tag error case to consider is the single tag error. Figure 13 shows the per-bit
cross-section for a tag error as a function of effective LET for the two cache cases tested.
The error bars on this graph are the one-sigma statistical variation across the parts
tested (both part-to-part and speed differences). The error bars on the L1 only case are

significantly larger than the L1 and L2 case (they almost fall within the plot symbol).
This is due mainly to the much smaller number of errors seen in the L1 only case.

107 I

—e— L1 Data Cache]

-8 L1 aned L2 Data Cache

10

Single Tag Error Cross Section (cm2 /bit)
g g

-9 1 1 1 1] 1 1 -I- 1] 1 1 1]
10 0 5 10 15

Effective LET (MeV-cm2 /mg)

Figure 13. Data from Test C showing the per-bit tag cross-section as a function of
effective LET. Shown are the two cases of L1 data cache only and the L1 and L2 data
cache.

It can also be seen in Figure 13 that the cross-section is near, if not at, saturation
levels across the entire range of LETs used. This would indicate that the threshold level
is small (< 1) and that the saturation cross-section is in the range of 1 — 2 x 10°® cm”.
These numbers are consistent with the data from the instruction cache test. Since the tag
bits are physically the same technology and manufactured within the same array as the
actual caches we should expect to see similar numbers between the actual cache bit
error rate (both instruction and data) and the tag bit error rate.

The final result to be considered for Test C is the cache bit upset cross-section. When
the data is collected during the testing, bit upsets are classified as eitheraOto1ora1 to
0 upset depending on their initial state. These results collected during this testing
showed that there is no statistically significant difference betweena O to1and a1l to0
upset (i.e., they occur at the same rate). It should also be noted here that the total
number of upsets allowed during a single loop through the cache being tested was
much less than 1% of the total cache size being tested, thus the possibility of a bit
upsetting out of and back to its original state is extremely unlikely. With no difference
in the upset sensitivity due to initial state, data presented from this point will be for the
total bit upset cross-section (i.e., the sum of the 0 to 1 and 1 to 0 cross-sections).

The next issue to discuss is the process of the cache bit testing and its time
implications. After the appropriate portion of the cache is loaded with the pattern
(alternating 1’s and 0’s), each bit is read, its complement written back and read again.
The purpose of this sequence is to first determine if the bit was upset since the last visit
to the bit. The second reason is to determine if the bit is possibly stuck by writing a

different value and making sure that the write actually happened. The disadvantage of
this scheme is the amount of time it takes to do these three steps. While this may seem
to occur very quickly, when it has to be done 2,097,152 times (for the 100% L1 and L2
case), the loop time can be significant. This is especially true considering the rate at
which the processor can have an exception or SEFI event.

To determine how significant this timing issue is, a correction factor was determined
based on a number of factors. For each run at the accelerator, besides collecting the
number of bit upsets, exceptions and whether a SEFI occurred, the time that run took is
also recorded. Using a typical time for a loop through the portion of the cache being
tested (as determine in bench-top testing), a number of loops and errors per loop can be
determined. The correction factor comes in whenever a loop is interrupted. This will
occur every time either an exception or a SEFI occurs. The case for the SEFI is obvious
but for the exceptions, it must be stated that the process control for an exception is to
deal with the exception by resetting the processor to a known state at the beginning of a
run and restarting the process. While this does not take a large amount of time, it does
interrupt the loop that was currently running.

When a loop is interrupted, there is, in effect, an entire loop that has not been done.
This is due to all the bits logically after the bit tested when the loop stopped and all the
bits logically prior to the bit being tested that has been reset and may have already
upset again. Therefore, a correction factor for each case is determined based on the
average upset per loop for that case and on the total number of SEFI and exception
events that occurred for that case. As would be expected, the cases were the number of
bit being tested is small (all L1 only cases and the 25% L1 and L2 case), the correction
factors were completely negligible (<< 0.1%). For the larger percentage cases for the L1
and L2 cache, the correction factor was still small (on the order of 1 to 3%). While not
significant for this data set, this process can become important as the cache sizes
continue to increase. Currently available P3 and P4 processors are being distributed
with 512KB of L2 cache and Motorola PPC processors are being distributed with 2MB of
L3 cache. Even though little difference is shown in the data, the correction factor has
been kept for the remainder of this report.

The final issue to consider is the number of bits for each of the cases. We had
thought that this would not be an issue and the correct number of bits would just be the
fraction of the total for each of the different percentage cases run. While this seems to be
a good assumption for the L1 only case, Figure 14 seems to indicate differently for the
L1 and L2 cache cases.

