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Geostrophic turbulence ~ 2-d turbulence 

⇒ some quantities (e.g., vorticity) cascade to small scales and are mixed; 
     other quantities (e.g., energy) cascade to large spatial scales and are  
     quasi-conserved.

⇒ constraints imposed on geostrophic eddy fluxes

streamfunction

vorticity
(calculation: Vallis and Maltrud)

moreover, can solve explicit EKE budget to constrain eddy transfer coefficients



Parameterization of eddies in a barotropic ocean:

energetics, angular momentum and flow stability.

Abstract

A new method is developed for parameterizing fluxes of momentum by geostrophic eddies.
This closure: (a) mixes potential vorticity down-gradient; (b) satisfies an energy conservation

relation; (c) conserves angular momentum when implemented in a zonally-periodic domain. As
such the closure is able to parameterize the gross effects of barotropic eddies in both forced-
dissipated and freely-decaying turbulence scenarios. In freely decaying turbulence calculations

in a closed basin, the parameterization produces inertial Fofnoff gyres whose amplitude is
dependent on the initial energy. We suggest that this general approach may prove of utility in
attempting to parameterise geostrophic eddies in the stratified ocean.

1. Introduction

2. Momentum and vorticity formulations

In this paper we restrict our attention to a bartropic ocean of uniform depth, this repre-
senting the simplest framework within which eddy momentum fluxes and Coriolis effects
can be considered. There are two equivalent formulations of the problem, in terms either
of momentum or vorticity, though the relations between these two formulations often
remains obscure. In this section, we seek to elucidate the connections between the two
approaches.

a. Momentum formulation

Consider the time-filtered barotropic momentum equation:

∂u

∂t
+ k × qu + ∇B = F− k × q′u′ −∇

u′ · u′

2
, (1)

where u is the velocity (with ∇.u = 0), k is a unit vertical vector, q = f(y) + ∂v/∂x −

∂u/∂y is the absolute vorticity, f(y) is the planetary vorticity, B = p/ρ + (u2 + v2)/2 is
the Bernoulli potential, Fs represents all body forces (including frictional forces), (x, y)
are the coordinates in the east- and northward directions and t is time. The remaining
terms on the right-hand side represent the eddy momentum fluxes where primes indicate
the eddy components of the flow.

In this formualtion, there are three eddy fields requiring parameterisation: the two com-
ponents of the eddy vorticity flux, q′u′, and the eddy kinetic energy, u′.u′. However, note
that the equation also contains an contribution from the pressure gradient acceleration
that will be sensitive to the eddy flux terms.

b. Vorticity formulation

1

only eddy force that can 
drive a net acceleration

1. Theory for barotropic model

momentum equation:

Equivalently, one can take the curl of (1) to obtain a vorticity equation,

∂q

∂t
+ u ·∇q = k ·∇× F−∇ · q′u′. (2)

This vorticity formulation contains sufficient information to describe the evolution of the
flow, but contains only one eddy flux of interest, the divergent component of the eddy
vorticity flux.

c. Relation between the momentum and vorticity formulations

Following Hoskins (1983), Hughes and Ash (2001), we can decompose the momentum
equation in rotational and divergent components:

∂u

∂t
+ k × (qu)div = Frot − k × q′u′

div, (3)

k × (qu)rot + ∇B = Fdiv − k × q′u′
rot −∇

u′ · u′

2
. (4)

The divergent component has no curl, and hence plays no further role in the dynamical
evolution of the flow; it serves merely as a diagnostic relation for the pressure. This
means that we do not need to parameterize the eddy kinetic energy in (4) in order to
proceed, and we need only parameterize the divergent component of the eddy vorticity
flux.

The above decomposition is only consistent if we apply the boundary condition of normal
flow, which gives:

n ·

(

k × (qu)div + k × q′u′
div − Frot

)

= 0.

Though not necessary, it is conceptually simpler to assume that each component in the
above relation vanishes independently on the boundary, i.e.,

n · k × (qu)div = n · k × q′u′
div = n · Frot = 0.

