Innovation for Our Energy Future

Indirectly Heated Biomass Gasification

Richard L. Bain June 12, 2008

PD 29

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

Project start date: July 2007

Project end date: September 2008

Percent complete: 33%

Budget

- Total project funding \$1,100,000
- Funding received in FY07 \$500,000
- Funding for FY08 \$600,000

Barriers

- Barriers
 - Gasification efficiency
 - Capital intensity
 - Improved tar removal/reforming catalysts
- Targets
 - \$1.60 / gge hydrogen in 2012
 - \$1.10 / gge hydrogen in 2017

Partners

- Collaboration with the DOE Office of the Biomass Program sponsored research at NREL
 - Gasification & tar reforming

MYPP Objective

By 2012, reduce the cost of hydrogen produced from biomass gasification to \$1.60 / gge at the plant gate (<\$3.30 / gge delivered).

By 2017, reduce the cost of hydrogen produced from biomass gasification to \$1.10 / gge at the plant gate (\$2.10 / gge delivered).

Objective and Key Outcomes

Objective:

To experimentally update the technical & economic performance of an integrated biomass gasification-based hydrogen production process based on steam gasification

- Steam gasification
- Gas cleanup: tar & light hydrocarbon reforming
- Hydrogen sulfide removal
- Shift reaction
- Hydrogen separation

Key Outcomes Expected:

- Production of clean syngas
- Production of high-purity hydrogen
- Development of updated yield and gas quality correlations
- Development of updated technoeconomic model

Milestones

Month/Year	Milestone
Jun-08	Complete initial gasification and hydrogen production testing
Jun-08	Complete initial ASPEN modeling and H2A modeling
Sep-08	Complete parametric gasification/shift reaction testing for two biomass feeds
Sep-08	Complete ASPEN model update and revised H2A estimate

Approach

Data Generation Process Modeling Economic Modeling

- Parametric Gasification Testing
 - Performed using indirect steam gasifier
 - •2 feeds (oak, pine)
 - •3 temperatures (750, 850, 950°C)
 - •3 steam/biomass ratios
 - •20 kg/h biomass
- •Tar reformer testing at a selected condition
- Slip-stream syngas processing at a selected condition
 - •H₂S removal
 - •High temperature shift
 - Membrane separation (option)

- Gasifier Correlation
 - Parametric data
 - Multivariate analysis (Unscrambler)
- ASPEN Analysis
 - ASPEN gasifier correlation FORTRAN block
 - •ASPEN H2 integrated plant analysis
- EXCEL Summaries
- Comparison with 2005Model

- Import of Process
 Modeling Results into H2A
- Comparison with Previous Results

Experimental System

The gasification testing is being performed in the NREL 150 kW, Thermochemical Model Gas Compressor & Stirred Tank **Syngas Process Development Unit (TCPDU)** Gas Dryer Reactor Slipstream Biomass-derived **Syngas** 8-Inch Thermal Cracker Fluidized Bed Reformer Scrubber **NREL Fuel Synthesis** Reactor Reactor Thermal Blower Gas Oxidizer Chromatograph 130 bar, 350°C 1 L Stirred tank reactor Productivity ~10's q/h Feeder Dodecane (0) Stripping Column ThermalOxidizer 甲 Settling Tank Thermal Water Phase 0xidizer Water + Organics Separator Superheated Steam Cyclones Light Tar Carbon Filters Nitrogen Heavy Tar To boiler feed tank Superheater Boiler Surge Tank

Concentrated

Reboiler

Typical Gasification Results

Gasification of Oak, NREL TCPDU Steam/Biomass = 2

Tar Reforming Experiments

For catalyst evaluation experiments complete deactivation is permitted to gain insights about chemical mechanisms and to estimate reforming and deactivation kinetic rate constants and activation energies.

1st order reaction

$$k\tau a = \ln \left[\frac{X_A}{1 - X_A} \right]$$

1st order deactivation w residual activity

$$a = a_{s1} + (1 - a_{s1})e^{-\psi_{d1}^*t}$$

$$X_{A} = \frac{e^{k\tau(a_{s1} + (1 - a_{s1})e^{-\psi t})}}{1 + e^{k\tau(a_{s1} + (1 - a_{s1})e^{-\psi t})}}$$

Bain, R. L., D. C. Dayton, D. L. Carpenter, S. R. Czernik, C. J. Feik, R. J. French, K. A. Magrini-Bair and S. D. Phillips (2005). "An Evaluation of Catalyst Deactivation During Catalytic Steam Reforming of Biomass-Derived Syngas," *I&ECR*, 44, p 7945-7956.

