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Abstract -- Two types of thin septum magnets, direct drive and eddy current, were c
mainly in 2-D magnetic aspects. For the direct-drive type, the leakage field depend
finite permeability of the magnet core and not on the thickness of the septum conduct
suggested that the leakage field be controlled by reducing the current in the septum c
or by using a correction coil. There were no significant differences between the t
regarding thermal problems caused by high current densities in the thin septa. Th
fields with 2-mm septum thicknesses were calculated using OPERA-2d to compare
types. For the eddy-current type, the leakage fields calculated using OPERA
compared with the calculations from Halbach’s model. The leakage fields for the edd
type decayed with long time constants. 
 
1. Introduction 

 
A septum magnet is a specially designed dipole magnet typically using a magnet c

shaped steel laminations. A “thin” septum separates two distinct regions of magnetic 
a high gap field between the magnet poles to achieve a maximum deflection of charge
beams during injection to or extraction from a circular accelerator, and one outside th
that coincides with a “field-free” region of the circulating beam orbit. The essential fe
a septum magnet are a spatially uniform gap field up to the inner surface of the se
acceptable apparent thickness of the septum region, and an extremely low magn
outside the septum (called “stray” or “leakage field”), in order not to affect the c
beam.  

Figure 1 schematically shows the cross section of a C-type dipole magnet with c
septum conductor S as the driving current coils. From Ampere’s law the septum curre
j (A/mm2) in S is approximately given by j = 10-3 Bo/(µo d1), where the gap field Bo is
the septum thickness d1 in millimeters, and µo the permeability in vacuum. To achie
field of 0.75 T, for example, the current density in the septum reaches 600/d1 (A/mm
current density in a thin septum results in a major thermal loading problem from ohmi
in the septum. The septum magnetic field can be DC or pulsed. When the effects of
currents in the magnet core are ignored, there will be no differences between the
pulsed ones as far as the magnetic flux distribution is concerned. However, because o
thermal loading in the septum conductor, a DC septum is possible only when the req
field is relatively low or the septum is relatively thick. Otherwise the magnet must b
and the duty factor of the septum must be adjusted to reduce the thermal loadi
acceptable level. There are two types of pulsed septum magnets: direct drive and edd
(also known as transformer). 

Keizer [1] has described the two-dimensional theory of direct-drive septum ma
has also discussed different septum geometries, the compensations of hysteresis, a
permeability effects using back-leg windings. New developments in direct-drive pulse
magnets have successfully achieved the required magnetic specifications by usin
designs for the cooling of the septum region [2,3]. An alternative design of the pulse
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is the eddy-current type: the driving coil is wound around the flux-return core, and the field-
free region must be shielded from the gap field by the eddy currents in the septum conductor. 
Since there is not much space restriction on the thickness of the coil, one can choose a single-
turn or multi-turn coil. Magnetic field measurements have shown that the peak of the leakage 
fields appears after the driving current pulse [4-6]. Halbach has analyzed a model for the eddy-
current type and has shown that the decay of the leakage field has a relatively long time 
constant [7]. The model uses appropriate boundary conditions between the interfaces of the 
septum conductors and vacuum, and also uses Poynting’s theorem, namely, the relationship 
between the rate of increase of the stored energy for the magnetic fields in the beam chamber 
outside the septum and the energy flow outward across the septum surface. The model neglects 
the ohmic heating in the septum conductor. 

The purpose of this note is to compare the two types of pulsed thin-septum magnets, 
mainly in basic 2-D magnetic aspects. Numerical data, if not otherwise specified, are results 
from the electromagnetic calculations using OPERA-2d [8]. A driving current pulse of a half 
sine wave with a pulse width of 0.4 ms is used for the magnet calculations. In the following 
section, possible control of the leakage field is discussed for the direct-drive septum. In Section 
3, decays of the leakage fields are compared to the calculation results from Halbach’s model 
and OPERA-2d. Calculations of the magnetic field in iron laminations and leakage fields are 
summarized in Appendices A and B, respectively. 