Note that this implies that the tangential component of the divergent eddy vorticity flux
vanish at the boundaries, rather than the normal component as usually assumed.

d. Energetics

The mean energy equation can be written:

∂

∂t

(

u · u

2

)

+ ∇ · (Bu) + ∇ ·

(

u′ · u′

2
u

)

= u · F − u · k × q′u′.

We can also form an eddy kinetic energy equation as follows. The transient momentum
equation is

∂u′

∂t
+ k × (qu′) + k × (q′u) + k × (q′u′) + ∇B′ = F′.

2

can decompose into rotational and divergent components: 

Hoskins (1983), Hughes and Ash (2001), 
Marshall and Shutts (1981), ...



q′u′ = −κ∇q + k ×∇λ

⇒ eddy vorticity flux down-gradient 

(a) vorticity mixing

    plus an arbitrary rotational flux 

q−

q+

q′u′

q−

q+

q′u′

cf. Green (1970)



∂q/∂ψ

Can derive, without further approximation:

(b) energy conservation

∂

∂t
(eddy energy) = −κu·u

∂q

∂ψ⊥

+ ∇ · (flux)

   mean to eddy energy conversion

sign depends on sign of                

Arnoldʼs stability condition 

              > 0   ⇒  stable
              < 0   ⇒  unstable

∂q/∂ψ

∂q/∂ψ

κ = γUeddyleddy = γleddy

√

2 (eddy energy)

also include diffusion and Newtonian damping of eddy energy ( + ... )  



separated 
jet

no-slip 
boundary

layer 

wind
stress

Regions where               < 0 ⇒ eddy growth:∂q/∂ψ



streamfunction vorticity

wind
stress

Wind-driven gyres (free-slip): 

eddy kinetic energy



Parameterized freely-decaying turbulence (initial uniform eddy energy):
streamfunction vorticity

∂q/∂ψ
“Fofonoff gyres” 
(             > 0)

Wang & Vallis: Emergence of Fofonoff Solution 

a b 

d 

Figure 14. Time mean streamfunction IJJ fields in experiments (a) SSl, (b) SS2, (c) SS3, and 
(d) SS4. 

small scale structures are then basically ‘mopped up.’ We discern two competing 

mechanisms: one is the nonlinear interaction which tends to drive the fields to a time 

mean Fofonoff solution; the other is the viscous dissipation which seems to drive the 

fields toward homogenization. With small Reynolds number, especially when the 

Rossby number is also small, dissipation becomes dominant soon after a few eddy 

turnover times. 

Cessi et al. (1987) studied the relationship between the value of potential vorticity 

inside the gyre and the gyre structure. In the northern homogenized gyre they 

predict: 

Yn + 3s 
qz=P------- 3 ’ (4.1) 

Wang and 
Vallis (1994)

eddy 
kinetic 
energy



2. Theory for a layered quasigeostrophic model 

Assume down-gradient closure for potential vorticity 
(plus arbitrary rotational gauge): 

Q′u′ = −κ∇Q + k ×∇λ

Then: ∂

∂t
(EKE + EPE) = −

N∑

i=1

Hiκi
∂Qi

∂ψi ⊥

ugi · ugi + · · ·

Thus, need           < 0 for eddy energy to grow 

                                                 (Arnold, Charney-Stern, ... )

∂

∂t
(EKE + EPE) = −

N∑

i=1

Hiκi
∂Qi

∂ψi ⊥

ugi · ugi + · · ·

For now, use isopycnal layer thickness following Gent and McWilliams (1990)



Spin up of thermal wind transport 
in a wind-driven zonal channel:
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Figure 8: The thermal wind transport of a simple channel model using differ-
ent formula for the Gent-McWilliams thickness mixing coefficient, κGM . The
dashed line shows the wind-driven linear growth of channel transport in the
absence of an eddy-closure. The constant coefficient acts the fastest (slowing
the initial growth rate) because the parameterization acts on buoyancy gradi-
ents from the very start of the calculation. The Richardson number dependent
coefficient is less active at the beginning because the initial slopes are small
but still provides very efficient mixing within a moderate amount of time. The
EKE based approach for κGM effectively has no eddy mixing until the channel
transport is almost fully established. The transport over-shoots the equilibrium
value while the EKE is still increasing and eventually undershoots because of
the natural time-lag built in by the use of a predictive EKE equation.
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Delay in eddy activity
! Many simulations exhibit a delay in the “action” of eddies, 