Tar Reforming Experiments

Gasifier / Reformer Performance

Oak Gasification: NREL TCPDU, Nov-Dec 2007

Run Order:		4		5		13		14	1
Run Code:		97095		InDe1	97	7095b		InDe2	
	OK_HY	_97095	OK_NREL32b	_InDe1	OK_HY_97	095b	OK_NREL32	b_InDe2	
H2		33.74		50.46		39.15		49.91	
CO		24.45		12.18		18.37		13 05	
CO2		19.93		23.64		23.45			
CH4		12.59		4.62		11.06			
N2		0.00		0.00		0.00			
He (tracer)		1.86		1.07		1.69			
C2H6		0.00		0.00		0.00			Detailed gas and
C2H4		2.12		0.17		1.66			tar analyses are
C2H2		0.01		0.00		0.03			
C3H8		1.25		0.07		0.99		ι	used to estimate
C3H6		0.00		0.00		0.00			both initial and
1-C4H8		0.00		0.00		0.00			
2-cis-C4H8		0.00		0.00		0.00		r	eformed product
2-trans-C4H8		0.02		0.00		0.00		0	as composition,
cos		0.0000		0.0000	0	.0291		9	· · · · · · · · · · · · · · · · · · ·
H2S		0.0058		0.0006	0	.0040			and percent
Closure		95.99		92.21		96.42			conversions of
tar (mg/Nm3-wet)	ref	ormer in	reformer ou	t (initial)	reforr	ner in	reformer o		components
benzene		7785		280		6874		C	during reforming
toluene		393		0		326		·	g
phenol		46		29		39			
cresols		0		0		0			
naphthalene		2383		42		1834			
phenanthrene		792		0		535			
other tar" (as 128)		2157		0		1691		0	
"heavy tar" (as 178)		1417		0		824		0	
"total tar" (minus 78)		7188		72		5250		52	
			initial co	onv.*		sam	ple time (min		_
	InDe#	metha	ne benzen	e na	phthalene		methane		
OK_NREL32b	1	50	.3% 95.		97.8%			9	
11/07-12/07	2		.0% 95.		97.3%			8 I	
S:B=2	_								
R500=700									
TC=950									
							₩ λNR	Nation	al Renewable Energy Laboratory
R600=900							₹		, and and a

Updated Gasifier Correlations

- Current correlation based on 1980s data with yield only a function of temperature
 - Bain, R.L. (1992). "Material and energy balances for methanol from biomass using biomass gasifiers," 136 pp, NREL Report No. TP-510-17098.
- Updated correlation to predict more components and tars in the product gas.
- Updated correlation to consider the feed composition and additional process variables.
- Updated correlation to use original data and recent data from the NREL TCPDU for corn stover, switchgrass, wheat straw, Vermont wood, and oak (H₂).
- Data are analyzed and regression analysis conducted using Unscrambler software.

New Correlation: Significant Variables

- <u>Ultimate Analysis</u>
 - Moisture
- Ash
 - Carbon
 - Hydrogen
 - Oxygen
 - Nitrogen
 - Sulfur
 - Chlorine
- Process Variables
 - Thermal Cracker Temperature (TC)
 - Steam to Biomass Ratio (SB)
 - Thermal Cracker Residence Time (RT)

- Squared Effects
 - TC²
 - SB²
 - RT²
- Interaction Effects
 - TC*SB
 - TC*RT
 - SB*RT

 $Y = B_{int} + X_{c} * B_{c} + X_{H} * B_{H} + X_{o} * B_{o} + X_{N} * B_{N} + X_{S} * B_{S} + X_{TC} * B_{TC} + X_{SB} * B_{SB} + X_{RT} * B_{RT}$ $+ S_{TC}^{2} * B_{TC}^{2} + S_{SB}^{2} * B_{SB}^{2} + S_{RT}^{2} * B_{RT}^{2} + I_{TC;SB} * B_{TC;SB} + I_{TC;RT} * B_{TC;RT} + I_{SB;RT} * B_{SB;RT}$

Comparison of Current and New Correlations

Component	New R ²	Current R ²
1-Butene	0.88	
2-c-Butene	0.71	
2-t-Butene	0.71	
Carbon Dioxide	0.81	0.42
Carbon Monoxide	0.73	0.40
Ethane	0.72	0.85
Ethylene	0.96	0.88
Acetylene	0.96	0.72
Hydrogen	0.81	0.92
Methane	0.84	0.70
Propane	0.90	
Propene	0.95	
Hydrogen Sulfide	0.85	

Component	New R ²	Current R ²
Benzene	0.97	
Toluene	0.83	
Phenol	0.93	
Cresols	0.94	
Naphthalene	0.98	
Phenanthrene	0.98	
Heavy Tar, MW > 180	0.55	
Total Tar, MW > 78	0.77	0.89
Char	0.74	0.66
NF Dry Gas Flowrate	0.98	0.94

Update of ASPEN and Economic Models

Objective: Update existing ASPEN model using updated gas yield composition correlations

Link to Model and Report:

http://devafdc.nrel.gov/biogeneral/Aspen_Models/

FY08 Future Work

- Data Generation
 - Parametric gasification testing with pine
 - Tar reformer testing (one condition, new catalyst)
 - Slip-stream syngas testing
 - H₂S removal (Sud Chemie proprietary sulfur getter)
 - High temperature shift (Sud Chemie proprietary shift catalyst)
 - Membrane separation (option)
- Process Modeling
 - Multivariate analysis incorporate pine data
 - ASPEN analysis
 - http://devafdc.nrel.gov/biogeneral/Aspen_Models
 - EXCEL process summaries
 - Comparison with 2005 ASPEN model
 - Spath, P.; Aden, A.; Eggeman, T.; Ringer, M.; Wallace, B.; Jechura, J. (2005). Biomass to Hydrogen Production Detailed Design and Economics Utilizing the Battelle Columbus Laboratory Indirectly-Heated Gasifier. 161 pp.; NREL Report No. TP-510-37408.
- Import Updated Model into H2A Model
- Go / No-Go Decision

Project Summary

Relevance: Answer questions about 2012 (\$1.60 /gge) and 2017 (\$1.10 / gge)

MYPP objectives for hydrogen produced from biomass gasification.

Address efficency, capital intensity, and reforming barriers.

Approach: A three phase approach is being used: 1) gasification, reforming, and

shift reaction testing to produce a clean hydrogen-rich syngas, 2)

material and energy balance modeling using updated gasifier

correlation and ASPEN, and 3) updated H2A economic estimates

Technical Progress: One gasifer / reformer campaign completed; initial update of gasifier

correlation complete

Future Work: Complete gasifier / reformer / shift reactor testing

Complete technical modeling

Complete H2A economics