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ABSTRACT

Here, previous work using photon diffusion theory to describe radiative transfer through dense plane-parallel
clouds at nonabsorbing wavelengths is extended. The focus is on the scaling of space- and time-domain moments
for transmitted light with respect to cloud thickness H and optical depth t; and the new results are as follows:
accurate prefactors for asymptotic scaling, preasymptotic correction terms in closed form, 3D effects for internal
variability in t, and the rms transit time or pathlength. Mean pathlength is }H for dimensional reasons and,
from random-walk theory, we already know that it is also }(1 2 g)t for large enough t (g being the asymmetry
factor). Here, it is shown that the prefactor is precisely 1/2 and that corrections are significant for (1 2 g)t ,
10, which includes most actual boundary layer clouds. It is also shown that rms pathlength is not much larger
than the mean for transmittance (its prefactor is ø 0.59); this proves that, in sharp contrast with reflection,Ï7/20
pathlength distributions are quite narrow in transmission. If the light originates from a steady point source on
a cloud boundary, a fuzzy spot is observed on the opposite boundary. This problem is formally mapped to the
pulsed source problem, and it is shown that the rms radius of this spot slowly approaches H as t increases;Ï2/3
it is also shown that the transmitted spot shape has a flat top and an exponential tail. Because all preasymptotic
corrections are computed here, the diffusion results are accurate when compared to Monte Carlo counterparts
for t $ 5, whereas the classic scaling relations apply only for t $ 70, assuming g 5 0.85. The temporal
quantities shed light on observed absorption properties and optical lightning waveforms. The spatial quantity
controls the three-dimensional radiative smoothing process in transmission, which was recently observed in
spectral analyses of time series of zenith radiance at 725 nm. Opportunities in ground-based cloud remote sensing
using the new developments are described and illustrated with simulations of 3D solar radiative transfer in
realistic models of stratocumulus. Finally, since this analytical diffusion study applies only to weakly variable
stratus layers, extensions to more complex cloud systems using anomalous diffusion theory are discussed.

1. Introduction

There is a growing interest in the pathlengths cu-
mulated by photons while scattering around in clouds.
The most popular observational approach is based on
oxygen A-band spectroscopy, capitalizing on the equiv-
alence theorem (Irvine 1964; Ivanov and Gutshabash
1974; van de Hulst 1980): variable absorption by a well-
mixed gas yields the Laplace transform of the pathlength
distribution. The empirical A-band studies of Pfeilstick-
er et al. (1998) and Min and Harrison (1999) use ground-
based observations of transmitted light, as do those of
Portman et al. (2001), although they use the g-band.
The theoretical results of Stephens and Heidinger (2000)
and Heidinger and Stephens (2000, 2002) create tre-
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mendous expectation for forthcoming space-based ob-
servations from future National Aeronautics and Space
Administration (NASA) platforms.

Cloud remote sensing in the solar spectrum is also
benefiting from recent pathlength studies and associated
spatial considerations such as Marshak et al.’s (1995)
concept of radiative smoothing. The radiative smoothing
scale is a diagnostic determining the pixel size at which
the operational assumption of plane-parallel theory
breaks down (Davis et al. 1997a), although not always
irretrievably (Marshak et al. 1998). The conservative
scattering results of these authors for optical depth re-
trievals have now been extended by Platnick (2001a,b)
to wavelengths where liquid water is absorbing, hence
to effective droplet radius retrievals. Davis and Marshak
(2001) also address absorbing media in a more physical
than remote sensing frame of mind, by varying the sin-
gle scattering albedo in closed-form analytical results.

Another approach to pathlengths uses pulsed sources,
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FIG. 1. Schematic of transmitted Green’s function problem. In this
study, we implement the more rigorous radiative transfer approach
numerically, and the diffusion approach analytically. Key cloud pa-
rameters are physical and optical thicknesses H and t, and the asym-
metry factor g.

both natural and artificial. Following the historical de-
velopment of 3D solar radiative transfer, lightning stud-
ies have used Monte Carlo (Thomason and Krider 1982)
and diffusion (Koshak et al. 1994) methods to charac-
terize the ‘‘waveforms’’ of transmitted pulses. These
waveforms are now being routinely measured by space-
borne instruments (Suszcynski et al. 2000) so there is
a renewed pressure to refine the theory (Light et al.
2001). New developments in cloud lidar described by
Davis et al. (1997b, 1999, 2001a) make direct use of
laser pulses returned from dense clouds; the reflected
pulse is observed to be vastly broadened by the multiple
scattering, also the area from which it comes is com-
mensurate with cloud thickness.

With lidar applications in mind, Davis et al. (1999)
derive rigorous diffusion-based results for the mean and
rms dwelling times or pathlengths of photons reflected
from dense plane-parallel clouds as functions of their
physical thickness and optical depth. In the present pa-
per, we complement these results for transmission in
view of emerging applications to ground-based A-band
spectroscopy and space-based lightning observations.
As did Davis et al. (1999), we validate the analytical
diffusion theory with high-accuracy numerical results
from Monte Carlo simulations.

In section 2, we use space–time moments of the trans-
mitted Green’s function to define characteristic radiative
scales and survey the literature. In section 3, the Green’s
function theory is worked out in the diffusion approx-
imation with Fourier and/or Laplace transforms. Closed-
form expressions for the moments are derived and nu-
merically validated in section 4. Remote sensing appli-
cations are discussed in section 5, while extensions to
clouds with more or less internal variability is covered
in section 6. In section 7, we summarize and outline
future work.

2. Moment-based definitions of space- and
timescales

a. The Green’s function for transmitted light

In time-dependent radiative transfer, we use the linear
transport equation

]
21c 1 V · = I1 2]t

5 2s(r)I(t, r, V)

1 s (r) p(V9 · V)I(t, r, V9) dV9, (1)s E
4p

subject to boundary/initial conditions to determine the
time-dependent radiance field I(t, r, V) at instant t $
0, and position r ∈ M 5 {(x, y, z)T ∈ R3 | 0 # z #
H}, that is, in a plane-parallel slab medium and with
propagation direction V ∈ J 5 {(Vx, Vy, Vz)T ∈

R3 | 1 1 5 1}; we use here a superscript2 2 2V V Vx y z

‘‘T’’ to denote transpose. Recall that
2 2 TV(m, w) 5 (Ï1 2 m cosw, Ï1 2 m sinw, m) , (2)

using standard notations. In the nonstationary radiative
transfer equation in (1), we have introduced the follow-
ing notations: c is the speed of light; s(r) $ 0 is the
(generally position-dependent) extinction coefficient;
ss(r) $ 0 is the scattering coefficient; and p(V9 · V) is
the phase function, assumed azimuthally symmetric,
where V9 · V 5 cosus 5 ms is the cosine of the scat-
tering angle (cf. Fig. 1).