as EKE production comes into balance with forcing



3. Application to OGCMs

∂t
1
2 |v|

2 +∇ · Bv − wb = −v · Pζ + v ·∇ · τ

∂t(−zb) +∇ · (−zbv) + wb = ∇ · z (Pb)− k̂ · Pb

∂tE +∇ · B′v′ = v · Pζ + k̂ · Pb + v′ ·∇ · τ ′

!

"

!

"

v · Pζ
k̂ · Pb

Resolved kinetic energy equation

Resolved potential energy equation

Eddy kinetic energy equation

Figure 1: The conversion of resolved kinetic and potential energy into eddy
kinetic energy. The terms v · ζ ′ ∧ v′ and w′b′ appear as energy sources/sinks in
a numerical model without an EKE equation (system depicted above the dashed
line).

Here we have used the identity v′ ·ζ ′∧v = −ζ ′∧v′ ·v. Note that although there
are no explicit triple products of the form u′u′u′ they are in fact present inside
the term B′v′. This term also contains the advection of EKE by the resolved
flow, v ·∇E . We have written the eddy kinetic energy equation (14) such that
terms on the left hand side involve quantities that already appeared in the first
moment equations and terms involving new quantities, appearing only in the
second moment equations, are collected on the right hand side.

Here, we consider the possibility of solving the eddy kinetic energy equation
(14) in conjunction with the first order closures that otherwise close the system
of equations. This differs from the second-order closure approach because we
will retain the first order closures. The EKE equation will be a diagnostic but
can provide a more complete description of the model energetics. However, to
meaningfully solve the EKE equation will require further closure assumptions
which we will discuss later.

2.1 Implciit eddy energetics with first order closures

The eddy fluxes v · ζ ′ ∧ v′ and w′b′ in numerical ocean circulation models are
usually parameterized in terms of the resolved state variables. Such parameter-
izations are known as first-order closures and we will denote these parameteri-
zations by the functions P, i.e.,

ζ ′ ∧ v′ → Pζ (15)
b′v′ → Pb. (16)

To be clear, the model equations become

∂tv + (f k̂ + ζ) ∧ v − bk̂ +∇B = −Pζ +∇ · τ (17)
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Figure 2: The conversion of resolved geo-potential energy by the Gent and
McWilliams, 1990, parameterization in the GFDL coupled model, CM2.1 [? ],
averaged over the top 1000 m. The thickness mixing coefficient, κGM is variable,
a function of the horizontal bouyancy gradients. The scale is logarithmic in
order to show the structure in the open ocean away from boundary currents
and the Antartic Circumpolar Current. The field is everywhere positive; the
parameterizationi always acts to reduce the resolved potential energy.

∇ · v = 0 (18)
∂tb +∇ · bv = −∇ · Pb (19)

which is a closed system assuming that Pζ and Pb are functions only of the
mean state variables. The corresponding energy equations for system 17–19 are

∂t
1
2
|v|2 +∇ · Bv − wb = −v · Pζ + v ·∇ · τ (20)

∂t(−zb) +∇ · (−zbv) + wb = ∇ · (zPb)− k̂ · Pb. (21)

This system of equations (17–21) are depicted in Fig. 1 as the system above the
dashed line. The terms v · Pζ and k̂ · Pb appear as net sources or sinks to the
numerical model.

To give explicit examples, a typical global circulation model might use lat-
eral eddy viscosity and the Gent-McWilliams parameterization to represent the
effects of unresolved mesoscale eddies. Here,

Pζ = Ah∇ζ (22)

4

Removal of resolved potential energy by Gent and McWilliams 
in GFDL coupled model: 



∂t
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2 |v|

2 +∇ · Bv − wb = −v · Pζ + v ·∇ · τ

∂t(−zb) +∇ · (−zbv) + wb = ∇ · z (Pb)− k̂ · Pb

∂tE +∇ · B′v′ = v · Pζ + k̂ · Pb + v′ ·∇ · τ ′
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Figure 1: The conversion of resolved kinetic and potential energy into eddy
kinetic energy. The terms v · ζ ′ ∧ v′ and w′b′ appear as energy sources/sinks in
a numerical model without an EKE equation (system depicted above the dashed
line).