 
2. Direct-Drive Septum 
 

For the upper half of the 2-D direct-drive septum magnet in Fig. 1 the septum conductor S 
is located in −1.0 ≤ x ≤ 0. The magnetic flux distribution was generated at the peak of a half-
sine-wave current pulse. The weak leakage field outside of the magnet is not shown. When the 
field-decay time constant τ = µσ dL

2 for a lamination thickness 2dL was comparable to the 
pulse width of the driving current, it was assumed that the effects of the eddy current in the 
laminations were negligible and that the flux distribution at the peak of the current pulse was 
no different from that of the static field. Ampere’s law can then be applied to take a line 
integral of static magnetic field along a closed contour abdea (Fig. 1), and the leakage field 
integral outside the septum may be written as 

 ( ) ( / ) ,
e d

s o c s s rd a
B ds I I B dsµ µ= − −∫ ∫            (1) 

where Bs is the magnetic field component parallel to ds; Ic and Is are the driving currents in coil 
C and the septum conductor S, respectively; µr is the relative permeability for the magnet core; 
and the line integral path of Bs/µr is inside the magnet core. Since the currents in C and S 
generally have the same magnitude, the leakage field is determined by the integral Bs/µr in the 
magnet core and has nothing to do with the septum thickness. Therefore, in order to reduce the 
leakage field one must choose the steel laminations of high permeability and the cross section 
of the lamination core to be as large as possible. It should be noted from Eq. (1) and Fig. 1 that 
the leakage field outside the septum is always in the opposite direction of the main field in the 
gap. 

Relying on the term Bs/µr for reducing the stray field has a certain limit. Increasing the 
cross section of the magnet core will not reduce the leakage field to an arbitrarily small value. 
But the leakage field may be reduced by (a) using correction coils (C1 and C2 in Fig. 1) of 
current I∆  with the same current direction in C1 and C, or by bypassing −∆I from the septum 



 

 

conductor to CS (for example, located on the top of the magnet as shown in Fig. 1) so that µo∆I 
cancels out the integral Bs/µr in Eq. (1), and (b) modifying the septum conductor geometry as 
shown in Fig. 2 to reduce the current density in the septum near the midplane. In the former 
case, the leakage field may be adjustable during operation or testing of the magnet; the latter 
case may depend on careful design of the septum conductor. For a certain case of septum 
magnet fabrication, the septum conductor was spot-welded along the edge of the magnet core 
to reinforce the mechanical stability of the septum. When steel bars were used along the length 
of the magnet core assembly, a fraction of the septum current bypassed to the steel bars. This 
reduced the leakage field or reversed the field direction, depending on the fraction of the 
bypass current. 

The leakage fields calculated with a few different configurations of septum geometries and 
currents are plotted in Fig. 3. Typical permeability values of “1010 steel” for the magnet core 
were used for the calculations. When the 1-mm septum conductor was located in −1.0 ≤ x ≤ 0 
for the magnet core geometry of Fig. 1, the leakage field was approximately −1 mT for the gap 
field of 0.75 T. By diverting 0.16% of the current in the septum to CS, the leakage field was 
nearly cancelled with the line integral term Bs/µr. When the septum geometry of Fig. 2 was 
used, the leakage field was −0.43 mT with the septum current of 0.3% diverted to S2 and was 
+0.45 mT with 0.76% to S2. The “air” gap between the septum and the magnet core also 
changes the leakage field due to the changes in the flux path and the current density in the 
septum. For a gap of 0.3 mm, which increases the effective current density by 2.7%, the 
leakage field was −8 mT. Since the total septum current in S1 and S2 remained unchanged, 
different values of the leakage fields near the septum converged to a single value, roughly −1 
mT, at a larger distance from the septum, as expected from Eq. (1). 