In this study, we use primarily boundary/initial con-
ditions for an isotropic pulsed point source at cloud top:

21I [t, x, y, H, V(m, w)] 5 p d(t)d(x)d(y), m , 0,

(3a)

and an absorbing condition at cloud base:

I[t, x, y, 0, V(m, w)] 5 0, m . 0. (3b)

Note that the factor p21 in (3a) is replaced by d(m 1
1)/2p when modeling a collimated beam under normal
incidence, and by d(m 1 m0)d(w) for a slant beam with
direction V(2m0, 0), where 0 , m0 , 1.

Figure 1 describes the Green’s function (GF) problem
of interest here for a pulsed boundary source. In this
study, we briefly discuss properties of the reflected flux
field

G (t, x, y)R

5 m I [t, x, y, H, V(m, w)] dw dm (4a)E E[ ]
m$0 2p

prevailing at cloud top, and focus on those of the trans-
mitted flux field

G (t, x, y)T

5 |m| I [t, x, y, 0, V(m, w)] dw dm (4b)E E[ ]
m#0 2p

at cloud base.
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b. Background

The steady-state incarnation of these problems,
known as ‘‘pencil beam’’ problems, were addressed an-
alytically and numerically in the limit H → ` by many
authors, going at least back to Chandrasekhar (1958).
In this case of a semiinfinite medium, there is no trans-
mission per se, so the internal and reflected light fields
are of interest. Definitive answers for this problem with
isotropic scattering were obtained only quite recently
by Ganapol et al. (1994) for m0 5 1, followed by Korn-
reich and Ganapol (1997) for m0 , 1, who propose these
problems as benchmarks for 3D numerical transport
codes, primarily in nuclear engineering applications.

As far as we know, Romanova (1968b) was the first
to relax the assumption of isotropic scattering, being
motivated by problems in oceanic and atmospheric op-
tics. Assuming m0 5 1, Romanova (1968a) allows for
media with finite thickness but treats the forward-peak-
ed scattering in the small-angle approximation. Under
identical assumptions, Weinman and Shipley (1972)
consider the temporal ramifications in transmission for
a pulsed source, followed by Weinman (1976) for re-
flection. Romanova (1971b) generalizes her (1968a)
steady-state theory to capture scattering through arbi-
trary angles and, still investigating finite anisotropically
scattering media, Romanova (1971a) reconsiders the
possibility of m0 , 1. In these last two papers by Ro-
manova, the spatial component of the moment-based
characterization of the light fields used below is first
introduced.

In the frame of diffusion theory, which we use ex-
tensively further on, Richards (1956) studied the case
of a steady isoptropic source observed in transmission
through a slab (here, the spatial Green’s function prob-
lem). Finally, Weinman and Masutani (1987) extended
this early theoretical work and applied their analysis to
the appearance of city lights through clouds in nighttime
satellite images.

Temporal aspects of the pulsed/isotropic source prob-
lem have been investigated independently by at least
three distinct communities. In all cases, space and time
are eventually combined in improved diagnostics.

• In observational astrophysics, Predehl et al. (2000,
and references therein) obtain the distance to the bi-
nary Cyg X-3 source using the scattering ‘‘halo’’ due
to interstellar dust, as imaged in the X-ray spectrum
by the Chandra satellite.

• In the medical optics literature, Patterson et al. (1989)
solve the pulsed source problem in diffusion theory
for a slab, thus starting a new trend in noninvasive
diagnostics of soft tissue (Yodh and Chance 1995).

• In the atmospheric optics literature, Davis et al.
(1997b, 2001a), Davis (1999), as well as Winker
(1997) and Miller and Stephens (1999), were moti-
vated by multiple scattering effects in Lidar In-Space
Technology Experiment (LITE, Winker et al. 1996)
data for clouds and by new instrumental developments

in off-beam lidar observation of clouds (Davis et al.
1999; Love et al. 2001).

The former study uses a single scattering estimate of
the transmitted field, and an eclipse rather than a pulse.
In the latter cases, multiple scattering is essential, and
the emphasis shifts from transmission to reflection. As
we will see in the following, these two fields on opposite
sides of the medium are intimately related when multiple
scattering dominates.

c. Probabilistic interpretation and Monte Carlo
results

In the following, we systematically exploit the prob-
abilistic interpretation of the radiance field: given the
photon source distribution in space–time, I(t, r, V) $
0 is the probability of finding a photon in state (r, V)
at time t. So t, r, and V are all random variables in this
picture. In this framework, GT(t, x, y) in (4b) describes
the probability and space–time variables for photons in
transmission (i.e., escape with Vz , 0). Specifically, we
can obtain the following conditional probability mea-
sure

dP (t, x, y) 5 Pr{escape during [t, t 1 dt),T

from [x, x 1 dx) J [y, y 1 dy) |

conditional to be in transmission

(z 5 0, at any m , 0)}, (5)

or probability density function (PDF)

p (t, x, y) 5 dP (t, x, y)/dtdxdy.T T (6)

For reasons of symmetry, we are interested in PDFs
dependent only on horizontal photon displacement or
‘‘lateral transport’’ r 5 (x2 1 y2)1/2 (cf. Fig. 1). More-
over, it is convenient to use ‘‘pathlength’’ units for time,
l 5 ct (cf. Fig. 1). Hence, the element of probability

dP (l, r)T

5 p (t, r)2prdrdlT

5 p (l/c, r cosf, r sinf) df r dr dl/c, (7)E T[ ]
where c21rdrdfdl/dxdydt is the Jacobian D(r, f, l)/
D(x, y, t) associated with this change of variables. Re-
turning to our definition of flux at the lower boundary
in (4b), we can express the PDF in (7) as the ‘‘nor-
malized’’ transmitted Green’s function

p (l, r) 5 dP (l, r)/2prdrdl 5 G (l, r)/T, (8)T T T

where

T 5 2p G (l, r)r dr dl. (9a)EE T

From there, we can define various moments of l and r:
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FIG. 2. Numerical estimates of the space–time Green’s functions at the boundaries of a uniform cloud. (a) Reflected light; (b) transmitted
light. The spatial domain for r (vertical axis) is 1.5 km while the limit for pathlength l is 3 km (horizontal axis), respectively, 5 and 10
times the physical thickness H 5 0.3 km of the cloud. Optical thickness is t 5 16 resulting in R 5 0.557 for (a), and T 5 0.443 for (b).
Spatially, we have plotted not the Green’s function per se, but the (1093) probability of escape anywhere in an annulus, not conditioned by
design on reflection or transmission. This way the values at large times and distances are statistically (apart from noise) indistinguishable
since the same range of values is enforced for the (banded) logarithmic grayscales.