Here we have used the identity v′ ·ζ ′∧v = −ζ ′∧v′ ·v. Note that although there
are no explicit triple products of the form u′u′u′ they are in fact present inside
the term B′v′. This term also contains the advection of EKE by the resolved
flow, v ·∇E . We have written the eddy kinetic energy equation (14) such that
terms on the left hand side involve quantities that already appeared in the first
moment equations and terms involving new quantities, appearing only in the
second moment equations, are collected on the right hand side.

Here, we consider the possibility of solving the eddy kinetic energy equation
(14) in conjunction with the first order closures that otherwise close the system
of equations. This differs from the second-order closure approach because we
will retain the first order closures. The EKE equation will be a diagnostic but
can provide a more complete description of the model energetics. However, to
meaningfully solve the EKE equation will require further closure assumptions
which we will discuss later.

2.1 Implciit eddy energetics with first order closures

The eddy fluxes v · ζ ′ ∧ v′ and w′b′ in numerical ocean circulation models are
usually parameterized in terms of the resolved state variables. Such parameter-
izations are known as first-order closures and we will denote these parameteri-
zations by the functions P, i.e.,

ζ ′ ∧ v′ → Pζ (15)
b′v′ → Pb. (16)

To be clear, the model equations become

∂tv + (f k̂ + ζ) ∧ v − bk̂ +∇B = −Pζ +∇ · τ (17)
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Figure 3: The conversion of resolved kinetic energy by the parameterized eddy
friction terms, averaged over the top 1000 m. The scale is logarithmic and
symmetric about zero (blues are increases in resolved KE, reds are decreases in
resolved KE). This field is most dominated by the lateral eddy friction terms.
The field has some negative regions, indicating that locally there is an increase
in resolved kinetic energy (i.e. a re-distribution of KE by friction). Note the
band of high KE removal at the equator.

Pb = −κGM




0 0 Sx

0 0 Sy

Sx Sy 0



∇b (23)

where Sx = −bx/bz and Sy = −by/bz are isoneutral slopes, Ah is an eddy vis-
cosity and κGM is a positive thickness mixing diffusivity. The major innovation
behind the Gent-Mcwilliams scheme is that it represents the reduction of poten-
tial energy due to baroclinic instability. The potential energy change due the
Gent-McWilliams scheme given here is

−k̂ · Pb = κGM (Sxbx + Syby) = −κGM |S|2N2 ≤ 0 (24)

because |S|2 = S2
x + S2

y ≥ 0 and N2 = bz ≥ 0. Figure 2 shows this term
diagnosed from the MOM4p1 component of the GFDL coupled model, CM2.1.
In this model, the Gent-McWilliams coefficient is variable, a function of the
local density gradients [? ]. Regions of baroclinicity stand out in the ACC
(Antarctic Circumpolar Current) and western boundary currents. This figure is
similar in structure to Fig. 3b of [1] that shows a satellite derived map of surface

5

Removal of resolved kinetic energy: 



Ueddy implied in 1o GFDL 
coupled model

(assuming local balance 
between eddy energy 
production and 
local decay, 60 days-1): 

Ueddy diagnosed in 1/8o 
ECCO2 simulation: 



Conclusions
New framework for parameterizing eddy fluxes and diagnosing models: 
• down-gradient flux of potential vorticity or isopycnal elevation; 
• conserves energy; 
• eddy transfer coefficient ~ eddy energy. 

Enforcing the conservation laws 
⇒ classical stability conditions emerge naturally as the criteria 
    controlling the growth and decay of eddy energy 

Need to develop much better models for the dispersion and dissipation of 
eddy energy.

Eddy energy is a prognostic variable.

Preliminary diagnostic results from OGCMs encouraging. 

Can mix potential vorticity without creating spurious energy sources. 