In Appendix A, the time response of the magnetic field in the steel lamination to the 
driving current was calculated assuming: (a) the magnetic field at the edge of the lamination 
follows the time response of the current pulse, and (b) the average field in the lamination 
follows it. In Fig. 4, the edge field and average field for lamination thicknesses of 0.18 mm 
(ωoτ = 1.63) and 0.36 mm (ωoτ = 6.52) are plotted from Eqs. (A8) and (A11). Since the relative 
permeability of the core was on the order of 103 compared to the unity in the space between the 
laminations, the magnitude of the gap field was assumed to be the same as that of the average 
field in the lamination. According to the measurement data of the septum magnets for the APS, 
which used 0.36-mm laminations, the time response of the gap field was very close to those of 
the driving current with a pulse-width of roughly 0.4 ms. To avoid field saturation at the edge 
of the lamination and to avoid the delay of the leakage field after the current pulse, it may be 
necessary to keep ωoτ less than 2. 
 
3. Eddy-Current Septum  
 

The cross section for the upper part of an eddy-current septum magnet is schematically 
shown in Fig. 5 without shielding the magnet core. The current in the septum conductor for the 
direct-drive septum magnet now flows in the coil CB at the backside of the magnet core. The 
magnetic flux generated by the current in CB did not change the flux distribution near the 
septum area. It only reduced the gap field slightly by reducing the permeability of the magnet 
core. Roughly 45% of the magnetic flux was leaked to the outside of the magnet (27% to the 
front side), when the core was not shielded. Figure 6 shows the vertical fields calculated near 
the midplane of the magnet without the septum. The driving current in CB did not change the 



 

 

fields. By the method of conformal transformation the vertical field may be calculated 
approximately by using µr= ∞ for the magnet core 

1/ 2

1 ,
[1 exp( )]oB B

πξ
=

+
        (2) 

where Bo  = 0.75 T and B = 0.833Bo at x = 0 (which corresponds to ξ = −0.261). An eddy-
current septum has a burden to shield nearly all the magnetic flux for 0 ≤ x in Fig. 6 by 
inducing eddy currents near the x = 0 plane. 

Figure 7(a) shows the flux distribution for a half-sine-wave current pulse at the peak of the 
current (0.2 ms); the relatively low leakage field compared to the gap field is not shown. Figure 
7(b) shows the flux distribution at the end of the pulse width (0.4 ms) when the gap field is 
nearly zero. The front of the magnet, except the septum area, was shielded with a high-
conductive copper plate, and the septum was a Cu-Fe composite with a thickness of 2 mm. 
Details of the vertical fields near the midplane of the septum region during and after the current 
pulse are plotted in Fig. 8. In the steel part of the septum, the relative permeability varied 
between 45-167, depending on the location and time. The time constants calculated for copper 
and steel with µr = 100 were 0.064 ms and 0.64 ms, respectively. At the peak of the current 
pulse, 0.2 ms, when the field did not penetrate the steel part of the septum completely, the 
leakage field was relatively low. At this time, the eddy current in the septum was 
approximately 98% of the peak driving current when a return path for the eddy current was 
allowed for efficient shielding of the gap field. At the end of the current pulse, the leakage field 
reached a peak and began to decay. The figure also shows that the field penetration in the steel 
was nearly complete at 0.4 ms, and from 0.6 ms it began to decay from the peak field over 2 T. 
The field decay slowed down as the permeability increased at a lower field. After 1.5 ms the 
leakage field remained at 0.017 T, and the magnetic field in the steel part of the septum only 
decayed less than 10% of its peak value. Results of similar calculations for a 2-mm Cu septum 
are plotted in Fig. 9. The time constant calculated for the copper was approximately 0.26 ms. 
The magnetic field in the Cu septum decayed out after 0.4 ms, but the leakage field remained at 
0.033 T after 1.5 ms. 

The leakage fields as a function of time from the start of the current pulse are plotted in Fig. 
10 for several cases of 2-mm septa. The data for tr0 were calculated from Eq. (B6) of 
Halbach’s model for a Cu septum with a1 = 10, where a1 = D/d1 is the ratio of chamber width to 
septum thickness. Calculations from the model also show that when the time constant τ1 for a 
copper septum is larger than the current pulse width to, the peak of the leakage field appears 
just after τ1, and for τ1 smaller than to, the peak appears at (0.5~1)to. The data for tr2 and tr4 in 
Fig. 5 were calculated for a Cu septum with and without beam chamber (a1 = 10), respectively. 
The data for tr3 were calculated for a Cu-Fe septum with µr = 20 and a1 = 20, and those for tr5 
are nonlinear calculations for the septum without beam chamber. The data, except for tr0, were 
calculated using OPERA-2d [8]. 