q q^l & 5 2p l dP (l, r), q 5 1, 2; (9b)T EE T

2 2^r & 5 2p r dP (l, r). (9c)T E T

Figure 2 shows the results from a pathlength-tracking
Monte Carlo simulation of radiative transfer in a plane-
parallel cloud with uniform extinction; physical thick-
ness is H 5 0.3 km and (dimensionless) optical thick-
ness is t 5 sH 5 16. The scattering is conservative
with a Henyey–Greenstein (1941) phase function for g
5 0.85, hence rescaled optical depth (1 2 g)t 5 2.4.
This problem is 3D only because of the nonuniform
illumination at a single point; in this case, and because
of the isotropic illumination pattern, there is no loss of
spatial information during the azimuthal integration in
(7). The source is transient, with all the light emitted at
once, so the problem is also nonstationary. Figure 2a
shows the reflected Green’s function while Fig. 2b is
for transmission. Space–time integrals of these Green’s
functions are, respectively, R 5 0.557 and T 5 1 2 R
5 0.443.

The close resemblance of these space–time fields at
large distances and long times is not accidental. Indeed,

since T ø R [as expected when (1 2 g)t ø 2] a sig-
nificant fraction of the light will reach the middle of the
cloud via multiple scattering; from there it has about an
equal chance of leaving the cloud in reflection and in
transmission at any given r and l. For denser (more
reflecting) clouds, the same is true but the fraction in-
volved in this equipartition decreases, being asymptot-
ically equal to the transmitted light. The only difference
between GR(l, r) and GT(l, r) is at early times and
small distances. Note the linear shape of the ballistic
(r}l) envelope of GR(l, r) due to a significant number
of contributions from low orders of scattering while the
envelope of GT(l, r) is parabolic with r roughly pro-
portional to (l 2 H)1/2.

The symbols in Fig. 3 show numerical results for the
quantities in Eqs. (9a)–(9c) as functions of H and t. We
refer the reader to other numerical (Platnick 2001a,b)
and analytical (Davis and Marshak 2001) studies for the
effects of absorption. To model the scattering details,
we again used the Henyey–Greenstein phase function
with asymmetry factors g 5 0, 0.85. Numerical (Monte
Carlo) results are plotted versus rescaled optical depth
tt 5 (1 2 g)t to show the good collapse one expects
in diffusion-dominated transport. Analytical (diffusion
theory) results are derived in the next two sections.
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FIG. 3. Numerical and analytical results for transmission quantities. We plot transmittance T
and three spatial or temporal observables vs rescaled optical depth tt 5 (1 2 g)t, which is also
2x/e where e 5 T/R is the small argument in the correction terms in Eqs. (32) and (35)–(36).
The symbols are Monte Carlo (MC) results, while the continuous lines are results from the diffusion
theory in sections 3 and 4. Note that the only free parameter of the theory is the numerical
extrapolation length factor x. The canonical (e.g., Case and Zweifel 1967) value 0.7014 . . . works
well for the moments, while T itself is better approximated with x 5 0.57, as are the moments
in reflection (Davis et al. 2001a,b). Spatial Green’s functions for the circled points are in Fig. 5.

3. Green’s function theory in the diffusion regime

a. Definitions

Diffusion theory is based on a highly smoothed ver-
sion of the local radiance field I( · , V). One key quantity
in diffusion theory is radiant energy density or simply
photon density

1
U(t, r) 5 I(t, r, V) dV, (10)Ec

which can also be written as (4p/c) 3 mean radiance,
or scalar or actinic flux/c. The other important quantity
is radiant energy flux vector or photon current density

F(t, r) 5 VI(t, r, V) dV. (11)E
Here, U(t, r) and F(t, r) obey two independent con-
straints. First, they enter the (exact) law of radiant en-
ergy conservation (Case and Zweifel 1967):

]U/]t 1 = ·F 5 2cs (r)U,a (12)

where sa 5 s 2 ss is the absorption coefficient; Eq.
(12) follows from the radiative transfer equation (RTE)
in (1) by angular integration using the above definitions.
Second, they are related by Fick’s law for photon dif-
fusion, operating as a constitutive relation that ‘‘closes’’
the transport problem in Eq. (12),

F(t, r) 5 2D(r)=U, (13)

where D(r) is (radiative) diffusivity. We know from ki-
netic theory (e.g., Reif 1965) that

D(r) 5 cl (r)/3,t (14)

where lt(r) is the transport mean free path

l (r) 5 1/s (r) 5 1/[(1 2 Ã g)s(r)],t t 0 (15)

where Ã0 5 ss(r)/s(r) 5 1 2 sa(r)/s(r) # 1 is the
single scattering albedo, assumed constant, and g 5 2p
# msp(ms) dms is the asymmetry factor. In essence, lt is
the ‘‘effective’’ mean free path for isotropic scattering
in the following sense. After a single step, the photon
propagates a distance 1/s on average, then undergoes



2718 VOLUME 59J O U R N A L O F T H E A T M O S P H E R I C S C I E N C E S

(say) a Mie scattering. After a large number of such
forward-peaked scatterings, the photon has propagated
on average (1 2 Ã0g)21 5 1 1 Ã0g 1 (Ã0g)2 1 (Ã0g)3

1 · · · times further in the original direction, and has in
the process all but ‘‘forgotten’’ this original direction;
see Davis and Marshak (1997) for the Ã0 5 1 case, and
Platnick (2001b) for the general case.

b. Green’s functions for homogeneous clouds

For the GF problem, we substitute U in Eqs. (10) and
(12)–(13) with cG. For r-independent extinction coef-
ficients, Eqs. (12) and (13) can be combined into a stan-
dard parabolic partial differential equation (PDE),

]G
22 D¹ G 5 2cs G. (16)a]t

The boundary/initial conditions are, however, less stan-
dard. Indeed, what needs to be matched at the bound-
aries are hemispheric fluxes along the vertical axis,
which cannot be computed exactly by knowing only G
and its partial derivatives. Following Case and Zweifel
(1967), we introduce the ‘‘extrapolation length’’ xlt into
the resulting (mixed) boundary conditions

1 ]
1 1 (x l ) G| 5 d(t)d(x)d(y), (17a)t z5H[ ]2 ]z

1 ]
1 2 (x l ) G| 5 0. (17b)t z50[ ]2 ]z

A numerical constant x is essentially a free parameter
determined by matching diffusion-based results to de-
tailed numerical computations.