10- = T T T T I T T T T I T T T T I]
£ 10-8 E E
(o'} - -
g r]
S B]
c L |
S
= L |
& 9
92} 10" —
S E W —e— L1 Only 100% Case]
) i —— L1 Only 50% Case]
'ﬁ i —&— L1 Only 25% Case]
8 —¥— L1 Only 1% Case
S 10-10 | = L1 & L2100% - L2 Bits| _|
‘D“ E =< L1 & L250% - L2 Bits]
C —— L1 & L2 25% - L2 Bits]
i L1 & L2100% - L1 Bits|]
i L1 & L2 50% - L1 Bits
L1 & L2 25% - L1 Bits T
10_11 1 1 1 1 I 1 1 1 1 I 1 1 1 1 I

0 5 10 15

Effective LET (MeV—cm2 /mg)

Figure 14. The per-bit cross-section for the data caches is shown as a function of the
effective LET. The data for L1 and L2 case is shown with two bit cases, the proportional
L2 bits and the 100% L1 bits.

The four red traces represent the four percentage cases for the L1 only case. As can
be seen in Figure 14, these show a saturation cross-section trend across the effective LET
region tested and a saturation cross-section of approximately 1 — 2 x 10® ¢cm?/bit. This
number is in line with the results from Test E on the instruction cache and the results
from the tag errors from Test C. This is what one would expect if all the caches are of
the same technology and layout (as is typically done).

The problem arises when the per bit cross-section is calculated for the L1 and L2
cases using the proportional number of bits based on 100% of the L2 cache test. These
three percentage cases are shown in blue in Figure 12. As can be seen, the curves fall
below the L1 only case by an order of magnitude or more. More significantly is the
spread in the curves as a function of the percentage of the L2 cache tested. This could
possibly be explained by having two mechanisms that lead to upsets, one that is not
related to the number of bits tested (e.g., in the periphery circuits) and the bit cell
upsets. An attempt was made to determine what single curve could be subtracted from
each of the three total cross-section curves for the L1 and L2 percentage cases that
would lead to the three per-bit percentage cases falling on top of each other. While there
is no physical basis for this methodology, for the postulate given above, this curve must
exist.

The best attempt at finding this curve and the resultant per bit curves is shown in
Figure 15. In this figure, the red curves are the same as in Figure 14. The single green
curve is the mystery mechanism that has not bit number dependence. It is shown here
at the same level as the L1 data for convenience only. The actual cross-section values are

five orders of magnitude larger, as it is a per-device cross-section rather than a per-bit.
The three blue curves in Figure 15 are the remainders of the three L1 and L2 percentage
cases after subtracting out the mystery mechanism curve and dividing by the
proportional number of L2 bits for the percentage case. While the curves have grown
somewhat closer together, the grouping is still not very tight and the values are almost
two orders of magnitude lower than for the L1 cases (and for that matter the instruction
cache and tag bits). This difference does not seem to make a good fit or reasonable

explanation.

10- = T T T T I T T T T I T T T]
2 0tk —_ _ /‘74 i
g : - :
= [|—e— L1 Only 100% Case]
2 | |-m— L1 Only 50% Case i
9 —&— L1 Only 25% Case
N 10—9 L |=¥—L1Only 1% Case -
2 E | —— L1 & L2100% - bit upsets 3
S L |=< L1 & L250% - bit upsets]
) [|=% L1&L225% - bit upsets]
'f)s | Mystery Mechanism (*10_5) |
© 10
o 10 | i
< 10 3 E
A C h
10_11 1 1 1 1 I 1 1 1 1 I 1 1 1 1 I

Effective LET (MeV—cm2 /mg)

Figure 15. Data cache per-bit cross-section curves showing possible two upset
mechanism for the L1 and L2 cases.

To investigate an alternative explanation, we can return to Figure 14. In this figure
the three green curves represent the three percentage cases for the L1 and L2 data cache
that have been made per-bit by dividing the cross-section by the total number of bits in
the L1 cache (L1 Data 100% case). It is easy to see that these curves now fall directly on
top of each other and on top of the L1 only curves, indicating the same per-bit cross-
section for all of the caches, under all percentage cases and their respective tag bits as
well. This situation makes the most sense. The problem is trying to explain why the
100% L1 data cache size is the correct number of bits to be dividing by. At present, we
have no explanation for this but it is still under investigation.

Assuming this is the correct situation, the per-bit cross-section for the data cache is
the same as the instruction cache and the data cache tag bits at approximately 1-2 x 10°®
cm’/bit. All of these curves are relatively flat over the entire effective LET range tested,
indicating that the threshold should be small. A good estimate from this and earlier
testing is that threshold will be at an effective LET of less than one.