The dominant term of the leakage field B(t) in Eq. (B6) calculated from Halbach’s model 
for to ≤ t is given by 
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where 1 11/( )o os aω τ=  with 2
1 1 1 1 .dτ µ σ=  Equation (3) roughly follows 1/(ωoτ1a1)exp[-t/(τ1a1)] 

when so has a value of much less than 1. From an approximate calculation for a Cu-Fe septum, 



 

 

Halbach has concluded that the results for the pure Cu septum apply to the Cu-Fe septum when 
the iron has zero conductivity and 1a  is replaced by (D + µrd2)/d1, where d2 is the thickness of 
the iron. For D = 20 mm, µr = 20, and d1 and d2 = 1.0 mm (data tr2 and tr3 in Fig. 10), a1 = 40. 
The time constant τ1 = 0.26 ms for the 2-mm Cu is reduced to 0.065 ms for the 1-mm Cu. This 
makes τ1a1 unchanged from that of tr0 in Fig. 10, which may be interpreted as the magnetic 
flux in the steel sheet d2 being evenly distributed in µrd2. 
 
4. Conclusions  
 

For the direct-drive septum magnet, the leakage field depends on the finite permeability of 
the magnet core, not on the septum thickness, and may be reduced by adjusting the current 
(Ic−Is) in Eq. (1). Reducing the thermal loading and avoiding cyclic fatigue in thin septa remain 
major problems for long-term stable operations. For the eddy-current type, the induced eddy 
current in the septum was 98% of the peak driving current, and a return path of the eddy 
current should be allowed for efficient shielding of the leakage field. Therefore, mechanical 
and thermal problems due to the high current density in the thin septum should not be different 
between the two types. For the eddy-current type, the peak of the leakage field appears after 
the driving current pulse. Calculations of the leakage fields from Halbach’s model and 
OPERA-2d agreed fairly well for a ratio of the chamber dimension to the septum thickness of 
10. When the time constant τ1 for a copper septum was larger than the current pulse width to, 
the peak of the leakage field appeared just after τ1, which is the time delay for the flux 
penetration through the septum. For τ1 smaller than to, the peak appeared at (0.5-1)to.  
Generally, the results from OPERA-2d were not very sensitive to the chamber dimensions. 

 
Appendix A. Magnetic Fields in Steel Laminations 

 
Steel laminations of thickness 2 Ld , separated by the space between the laminations, are 

drawn schematically in Fig A1. The dimensions of the laminations were assumed to be much 
larger than that of the thickness. It was also assumed that the applied magnetic field B  by a 
current pulse of a half sine wave and the induced electric field E in the laminations are in the y- 
and z-directions, respectively, and B and E depend only on the coordinate x and time t. Then, 
Maxwell’s equations 

 ,BE
t

∂∇ × = −
∂

r
r

  ,H Eσ∇ × =
r r

       (A1) 

may be combined to make the diffusion equation for the magnetic field in the lamination 

 
2

2

( , ) ( , ) ,B x t B x t
tx

µσ∂ ∂=
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        (A2) 

where σ  is the conductivity of the lamination, and the permeability of the lamination o rµ µ µ=  
is assumed to be constant. The Laplace transform (LT) of Eq. (A2) and its solution is given by 
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µσ=         (A3) 
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where p is the parameter for the LT, ( , )o LB d p  is the field at the edge of the lamination, and 

pξ τ≡  with 2
Ldτ µσ= as the time constant for the lamination. From Eq. (A4), the average 

field ( )B p  across the lamination thickness may be calculated as 

 sinh( ) ( , ) .
cosho LB p B d p ξ

ξ ξ
=         (A5) 