We now seek

1 ]
G (t, x, y) 5 1 2 (x l ) G| , (18a)R t z5H[ ]2 ]z

1 ]
G (t, x, y) 5 1 1 (x l ) G| . (18b)T t z50[ ]2 ]z

Following standard practice in mathematical physics,
this PDE problem can be (horizontal) Fourier- and
(time) Laplace-transformed into an ordinary differential
equation (ODE) where z is the only independent vari-
able. So we introduce

G̃(s, k , k ; z) 5 exp[2st 1 i(k x 1 k y)]x y EEE x y

3 G(t, x, y, z) dt dx dy, (19)

where the semicolon separates the variable and the pa-
rameters (‘‘constants’’) of the resulting 1D problem. The
ODE is formally equivalent to that of the homogeneous/
steady-state two-stream problem in 1D with an absorp-
tion term:

2˜ ˜G0 2 G/L 5 0, (20)

where the single coefficient contains the Fourier–La-
place conjugate variables k2 5 \k\ 2 5 1 and s,2 2k kx y

as well as sa and D:
2 21/L 5 k 1 (s 1 cs )/D.a (21)

In the classic uniform (k 5 0) and steady (s 5 0) source
problem used in solar studies, we have L 5 (D/csa)1/2

5 (lt/3sa)1/2 5 s21[3(1 2 Ã0)(1 2 Ã0g)]21/2, which
is known as the ‘‘diffusion length.’’ One can easily see
in Eq. (21) why Chandrasekhar (1958) perceived the
steady (s 5 0) pencil-beam problem (the radiative trans-
fer version of a point source in diffusion in Fig. 1) as
an interesting combination of all possible absorption
problems. Equation (21) also illustrates the ‘‘equiva-
lence theorem’’ (e.g., van de Hulst 1980) that shows
how one can map time-dependent problems to steady-
state absorption problems for any given illumination
pattern.

The boundary/initial conditions in (17a) and (17b)
Fourier–Laplace transform into

1 d ˜1 1 (x l ) G| 5 1, (22a)t z5H[ ]2 dz

1 d ˜1 2 (x l ) G| 5 0, (22b)t z50[ ]2 dz

for the ODE in Eq. (20). This defines a two-point bound-
ary value problem for G̃ that is easily solved (cf. Meador
and Weaver 1980) for the generic absorption case 0 #
sa , ` with k 5 s 5 0 in Eq. (21). Apart from z, G̃
depends on L(s/D, k2; csa/D) that in turn depends on
two local length scales lt and 1/sa, and on two other
boundary-related length scales, namely, xlt and H. Ex-
plicitly, we have

G̃(· ; z)
1z /L 2z /L(1 1 x l /L)e 2 (1 2 x l /L)et t5 2 3 . (23)

2 1H /L 2 2H /L(1 1 x l /L) e 2 (1 2 x l L) et t

Fourier–Laplace transforms of the surface flux field in
(18a) and (18b) are the formal counterparts of trans-
mittance and reflectance in the associated two-stream
problem; using (22a) and (22b), we find

1 d˜ ˜ ˜G (·) 5 1 2 (x l ) G| 5 G(· ; H ) 2 1, (24a)R t z5H[ ]2 dz

1 d˜ ˜ ˜G (·) 5 1 1 (x l ) G| 5 G(· ; 0). (24b)T t z50[ ]2 dz

Substituting Eq. (23) here leads to

G̃ (s, k; parameters)R

˜5 G (x l /L, H/L)R t

2 1H /L 2H /L[1 2 (x l L) ](e 2 e )/2t5 , (25a)
2 1H /L 2 2H /L(1 1 x l /L) e 2 (1 2 x l /L) et t
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FIG. 4. Fourier space Green’s functions, or MTFs, for tenuous and opaque clouds. The analytic
result in Eq. (26b) is plotted, normalized by T from Eq. (30a), vs kH for different values of tt 5
(1 2 g)t. The curvature of the function at k 5 0 is used to compute ^r2&T in Eq. (30c); for a
given H, it is clearly not overly sensitive to optical depth once it is quite large.

G̃ (s, k; parameters)T

˜5 G (x l /L, H/L)T t

4x l Lt5 . (25b)
2 1H /L 2 2H /L(1 1 x l /L) e 2 (1 2 x l L) et t

We will assume conservative (Ã0 5 1, sa 5 0) media
in the remainder of the paper. In this case, we have L
5 (k2 1 s/D)21/2 and lt 5 3D/c 5 [(1 2 g)s]21 in (25a)
and (25b).

c. Cloud modulation transfer and point spread
functions

For simplicity, we consider only the spatial Green’s
function problem by setting s 5 0 (along with sa 5 0)
in Eqs. (25a) and (25b) and rewriting them as follows:

˜ ˜G (0, k; · ) 5 G (x l k, H )R R t

21 2 (x l k)t5 , (26a)
21 1 2(x l k)/tanh(Hk) 1 (x l k)t t

˜ ˜G (0, k; · ) 5 G (x l k, Hk)T T t

2(x l k)/sinh(Hk)t5 . (26b)
21 1 2(x l k)/tanh(Hk) 1 (x l k)t t

In optical engineering, the distribution of intensity at
the focal plane of an imaging system for a point source
is called the point spread function (PSF). That is the
analog of our spatial Green’s function, especially of
GT(r) for transmission with an assembly of lenses in

mind, but also for GR(r) since imaging systems often
contain one or more mirrors. Fourier optics is the analog
of our Green’s function theory so far. Indeed, it is gen-
erally easier to compute the 2D Fourier transform of the
PSF, otherwise known as the modulation transfer func-
tion (MTF). Equations (26a) and (26b) thus represent
the cloud’s MTFs for reflection and transmission, re-
spectively.

The cloud MTF G̃T(0, k; · ) in (26b) is only a function
of Hk (a dimensionless wavenumber) and of the ratio
x/t t 5 xlt/H, hence of t t 5 (1 2 g)t for a given value
of the extrapolation factor x. Figure 4 shows normalized
MTFs, G̃T(0, k; · )/G̃T(0, 0; · ), plotted versus Hk for
different cloud opacities (parameterized by t t). Notice
the collapse of the curves at k 5 0 for large values of
tt; this translates to the near constancy of ^r2&T/H 2 al-
ready shown in Fig. 3 and derived in section 4b [cf. Eq.
(35)]. Cloud MTFs and impulse responses, the temporal
counterpart of the MTF, for reflection are discussed by
Davis et al. (2001b).

To compute the Green’s function in physical space,
we need the inverse of the Fourier part of (19) expressed
for the time-integrated boundary fields, namely,

1
G (x, y; · ) 5 exp[2i(k x 1 k y)]F EE x y2(2p)

˜3 G (0, k , k ; · ) dk dk ,F x y x y

(27)

for subscript F 5 T, R. The standard change of variables
for azimuthally symmetric (or, at least, separable) func-
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tions leads to the (inverse) Hankel transform, still as-
suming steady-state illumination (s 5 0):

`1 ˜G (r; · ) 5 G (0, k; · )J (kr)k dk, (28)F E F 02p 0

where J0(x) is the 0th-order Bessel function of the first
kind.