VII. LESSONS LEARNED

Throughout the 18 months that this project has been in place, numerous changes in
procedures, hardware, software, etc. were done as a result of learning how to test these
state-of-the-art microprocessors. These lessons learned are grouped into three
categories: hardware and testing, DUT software and analysis software.

A. Hardware and Testing

The approach taken in the earliest testing turns out to be quite on-target.
Specifically, the choice of commercial hardware (motherboards especially) as opposed
to special versions (e.g. VME or cPCI versions) allowed the modification and evolution
of the testing to occur without huge materials cost and development time.

The choice of the SC-242 module form-factor was also prescient in allowing
access to more analog signals. All analog signals were not available upon shifting
to the Pin Grid Array package.

Originally, the DUT operating system and application resided on a floppy disk.
It was discovered that boot time was considerably improved by having it reside
on a hard drive.

The choice of a minimalistic operating system such as Pharlap with minimum
boot time was also proved to be important. Besides the software benefit of more
control of the processes, the reboot time is an important aspect of testing. The
longer the reboot, the more time required for a given set of tests (or less testing in
a given time period).

The issue of whether static or dynamic testing of registers and other components
is more informative is still unresolved. It seems, though, as if dynamic testing is
more similar to actual processor performance, and thus will yield better
predictive efforts, with much greater confidence.

In future endeavors a method of capturing boot-time monitor output would be
helpful. This was found to be outside of the field of expertise of this team when
using off-the-shelf commercial technology, and thus a careful eye was kept on,
but no permanent log was kept of, the booting of the DUT Computer.

Initially certain types of SEE-induced errors were anticipated and code was
written to accommodate them (by trapping execution errors and reporting
machine state information) but it was not anticipated that things like general
protection faults (GPFs) would occur nor how they would affect operation. By
having the DUT Computer software development team attend testing, on-the-fly
code modifications were made and data capturing improved dramatically.

The PXI form-factor Test Controller was found to be a good choice. Due to the
frequency of switching, in future tests solid state switches would be considered
advantageous over the reed relays used in these tests.

The RS-242 ports were chosen for telemetry and command because of their
ubiquitousness. Because they are simple and served well in initial tests, they
were retained as the primary link for all testing. However, in future testing a
look at front side bus (FSB) telemetry would be warranted. Proximity of FSB
monitoring equipment in TID testing would be a concern, however.

The original method of physically fixturing the DUT Computer for SEE tests was
cumbersome—essentially, it sat on a static mat. A fixture, which holds ATX
form-factor motherboards (ATX apparently defines a standard mounting hole

pattern) either horizontally (for SC-242) or vertically (for FC-PGA), alleviated this
problem.

In TID testing, fixturing of the motherboard inside the Lead-Aluminum box
remained cumbersome. Future testing should have better mounting of the
motherboard and allow for such things as cable bend radius. Shielding of non-
DUT components (stacking of Lead bricks) was not done in a specialized way;
perhaps this would reduce the downtime and mortality in the future with more
design time.

Originally the ATX power supply was modified to extend the 20 conductors by
~6’. While this was necessary due to the difficulty (leadtime) in obtaining the
connectors necessary to build an extension cable, the eventual construction of the
extender allowed for easy replacement of power supplies.

Cooling was an issue which required re-attending each time a higher-speed and
power DUT was tested or form-factor changed or heavy-ion testing was done.
No thermal solution involving thermal grease was allowed in proton testing, and
cooling solution thickness limitations of ~10 mil for heavy-ion testing
exacerbated the problem. Water-cooled thermal plate ended up being the
solution of choice, and eventually the components most compatible with the
circumstances (testing facilities and DUT fragility and heat production) was
found.

The process of producing the cooling plates could use some improvement. The
plates were locally manufactured so that there was a limitation on how thin and
uniform the material over the die could be made. Possible use of commercially
available metallic foils secured to the cooling plate would be a better option.
JTAG, or boundary scan test access standard, is a standard for testing complex
circuitry without having to build extensive hardware and software components
for each different circuit. It involves functionality designed into individual
circuits, and protocols for communication with the JTAG functions built into
circuits. Essentially, complex circuitry (in this case a microprocessor) has built
inline with each input and output bit, and various internal registers, a boundary
scan bit register. All boundary scan bit registers are connected in series, with a
simple serial port (test access port, or TAP) to read or write data to/from the
circuit’'s boundary scan bit registers. Testing involves clocking into the TAP a
series of bits that set an initial condition at each of the input pins and internal
registers and then operating the device. Monitoring functionality involves
stopping the device and reading the state of the bit registers. Very complex
circuits, and entire assemblies of complex circuits, can be daisy-chained to be
tested in this method.