The inverse LT of Eq. (A5) depends on whether we know the average field or the edge field. 
If we assume that the field in the space between the laminations follows the time response of the 
driving current of a half sine wave with a pulse width of ot  ( /o otω π= ), 

      ( , ) sin ,L oo oB x d t B tω≥ =  (0 )ot t≤ ≤  
 ( , 0) 0,B x + =           (A6) 

then ( , )o LB d p  in Eq. (A5) may be substituted with the LT of Eq. (A6), 
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      (A7) 

Equation (A5) then has poles at op iω= ±  and 2 2( 1/ 2) / ,p mπ τ= − −  ( 1, 2,3, ).m = ⋅ ⋅ ⋅  The 
inverse LT of the average field is calculated to 
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with parameters 1/ 2( / 2) ,ok ω τ=  2 2( 1/ 2) / ,m os mπ ω τ= −  and sinh 2 sin 2tan .
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On the other hand, if we assume that the average field follows the driving current pulse: 
       ( ) sin ,oo oB t B tω=  (0 )ot t≤ ≤  
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B p B e
p

π ωω
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       (A9) 

then instead of Eq. (A5), we solve the edge field ( )oB p  from 

   cosh( ) ( ) .
sinhoB p B p ξ ξ

ξ
=         (A10) 

The poles of Eq. (A10) are at op iω= ±  and 2( ) / ,p nπ τ= −  ( 1, 2,3, ).n = ⋅ ⋅ ⋅ With 
2( ) / ,n os nπ ω τ=  the inverse LT of the edge field is given by  
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Appendix B. Halbach’s Model of the Leakage Field in an Eddy-Current Septum Magnet 
 
Figure B1 schematically shows the permeability, conductivity, and thickness of a Cu-Fe 

septum, and D is the dimension of a beam chamber in the x-direction outside the septum for the 
calculation of the Halbach’s model [7]. We will assume that the magnetic field and eddy current 
near or in the septum have only y- and z- components, respectively.  For the Cu septum ( 2 0d = ), 
the magnetic field across the septum may be solved from Eq. (A3): 

 
2

2
2

( , ) ( , ),s
d B x p k B x p

dx
=  2

1 1 .sk pµ σ=       (B1) 

From Eq. (B1) and 1 1/dB dx Eµ σ=  we find the magnetic field and induced electric field are 

 1 1( , ) ( ) cosh ( ) sinh ,o s o s
s

B x p B p k x E p k x
k

µ σ
= +      (B2) 
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o s o s
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E x p B p k x E p k x

µ σ
= − +      (B3) 

where ( )oB p  is the gap field of the septum magnet and ( )oE p  is the electric field on the inner 
surface of the septum. The fields outside of the septum, 1B ( 1x d= ) and 1E ( 1x d= ), may be 
obtained from Eqs. (B2) and (B3). Using Poynting’s theorem of power flow in electromagnetic 
fields, 1B  and 1E  are related 
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∂

        (B4) 

or 1 1E DpB= −  after LT. Here g is the septum height (pole gap), and the ohmic heating in the 
septum is neglected. Then, from Eqs. (B2) and (B3) the leakage field may be expressed as 
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where 2
1 1 1 1dτ µ σ=  is the time constant of the septum conductor. If we assume that the gap field 

is the same as the average field in the steel laminations in its magnitude and time response, 
( )oB p  may be replaced with Eq. (A9). Equation (B5) has poles at ,op iω= ±  1 11/ ,p aτ= −  and 
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with parameters 



 

 

1 1 1 1 1 1 1 1 1cosh cos (sinh cos cosh sin ),P k k a k k k k k= + −  

1 1 1 1 1 1 1 1 1sinh sin (sinh cos cosh sin ),Q k k a k k k k k= + +  
1/ 2

1 1( / 2) ,ok ω τ=  1 1tan / ,Q Pφ =  1 11/( ),o os aω τ=  and 2
1( ) /( ),n os nπ ω τ=  ( 1, 2, )n = ⋅ ⋅ ⋅ . 
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Fig. 1. Cross section of the upper half of a direct-drive septum magnet with its magnetic flux 
distribution. The relatively weak leakage field outside the septum is not shown. The main coil 
C and septum conductor S are used for driving current pulses of a half sine wave. The leakage 
field may be adjusted by bypassing a fraction of the current in the septum conductor to coil CS 
or by using correction coils C1 and C2. Lines abcd and de denote the line integral paths ad and 
de in Eq. (1), and gf is the half-gap of the magnet. 