Figure 5 shows the result of a numerical computation
of (28) for F 5 T using an efficient random quadrature
procedure for the transmitted Green’s function in (26b)
after normalization with T. The cloud parameters were
as used in Fig. 2 (H 5 0.3 km, t 5 16, g 5 0.85), as
well as for isotropic scattering (g 5 0). For comparison,
we also plot the Monte Carlo results from the corre-
sponding simulation in Fig. 2 and another one with iso-
tropic scattering (yielding T 5 0.0765); both cases are
highlighted in Fig. 3. Agreement between the diffusion
approximation and radiative transfer theory is remark-
ably good. The far field behavior of GT(r), and also for
GR(r) (not illustrated), is exponential with a decay rate
that clearly depends on H for reasons of dimensionality,
but also on g, through (1 2 g)t. The theory for this
decay calls for an asymptotic expansion of the integral
in (28) with (26b) and is out of the scope of the present
study.

4. Expressions for moments of transmitted light

a. Moments and the characteristic function

We now return to the probabilistic interpretation of
radiative Green’s functions reviewed in section 2c and
compute statistical moments of the random variables
pathlength l (in lieu of time t) and magnitude r of the
lateral transport vector (x, y)T.

Depending on their support, Fourier and/or Laplace
transforms of PDFs are known as characteristic func-
tions. Consider the multivariate Taylor expansion of the
characteristic function of the axisymmetric PDF in Eq.
(8), but unconditioned by T:

]˜ ˜ ˜G (s, k; · ) 5 G (0, 0; ·) 1 s G (0, 0; ·)T T T1 2[ ]]s

] ˜1 k G (0, 0; ·)T1 2[ ]]k

21 ]
2 ˜1 s G (0, 0; ·)T1 2[ ]2 ]s

21 ]
2 ˜1 k G (0, 0; ·)T1 2[ ]2 ]k

1 crossed and higher-order terms. (29)

Coefficients of each term in s and/or k are related to
moments; in particular, for the moments defined in Eqs.
(9a)–(9c), we have:

˜T 5 G (0, 0; ·); (30a)T

q q ˜^l & 5 [(2c]/]s) G ](0, 0; · )/T, q 5 1, 2; (30b)T T

2 2 ˜^r &T 5 2[(]/]k) G ](0, 0; · )/T. (30c)T

So, by substitution of (25b) into (29), and obtaining the
Taylor expansion by successive partial derivation, we
obtain these space or time moments as functions of the
cloud optical parameters.

b. Results for conservative diffusion theory

We can now compute the integrals in (9a)–(9c) using
the derivatives prescribed in (30a)–(30c) functions of
the local quantities g and s, as well as the bulk property
H. In lieu of s, we will continue to use t 5 sH. In
addition, we have to carry the boundary condition pa-
rameter x. Some (computer assisted) algebra starting
with (25b) and using the recipes in (30a)–(30c) leads
to the following results.

At 0th-order, we retrieve Schuster’s (1905) simple
transmission formula from (30a):

1 1
T 5 5 . (31)

H 1 1 (1 2 g)t /2x
1 1

2x lt

Although more accurate formulas exist (cf. Meador and
Weaver 1980), this shows that (1 2 g)t can be retrieved
from the observed value of T at some nonabsorbing
wavelength (e.g., Min and Harrison 1996). This of
course calls for a radiometrically calibrated instrument
in order to compare the measured flux at ground level
with the known incoming flux at the top of the atmo-
sphere.

At first-order (q 5 1) in (30b), we find
(1)^l& /H 5 (1/2) 3 (1 2 g)t 3 [1 1 C («)]T lT

(1)C («) 5 («/2)(4 1 3«)/(1 1 «), (32)lT

where

T 2x
« 5 5 , (33)

R (1 2 g)t

with R 5 1 2 T denoting reflectance.
The linear term in k in (29) vanishes for (26b); this

expresses the fact that the lateral displacement vector
has a vanishing average, by symmetry. To estimate the
size of the spot of transmitted light, we therefore use
the quadratic term leading to (30c). Now there is a nat-
ural separation of variables in (25b); it is function of k2

1 s/D, through L. So we can use the Jacobian

2 22 22D(s/c) ] L ]L 2D 2lt5 5 5
2 2) @ )D(k ) ]k ]s/c c 3

2H
5 (34)

3(1 2 g)t

in (32) to obtain
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FIG. 5. Physical space Green’s functions, or PSFs, for isotropic and forward-scattering
clouds. Both numerical (Monte Carlo) and analytical (diffusion) results are plotted for t 5
16, with g 5 0, 0.85. Apart from the numerical noise (visible only in g 5 0 case), the only
significant difference is for g 5 0.85 at small values of r. These correspond to the relatively
rare occurrence of pathlengths l only slightly larger than H, that is, quasi-ballistic trajectories
in the dense cloud that are poorly modeled in formal diffusion theory.

2 2 (2)^r & /H 5 (2/3) 3 [1 1 C («)]T rT

(2) (1)C («) [ C («), (35)rT lT

remembering to account for the 1/2 coefficient of the
k2 term in (29).

Finally, from (30b) at second order (q 5 2), we obtain

2 2 2 (2)^l & /H 5 (7/20) 3 [(1 2 g)t] 3 [1 1 C («)]T lT

(2)C («) 5 («/14)[56 1 «(166 1 15«(10 1 3«))]lT

24 (1 1 «) . (36)

The diffusion results in (31)–(36) were previously
plotted in Fig. 3, showing excellent agreement with the
radiative transfer numerics for x 5 0.7014, the value
recommended by Case and Zweifel (1967) and others
based on the (half space) Milne problem. However, as
noted by Davis et al. (2001a) working on reflection
properties, x 5 0.57 works better for T itself, equiva-
lently 1 2 R. Note that t and g appear always in the
combination tt 5 (1 2 g)t, as usual in diffusion theory
(without the separation of diffuse and direct contribu-
tions). In view of the excellent agreement of the PDFs

themselves (cf. Fig. 5), agreement in low-order moments
is not surprising.

The leading terms in (32) and (35) were obtained by
Davis et al. (1997b) using simple scaling arguments, but
not the prefactors, nor the important correction terms
for the most commonly observed optical depths between
ø5 and 701. In particular, ^l&T}(1 2 g)tH in (32)
follows directly from the well-known fact that the
(mean) number of scatterings in transmitted light ^n&T

goes as t2 (implicitly for g 5 0). To get (32) from there,
use t t 5 (1 2 g)t and recall that l 5 n 3 mean free
path (MFP), with the transport MFP being lt 5 H/t t.
However, we note in Fig. 2 that this simple relation does
not actually occur until (1 2 g)t $ 10, hence t $ 70
for g 5 0.85. So the new correction terms are important.