JTAG was initially considered for testing of the P3 processors. The primary
reason for not using JTAG was that was difficult to obtain information from Intel
regarding the P3’s JTAG functionality.

Beyond that, though, there is the issue of realism—]JTAG seems to have been
most useful in radiation effects testing for static, as opposed to dynamic, testing.
The efforts of NASA GSFC REA Group have been primarily directed towards
dynamic testing, at actual processor speed, since that will reflect real sensitivities
as opposed to static register sensitivities that cannot be assumed to reflect any
separable sensitivity in an operating processor.

However, there was a data cost to not having JTAG monitoring functionality.
In cases where the processor suffered a SEFI without first communicating the

SEFI’s proximal cause, boundary scan probably could have provided information
on the state of the processor, and thus the manifestation of the SEFIL.

It is not known how complex the use of JTAG and the analysis of the results
would have been. In summary, it is suggested that future endeavors consider
JTAG as a possible tool, especially if SEFI events dominate SEE testing.

B. DUT Software

The Device Under Test (DUT) Software was originally designed to run flawlessly
reporting errors only in that part of the CPU that was under test. We quickly
found out that most of the errors encountered were causing exceptions and
terminating the program. A solution was partially implemented during the first
IU testing in 2000 (i.e., on-site software support is critical).

Our second trip to IU in 2000 had this error fixed and we were able to run for
significant periods of time without the program crashing. The exceptions were
handled, an error message was output and the program continued normally.
This extended run time allowed for test results that demonstrated other
weaknesses in the test software, especially in the bit testing of the caches. This
type of testing needs an in situ test process that can inject errors that would allow
for software development outside of the expensive test facilities. A laser based
SEE system would have been very useful in this regard.

On our first trip to TAMU in March of 2001, we discovered that the cache was
causing most of our errors and that when the cache was on, the program would
terminate before we could get a large volume of data. This led to the
understanding of the fact that the architecture allowed for control of all the
individual caches. It is probably worth the time and expenses to investigate and
take any architecture courses that the processor vendor may offer. More technical
discussions with motherboard vendors would also have been useful if they had
been more forthcoming.

On our third trip to IU in May of 2001, we added the capability to cache only the
data area of the program. We also enhanced the error report on the cache test to
include the location of cache errors within the buffer. During the trip, we further
enhanced the cache test to compress the enhanced output and to add the value of
the location in error to the report. This enabled us to distinguish cache tag errors
from bit errors. It also allowed us to distinguish 1 to 0 transitions from 0 to 1
transitions for the bit errors.

On our second trip to TAMU in November of 2001, we added the capability to
utilize different percentages of the cache. We wanted to be able to distinguish
between errors in the delivery of data from the cache and errors in the cache
memory.

C. Analysis Software

Throughout the process of creating and using this very useful tool, a number of
items were thought of that were not implemented either due to insufficiency of the
software originally chosen for the development or time constraints. A list of these items
is as follows:

Create more simplified data entry tools. These would be “short cuts” to data
analysis. By creating more automated “short cuts”, it becomes less tedious and
less prone to error.

* Add the artifact data from the “trip” to the install. (Problem install file get huge
and hard to transfer). Define a known location to store the data.

* Understanding and developing a method to translate all possible principal
investigator’s Excel spreadsheets (one spreadsheet for each run) and test runs
into a database used to create the analysis outputs. When changes in formats are
made, it creates the need for custom programming.

* Be able to analyze across multiple facility runs (e.g., all proton testing).

* Need checking routine that verifies that all data, errors, etc. make it into the final
database (we always had to iterate the final database until all the data was there,
at least all the ones that were caught!).

* Most times the only data needed was number of events and fluence, but for a
large number of SQL cases. It would have been nice to be able to click a button
that recorded that info into a file (i.e., the file is kept open across multiple SQL
cases and whenever the button is pushed the event count and fluence is
appended to the file).

VIII. CONCLUSIONS

Extensive data has been collected on the total dose and single event response of the
Intel Pentium III and the AMD K7 microprocessors. The data indicates that there is a
high tolerance to total dose and there is no susceptibility to latchup from protons. Single
event upsets and functional interrupts are present. However, for the Pentium III, if
running with the caches disabled is an option and with mitigation in place, these events
may be controllable to allow for operation in the space environment. The thermal issues
and the power requirements of these processors will most likely be the limiting factors
in their usage in space applications.

