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Abstract

The role of baroclinic eddies in transferring thermal gradients from the surface of the ocean
to the abyss, and thus determining the stratification, is examined. The hypothesis is that the
density differences imposed at the surface by differential heating are a source of available
potential energy which can be released by mesocale eddies with horizontal scales of the
order of 10 km. Eddy-fluxes balance the vertical diffusion of heat and thus determine the
vertical scale of penetratation of horizontal gradients (i.e. the thermocline). This conjecture
is in contrast with the current thinking that the deep stratification is determined by a balance
of turbulence at smaller scales (which determine vertical mixing) and the large-scale ocean
circulation.

Eddy-processes are analyzed in the context of a rapidly rotating primitive-equation flow
driven by specified surface temperature, with isotropic diffusion and viscosity. Scaling-laws
for the depth of the thermocline as a function of the external parameters are proposed.

Classical thermocline theories

Because the ocean is heated differentially from above, the vertical penetration scale, h, of
the surface signal depends on vertical mixing, characterized by the diffusivity �. In classical
thermocline theories vertical diffusion of heat is balanced by heat transport convergence by
the mean circulation. This leads to the following vertical scale of the thermocline:

h =

�
�fL

g��T

�1=3

; (Welander, 1959) (1)

In the absence of downward Ekman pumping, L is the scale of the domain.

Here, we enquire how the scaling is altered when vertical diffusion of heat is balanced by the
convergence of eddy heat transport rather than laminar upwelling. Eddy-transports are es-
sential in the Antarctic Circumpolar Current and in sub-polar regions, where a Sverdrupian
mean circulation is unavailable.

Hydrostatic flow driven by surface temperature

We examine buoyancy-driven flows in a 3-D domain on the f -plane by integrating the prim-
itive equations. The domain area is 1000� 1000 km2 and all variables are periodic in x and
y.

At the surface, z = H , we specify the temperature to be T = �T cos(2�y=L) and require
no stress. At the bottom, z = 0, impose no-flux of heat and no-slip.

The diffusivity, �, and the viscosity, � are isotropic in all three dimensions. The addition of
a small hyperviscosity removes noise on the grid-scale in a time scale of 20 days.

T∆Τ=           (2π     )  cos   y/L
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Fig. 1: The model domain. H is either 2000 or 4000 m.
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Fig. 2: A snapshot of the temperature at mid-depth: the mean temperature
gradient is stirred by baroclinic eddies.

The zonally averaged fields
The statistically steady state has a shallow zonally averaged thermocline, maintained by a
balance of vertical diffusion and convergence of eddy heat transport:
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Fig. 3: The mean temperature, �T , and eddy heat transport, v0T 0 for
� = 8� 10

�4 m2 s�1 and Prandtl=50.

There are two separate aspects of the mean temperature field: the horizontally averaged
temperature hT i and the zonally varying mean temperature �(y; z) = �T � hT i. They obey
different dynamics:

�
v0T 0

�
y
= ��zz;

hw0T 0i = �hT iz: (2)

We focus on � since the vertical structure of hT i depends on convective motions and sec-
ondary circulations not well resolved here.

−0.9 −0.8 −0.7 −0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0

200

400

600

800

1000

1200

1400

1600

1800

<T>

z 
(in

 m
)

  κ (mks)=0.0001  Pr=50

100 200 300 400 500 600 700 800 900 1000

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

y (in km)

z 
(in

 k
m

)

θ(y,z), κ (mks)=0.0001  Pr=50

Fig. 4: hT i and � for a typical set of parameters.

A scalar advected by the barotropic flow
The field � compares very well with that obtained advecting a passive scalar identically
forced at the surface but advected only by the vertically averaged velocities. This is because
the baroclinic velocity vector is in thermal wind balance and thus largely orthogonal to the
temperature gradient.
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Fig. 5: Left: The zonally averaged passive scalar advected by the
barotropic component is almost identical to � which is advected by the
3-D velocity. Right: A snapshot of v for a section along the middle longi-
tude.

The passive scalar, S = �S + S 0, satisfies

S 0

t + US 0

x +

O(V 0 �S=L)z}|{
V 0 �Sy =

O(�S0=h2)z}|{
�S 0

zz +O(V 0S 0);�
V 0S 0

�
y
= � �Szz; (3)

where U; V is the vertically averaged flow. The scalar variance equation then reads

+V 0S 0 �Sy = �S 0S 0

zz; (4)

so that in statistical steady state the vertical penetration scale of the eddies is the same as
the thermocline depth, h. The transport is then V 0S 0 � � �SyV 02h2=�, and thus proportional
to the variance of the barotropic flow. Using this scaling argument and the zonally averaged
scalar balance we find

h � (�L=V 0)
1=2

: (5)

The amplitude of the barotropic eddies, V 0, requires detailed knowledge of the statistics
of baroclinic eddies. In the large Prandtl number limit considered here, the barotropic ed-
dies do not undergo an inverse cascade, so we lack a theoretical framework that relates the
baroclinic and barotropic eddy amplitudes. Our numerical results show that in this regime
the depth of the thermocline is independent of the Prandtl number, �=�, and of the oceanic
depth, H , and increases as � �1=3.
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Fig. 6: The depth of the thermocline defined as h1 ��RH
0 �2 dz=

RH
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, as a function of the diffusivity, �. There
is no dependence on H or Pr.

Our numerical results further indicate that the dependence on the imposed horizontal tem-
perature gradient, �T , is the same as that in the laminar theory of Welander’s. We thus
conclude that despite the fundamental difference in the two scenarios, the parameter depen-
dence is the same in the eddy-driven and in the laminar Sverdrup case.
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Fig. 7: The depth of the thermocline, h1, as a function of the imposed
temperature difference, �T .

Two Prandtl number regimes
In the large Prandtl number regime, the amplitude of the baroclinic eddies is determined by
the global energy balance which reads

�

Z H

0

hu0z
2
+ v0z

2
i dz| {z }

Energy sink

= �g�[hT iz=H � hT iz=0]| {z }
Energy source

= ��g�Tabyss:

Thus the baroclinic kinetic energy of the eddies per unit depth is given by

BCKE = g�Tabyss h
2(H Pr)�1: (6)

In the small Prandtl number regime, dissipation occurs in the bottom boundary layer, dom-
inated by the barotropic flow. Then the amplitude of the barotropic eddies is determined
by

BTKE = g�Tabyss
p
� fPr�1=2: (7)

The abyssal temperature Tabyss, is of the same order as the horizontal temperature at the
surface, �T .
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Fig. 8: The kinetic energy per unit depth, normalized by the abyssal tem-
perature. The baroclinic kinetic energy satisfies the scaling (6) for the
black and blue sequences. The barotropic kinetic energy for the red se-
quence satisfies (7).

Conclusion
� The eddies alone can produce a shallow thermocline, where eddy-driven meridional heat

transport convergence balances downward heat diffusion.

� The eddy-driven transport is performed by the barotropic component of the flow, which is
nonlinearly forced by the baroclinic eddies. We currently lack a framework for describing
the statistics of the barotropic flow (k�5=3 is inappropriate here).

� The vertical penetration scale of the surface signal depends on �1=3, as in Welander’s
original scaling, but for very different reasons.