Fig. 2. The geometry of the septum cross section was modified by adding S2 to S1 for a direct-
drive septum magnet. A small fraction of the driving current may be distributed in S2 to reduce 
the leakage field. 
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Fig. 3. Leakage fields of direct-drive septum magnets are plotted for five different cases of the 
septum. The outer surfaces of the septa were located at x = 0 for sq2 and sq2a, and x = −1.0 for 
sq6, sq62, and sq6e. The septum current Is was varied: sq2 (Is not changed); sq2a (0.16% of Is 
bypassed to coil CS); sq6 (0.27% of Is to S2, shown in Fig. 2); sq62 (0.76% of Is to S2); and 
sq6e (0.3-mm air gap between the septum and magnet core). 
 

 
Fig. 4. Time responses of the magnetic field at the edge of steel lamination relative to the 
average field in the lamination are plotted from Eq. (A11) for lamination thickness (a) 0.18 mm 
(ωoτ = 1.63) and (b) 0.36 mm ((ωoτ = 6.52). Time responses of the average fields in the 
laminations relative to the edge field are plotted from Eq. (A8) for lamination thickness (c) 
0.18 mm and (d) 0.36 mm. The current pulse width and µr used for the plot were 0.4 ms and 
4000, respectively. 



 

 

 

 
 

Fig. 5. Cross section for the upper part of an eddy-current septum magnet without the shielding 
of the magnet core. Current pulses of a half sine wave with a pulse width of 0.4 ms were driven 
by the main coil C and coil CB in the backside of the magnet. About 45% of the magnetic flux 
is scattered outside of the magnet. 
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Fig. 6. Magnetic field calculated near the midplane of Fig. 5 at the peak of the driving current 
pulse with (tr1) and without (tr1c) coil CB. It was calculated without the septum and the 
shielding of the magnet core. The magnetic field at x = 0 was approximately 0.83% of the gap 
field 0.75 T. 



 

 

 

 
 

Fig. 7. Magnetic flux distribution for an eddy-current Cu-Fe septum magnet with shielding of 
the magnet core: (a) at the peak of the current pulse (0.2 ms) and (b) at the end of the pulse (0.4 
ms) when the gap field is zero. The distribution of the relatively low leakage field compared to 
the gap field at 0.2 ms is not shown in (a). 
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Fig. 8. Magnetic fields near the 2-mm Cu-Fe septum (−2.0 ≤ x ≤ 0) of an eddy-current septum 
magnet were calculated during and after the current pulse. The fields in the steel septum are 
over 2 T (top), and the leakage fields are shown in expanded scale for the vertical axis (bottom). 
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Fig. 9. Magnetic fields near a 2-mm Cu septum of an eddy-current septum magnet during and 
after a current pulse with a pulse width of 0.4 ms. 
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Fig. 10. Leakage fields for eddy-current septum magnets are plotted as a function of time from 
the start of the current pulse with ωoτ1 = 2 and 2-mm septa. tr0: Cu septum, calculated from Eq. 
(B6) for a1 =10. tr2: Cu septum for a1 =10. tr3: Cu-Fe septum for µr = 20 and a1 =20. tr4: Cu 
septum without beam chamber. tr5: nonlinear calculation for Cu-Fe septum without beam 
chamber. OPERA-2d was used for all the calculations except tr0. 
 
 
 
 



 

 

 
 
Fig. A1. Schematic drawing of steel laminations of thickness 2 Ld  are separated by “C5-
coating” spaces. 
 
 

 
 

Fig. B1. Schematic drawing of two-component septum: subscripts 1 and 2 represent copper and 
iron, respectively, and D is the dimension of the beam chamber in the x-direction. 
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