The result in (36) is new although the leading term
is not a surprise since the narrowness of the distribution
we find for l in transmission is often assumed, correctly
as it turns out, at least for uniform clouds. In particular,
Davis et al. (1997a,b) use this assumption in their scal-
ing arguments leading to characteristic times and scales
in reflected light. Specifically, we find /^l&T →2 1/2^l &T

(7/5)1/2 ø 1.18 as t increases, but we see in Fig. 2 that
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FIG. 6. Radiative smoothing in transmission using first-order structure functions for flux
and radiance fields. Fractal models were used for horizontal cloud optical depth variability
with parameters that mimic marine stratocumulus observations. Radiation fields obtained
within the local IPA have essentially the same fractal roughness as the optical depth, z(1)
ø 1/3 in Eq. (37). By contrast, the MC simulated radiation fields are essentially differ-
entiable at the smallest scale, z(1) ø 1. See text for details.

this remains approximately true for (1 2 g)t $ 1. A
similar computation as here was done by Davis et al.
(1999) for reflected quantities, with lidar applications
in mind. In sharp contrast with Eqs. (32) and (36), they
find different scalings for ^l&R}H (coming from the
well-know relation ^n&R}t for reflected light), and for

}[(1 2 g)t]1/2H. This is traceable to the very2 1/2^l &R

broad distribution for l or n in reflection from finite but
optically thick media (Davis 1999).

5. Application to ground-based cloud remote
sensing

Although the theory presented here is for homoge-
neous clouds illuminated at a point, it is closely related
to the 3D phenomenon of radiative smoothing of sun-
light, that is, the observed deficit of variance at small
scales with respect to the overall turbulence-like vari-
ability of cloud structure. For instance, cloud optical
depth (or liquid water content or liquid water path) has
a power-law ‘‘k25/3’’ wavenumber spectrum; so does
reflected radiance, but only down to a scale hR well
above the scaling limit for t. Radiative smoothing was
investigated theoretically by Marshak et al. (1995), and

then empirically by Davis et al. (1997a) using Landsat
data, demonstrating the key role of multiple scattering
in 3D. These studies also showed numerically that the
leading terms of the counterparts of (32) and (35) for
reflectance hold well for plane-parallel stratocumulus
models with a fractal internal structure but with some-
what different prefactors, especially when (remotely ob-
servable) radiance is used in lieu of cloud-top flux.
However, both studies were only in reflection where
smoothing occurs on scales & }H/[(1 2 g)t]1/2.2 1/2^r &R

Recently, Savigny et al. (1999) observed the same phe-
nomenon in ground-based observations of transmitted
light—more precisely, zenith radiance—and the char-
acteristic smoothing scale is found empirically to be
ø }H, as predicted in Eq. (35). The only opera-2 1/2^r &T

tional difference with the reflection studies is that ad-
vection by the mean wind is responsible for the ‘‘scan-
ning’’ of cloud base, and its value is needed to convert
time to space.

Figure 6 illustrates radiative smoothing in transmis-
sion with an ensemble of fractal stratus cloud models
using one-dimensional bounded cascades (Cahalan et
al. 1994) to generate the random internal structure with
variance and correlations that match typical observations
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of t(x). A forward Monte Carlo scheme was used to
generate transmitted flux T(x) and zenith radiance Izen(x)
fields where x 5 1, . . . , 1024 measured in 25-m pixels.
A simple and convenient way to measure signal smooth-
ness is the first-order structure function

z (1)f| f (x 1 r) 2 f (x)| } r , f 5 t , T, I , (37)zen

where the overscore means ensemble averaging (i.e.,
over x and over realizations). In theory, the exponent
zf (1) is 5 1 for smooth (differentiable) nonstationary
signals, ,1 for rough (e.g., topography, turbulence) sig-
nals, and 50 for stationary signals (such as white noise).
From bounded cascade theory (Marshak et al. 1994),
optical depth field has zt(1) 5 min {h, 1} at all scales
(1 # r , 1024) where the scaling parameter h is set to
1/3. At the smallest scales, we find zT(1) ø zI(1) ø 1
for r & hI # hT # H 5 0.3 km in this case because
lateral (cross pixel) photon diffusion smears out the in-
ternal structure that would otherwise be visible. At larg-
er scales, 1D radiative transfer using locally averaged
optical depth—the ‘‘local’’ independent pixel approxi-
mation (IPA)—describes the 3D radiative transfer well
enough, so we find zT(1) ø zI(1) ø zt(1) ø 1/3, because
the IPA is just a one-to-one mapping of t to T or Izen.
Note that the mappings are nonlinear, and Izen(t) is not
even monotonic across all possible optical depths; but
that does not affect the scaling in (37)—only the pre-
factor, because of the absolute value.

Cloud thickness H is hard to obtain reliably by remote
sensing methods since milimeter-radars do not always
agree with other instruments about cloud base and cloud
top (Clothiaux et al. 1995). In the absence of a priori
information on cloud thickness, H ø hI ø

might as well be considered a reasonable2Ï(3/2)^r &T

first-order estimate of cloud thickness H from remote
observations since the O(1) ratio hI/H can be deter-
mined numerically. Furthermore, the instrumentation
used by Savigny et al. (1999) is extremely simple and
does not call for calibration.

As mentioned earlier, T is used routinely to estimate
cloud optical depth t, assuming g 5 0.85 for dense
overcast liquid clouds, but a well-calibrated radiometer
is required (Min and Harrison 1996), which is expensive
to purchase and to maintain. With Eq. (32), including
correction terms, another way of inferring t is now
available, knowing H and ^l&T (as well as g, but it varies
little in warm clouds). The time domain quantity ^l&T

can in fact be obtained from oxygen-band spectroscopy
at high (Pfeilsticker et al. 1998), intermediate (Portman
et al. 2001), or even low (Min and Harrison 1999) res-
olution; furthermore, there is no need for instrumental
calibration since only differential absorption is used.

6. Extension to variable clouds and cloud systems

a. Weak variability: Stratocumulus

In spite of it successes, the analytical diffusion theory
presented here for transmission, and by Davis et al.
(1999) for reflection, needs refinement. Using multiply
scattered lidar data collected in space from a marine
stratocumulus (Sc) deck, Davis et al. (2001a) show that
it is important to account for stratification of liquid water
content, hence of extinction. Furthermore, the diffusion
approximation is always improved for realistic (Mie
based) phase functions by separating the direct and dif-
fuse components of the radiance field and applying the
approximation only to the latter part, using the d-Ed-
dington rescaling (Joseph et al. 1976) of all the relevant
optical properties. Finally, one could use the rescaling
of local optical properties proposed by Cairns et al.
(2000) to account for 3D optical depth variability.

Alternatively, internal variability can be modeled us-
ing the parameterization of horizontal optical depth var-
iability with Gamma distributions proposed by Barker
et al. (1996), originally for transmission in Eq. (32) and
other steady-state quantities with and without absorp-
tion. Gamma distributions have just one variability pa-
rameter a 5 ( / 2 2 1)21 . 0 beyond the mean :2t t t

Pr{t # optical depth , t 1 dt}

a1 a at
a215 t exp 2 dt , (38)1 2 [ ]G(a) t t

where G(a) is Euler’s gamma function. The homoge-
neous model is retrieved in the limit a → ` and Barker
et al. (1996) typically find a to be in the range 3–5 for
marine Sc. By thus randomizing t, the distribution in
(38) could be used to estimate the effects of variability
on the new observables in Eqs. (35) and (36), in the
same spirit of a ‘‘global’’ IPA (Cahalan et al. 1994).
This enhanced analytical approach yields more com-
plicated versions of formulas (32) and (33), and (35)
and (36): best derived by computer-assisted algebra,
with t replaced by and the extra parameter a.t

As an illustration, we use ^r2&T in (35). Its leading
term, (2/3)H 2, is not affected by the variability in t but
its correction term is. The new correction term is ob-
tained by averaging C over the PDF in (38), using(2)

rT

T(t) from (31) as a weighting term; in other words, we
compute the average of TC and divide it by that of(2)

rT

T. This yields

(2)C9 («9, a)rT

2a«9 22ae (a«9) [8 2 a(4 1 3«9)] 1 4(a 2 2)(a 2 1 1 a«9)G(2 2 a, a«9) 1 3(a 2 2 1 a«9)G(3 2 a, a«9)
5 , (39)

2(a 2 2)(a 2 1)G(1 2 a, a«9)
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for a . 2 (which is consistent with the weak variability
assumption), where G(a, z) 5 # t a21e2t dt is the incom-`

z

plete gamma function and

2x
«9 5 . (40)

(1 2 g)t

Notice that, in the variable t scenario, « in (33) is a
random variable while «9 is a fixed parameter. As soon
as a , `, the new correction term in (39) is larger than
the old one (using «9) in (32) and (35) because of
Jensen’s (1906) inequality since C is a concave func-(2)

rT

tion of t.
The ratio C («, a)/C («9) is maximum for «9 5(2) (2)9rT rT

0, but the correction itself is vanishingly small in this
region of parameter space (very large ); the ratio ist
minimum for «9 5 `, but it becomes irrelevant as «9
gets much greater than 1 (very small ) anyway. Bark-t
er et al.’s (1996) recommendation for Sc being a ø
4.5, the corresponding ratio of correction terms using
(39) and (32) decreases monotonically from ø1.8 to
ø1.3 as «9 increases from 0 to `. This refinement there-
fore captures the small (ø10%) systematic increase in
^r2& due to optical-depth variability at intermediate1/2

T

values for the mean (say, ø 10) observed by Marshakt
et al. (1995, Fig. 6 for ^r&T) and Davis et al. (1997a,
Fig. 10 for ^r2&T) when comparing Monte Carlo results
for uniform and fractal (e.g., Cahalan et al. 1994) cloud
models. Indeed, taking 5 10 («9 ø 1.0) yields C (2)t rT

ø 1.7 and C («9, a) ø 2.4 (ratio ø 1.4) for a 5 4.5,(2)9rT

hence an increase in ^r2& of 21/2 Ï(1 1 2.4)/(1 1 1.7)T

1 ø 0.12.
The 3D effects we just estimated on ^r2&T are rather

small because its asymptotic scaling in (35) does not
depend on the variable quantity, t. Turning to ^l&T , we
do not anticipate much more because the asymptotic
scaling in (32) is linear in t, so the first-order variability
effects cancel, as long as is used instead of t. Fur-t
thermore, the residual effect will be comparable in mag-
nitude and sign with the refinement in (39)–(40) since
C («) 5 C («), as stated in (35).(1) (2)

lT rT

In the previous section, we outlined a viable exercise
in ground-based remote sensing using observables

and ^l&T to determine cloud properties H and t2 1/2^r &T

or, rather, the ‘‘effective’’ t for the homogeneous cloud
model, which is systematically smaller than due tot
IPA-like variability effects. Conceivably, one can use
{T, , ^l&T} data to infer cloud parameters {H, ,2 1/2^r & tT

a}; if accuracy does not allow a sufficiently independent
and reliable determination of a, at least its value can be
prescribed (as for g and x) in order to avoid the sys-
tematic bias in estimating .t

Looking towards future oxygen A-band observations
from space, Heidinger and Stephens (2002) come to
similar conclusions about spatial variability. They sug-
gest using joint estimates of cloud albedo R and ^l&R to
determine at once a (less biased) mean optical depth
and a measure of its (unresolved) variability.

b. Strong variability: Broken and/or multiple layers

Both Pfeilsticker (1999) and Min and Harrison (1999)
find that the leading term in (32) applies to their oxygen
A-band spectroscopy data but only when a single dense
cloud layer is present. This means that the homogeneous
theory developed here applies reasonably well to dense
unbroken clouds such as stratus and stratocumulus. In
turn, this is a confirmation of what is already known
about photon diffusion dominating the radiative transfer
in such clouds from the radiance studies of Davis et al.
(1997a) in reflectance, those of Min and Harrison (1996)
and of Savigny et al. (1999) in transmittance, and going
back to those of King et al. (1990) using in situ radi-
ometry.

In more complex 3D situations with broken clouds
and/or multiple layers, Pfeilsticker (1999) finds (in dif-
ferent notations) that an alternative scaling applies:

a21^l& /H}[(1 2 g)t] ,T (41)

where 1 # a # 2 is the Lévy index and is related to
the degree of internal and external variability of the
clouds. In principle, one should be able to predict a
from cloud structure but, so far, the model is used only
as a diagnostic (a is inferred from radiative observa-
tions). Note that the leading term in (32) is retrieved in
the limit a → 2. At any rate, H is now considered to
be the total thickness of the cloud system, possibly en-
compassing the entire troposphere. The opposite limit
a → 1 corresponds to almost clear-sky situations (the
prefactor is then 1/m0) and H is a scale height; the left-
hand side of (41) is then precisely the cumulated air-
mass. These findings are confirmed by Min et al.’s
(2001) investigation of the joint statistics of ^l&T and t
at the U.S. Department of Energy’s (DOE) climate ob-
servatory in Oklahoma, established as part of the At-
mospheric Radiation Measurement (ARM) program.

The new scaling for ^l&T in (41) as was originally
proposed by Davis and Marshak (1997) when apply-
ing Lévy flight theory (e.g., Mandelbrot 1982) to pho-
ton transport. Their stated goal was actually to explain
the observed albedo reduction (transmission enhance-
ment) by 3D effects, and they indeed showed that
T}[(1 2 g)t ] 2a/2 , which is minimal for a 5 2 at given
(1 2 g)t. Davis et al. (2000) recently uncovered an-
other form of empirical validation of the ‘‘anoma-
lous’’ scaling in (41) using lightning waveforms cap-
tured in space by the Fast On-Orbit Transient Ex-
periment (FORTÉ) satellite, a DOE nonproliferation
satellite technology mission, and analyzed by Susz-
cynski et al. (2000).

The basic result that 5 H probably carries over2 1/2^r &T

to anomalous diffusion because it translates the simple
fact that a spherical ‘‘wave’’ of diffusing photons is
being intercepted by an absorbing plane surface at dis-
tance H from the source. However, the fate of the re-
lation between and ^l&F for F 5 R, T as well as2 1/2^l &F

that of all the correction terms in this generalization are
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open questions. An analytical formulation of anomalous
diffusion problems in finite slabs was recently obtained
by Buldyrev et al. (2001) for an entirely different ap-
plication; it is expected to bring specific answers to these
questions. For the time being, the Lévy flight theory
outlined above operates as a diagnostic for shortwave
radiative transfer in the whole atmospheric column that
quantities the overall spatial variability in cloudiness.

From the standpoint of ground-based optical remote
sensing, broken clouds pose a real challenge. To the
best of our knowledge, only a couple of schemes are
currently under consideration. Marshak et al. (2000)
proposed the Normalized Difference Cloud Index
(NDCI) method, recently enhanced by Barker and Mar-
shak (2001), which uses radiative Green’s function the-
ory in conjunction with the strong difference in surface
reflectance on either side of the ‘‘chlorophyll edge’’ at
the visible/near-IR transition. Davis (2002) proposes an-
other method based on photon diffusion theory when
both sun-lit and shaded sides of a cloud are in view.

7. Summary and outlook

We have applied photon diffusion theory to the char-
acterization of radiative transfer through dense clouds
in both space and time. Low-order moments of radiative
Green’s functions are used to define the scales of interest
in terms of cloud thickness and optical depth. The
closed-form results include preasymptotic corrections
and are accurate over the full range of observed optical
depths using Monte Carlo results as a benchmark. The
present treatment refines and gives credence to the heu-
ristic arguments used previously to partially explain re-
cent path length measurements from ground-based ox-
ygen A-band spectroscopy (Pfeilsticker et al. 1998; Min
and Harrison 1999; Min et al. 2001). The recent ob-
servations of radiative smoothing in transmission by
Savigny et al. (1999) are also explained more rigorously.

We have emphasized that simultaneous observation
of the spatial property in Eq. (35) and the temporal
quantity in Eq. (32) can be used to infer the optical
depth and physical thickness of the cloud layer from
ground. This only calls for an oxygen A-band spectro-
metric instrument using zenith radiance. Indeed, such a
device naturally provides the required pathlength, and
a straightforward correlation analysis of the time series
of any continuum value provides the smoothing scale
(Savigny et al. 1999), provided it is sampled frequently
enough during the spectroscopic integration time. More-
over, neither of the observables in Eqs. (32) and (35)
call for calibration. If one adds a (necessarily calibrated)
measurement of diffusely transmitted flux, then, with
refined theory à la Barker (1996) containing one vari-
ability parameter in Eq. (39), we may also be able to
assess the degree of variability inside the cloud layer;
if not, the refined theory with a prescribed variability
parameter will still be an improvement. Finally, if the
variability is too strong for standard diffusion theory,

even refined, then there is ample empirical evidence that
anomalous diffusion theory is a viable alternative, al-
though many of the details remain to be worked out.

Transmission Green’s functions for dense clouds have
other applications worth mentioning in characterization
of opaque media for known sources as well as in char-
acterization of unknown sources embedded in clouds,
fogs, plumes, etc., where sources are either steady or
time-dependent. In the former type of problem, we dis-
cussed only passive (solar source) techniques. Active
approaches are also possible (bistatic lidar) and already
used, for instance, in medical diagnostics (Patterson et
al. 1989). A noteworthy example of the later type of
problem is optical detection of lightning from space
currently being pioneered by NASA’s Tropical Rain
Monitoring Mission (TRMM) and the DOE’s FORTÉ
satellite. Because of the need to search a vast parameter
space for a best fit to data, both kinds of problem will
eventually call for fast yet accurate solutions for forward
3D radiative transfer. A promising candidate here is ad-
joint perturbation theory (Box et al. 1988) where the
base case can be taken as homogeneous plane-parallel
and the critical 3D information is contained in the
Green’s function for the same base case. In this context,
the Green’s function source models the detector position
and angular acceptance; boundary source Green’s func-
tions for transmission (introduced here) and for reflec-
tion (already quite extensively used elsewhere) are need-
ed, preferably in the analytical form used here. Green’s
functions for internal sources are needed for higher-
order perturbation terms, a more challenging problem
we will be addressing in the near future.
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technique, 35–38.

——, A. Marshak, and R. F. Cahalan, 2001b: Green functions for
multiple scattering as mathematical tools for dense-cloud remote
sensing: Theory, with passive and active applications. Proc.
SPIE, 4377, 294–306.

Ganapol, B. D., D. E. Kornreich, J. A. Dahl, D. W. Nigg, S. N.
Jahshan, and C. A. Temple, 1994: The searchlight problem for
neutrons in a semi-infinite medium. Nucl. Sci. Eng., 118, 38–
53.

Heidinger, A., and G. L. Stephens, 2000: Molecular line absorption

in a scattering atmosphere. Part II: Application to remote sensing
in the O2 A-band. J. Atmos. Sci., 57, 1615–1634.

——, and ——, 2002: Molecular line absorption in a scattering at-
mosphere. Part III: Pathlength characteristics and effects of spa-
tially heterogeneous clouds. J. Atmos. Sci., 59, 1641–1654.

Henyey, L. C., and J. L. Greenstein, 1941: Diffuse radiation in the
galaxy. Astrophys. J., 93, 70–83.

Irvine, W. M., 1964: The formation of absorption bands and the
distribution of photon optical paths in a scattering atmosphere.
Bull. Astron. Inst. Neth., 17, 266–279.

Ivanov, V. V., and S. D. Gutshabash, 1974: Propagation of brightness
wave in an optically thick atmosphere. Phys. Atmos. Okeana,
10, 851–863.

Jensen, J. L. W. V., 1906: Sur les fonctions convexes et les inégalités
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