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Abstract

The prediction of fan noise is an important part to the
prediction of overall turbofan engine noise. Advances in
computers and better understanding of the flow physics
have allowed researchers to compute sound generation
from first principles and rely less on empirical correlations.
While progress has been made, there are still many aspects
of the problem that need to be explored. This paper presents
some recent advances in fan noise prediction and suggests
areas that still need further development. Fan noise
predictions that support the recommendations are taken
from existing publications.

Introduction

This paper is not meant to be a thorough review of all
work related to fan noise prediction. It contains
recommendations for future research in fan noise for
subsonic aircraft engines based on the current status of fan
noise prediction, mostly within NASA’s research
programs.

Dominant noise sources for turbofan engines are
identified in Fig. 1 (Ref. 1). As the bypass ratio of engines
increase beyond ten, jet noise is being reduced to the point
where fan noise becomes the primary noise source (Ref. 2).
It is generally accepted that fan noise is produced by the
following sources:

1. Inlet boundary layer or inflow distortions
 interacting with the fan

2. Self noise from the fan
3. Fan wakes interacting with stators or struts

There are a variety of predictions methods being
developed that either try to model all of these sources
simultaneously, or consider them as components. Key
aspects to either approach include accurate prediction of
the steady and unsteady flow field through the fan stage,
analysis of the fluctuating pressures on the aerodynamic
surfaces, the generation of sound from the fluctuating
pressures, and the propagation/radiation of the sound to
the far field.

The ultimate goal for fan noise prediction is to be able
to accurately predict the absolute levels for sound as it
propagates away from the engine. This includes properly
modeling the effects of changes to geometric features and
flow conditions. An alternate goal is to be able to predict
the correct trends of sound as a function of geometry and
flow field changes. Neither of these objectives have been
fully achieved, although there has been considerable
progress.

This paper is divided into two categories: tone noise
and broadband noise. In each category, noise resulting
from both interaction and self noise sources are discussed.
Finally, the status of Computational AeroAcoustics (CAA)
for fan noise prediction is presented.

Tone Noise

Fan tone noise is generated by either rotor-alone or
rotor/stator/strut interaction with flow distortions. Fan
wakes interacting with stators is one of the principle noise
sources for fans with subsonic tip speeds. As a result, there
has been a lot of work done to predict the unsteady
aerodynamics associated with gusts (prescribed fan wakes)
interacting with airfoils. Most of this work has been done
for two-dimensional flows, but this has changed in recent
years with better computing technology and a greater
understanding of the three-dimensional flow physics.

Interaction Noise
A common approach for predicting interaction tone

noise is to use modal analysis in conjunction with the
Tyler-Sofrin theory (Ref. 3). Fan wakes or inlet distortions
are specified as vortical gusts based on empirical
correlations from model or full scale engine tests. The
gusts interact with the rotor or stator, generally represented
as strips of airfoils or flat plates in a cascade. A “source”
model is used to determine the unsteady surface pressures
on the blades responding to the interaction with the vortical
gusts. The sound generated in the nacelle is determined by
coupling the unsteady surface pressures to the propagating
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duct modes for both the inlet and exhaust. A fan noise
prediction code originally developed in the early 1980’s
(Ref. 4), and revised in the 1990’s (Ref. 5), uses this
approach. Radiation codes have been developed (Refs. 24
to 29) to predict the propagation of these modes to the far
field. This procedure is repeated for each frequency where
interaction tones exist, i.e., the Blade Passing Frequency
(BPF) and higher harmonics. Figure 2 shows a schematic
of the process.

Source Models. Many of the current source models
use a “strip” approximation for the unsteady aerodynamics.
The blades are represented as two-dimensional, flat plate
cascades stacked in the spanwise direction. These models
were developed in the early 1970’s by Smith (Ref. 6),
Whitehead (Ref. 7) and Kaji (Ref. 8). A disturbance
corresponding to either an inflow distortion into the fan or
the fan wake interacting with the stators/struts are
prescribed as vortical gusts that convect with the mean flow
(the “frozen gust” assumption). The unsteady surface
pressures on the blades are determined by satisfying a no
flow boundary condition normal to the plate and can be
represented as a distribution of dipoles in the chordwise
direction. Applications and extensions of these models
have led to the understanding that chordwise source non-
compactness effects are important for tone predictions
(Refs. 9 to 12). The unsteady surface pressures are
integrated and coupled to the propagating duct modes inside
the nacelle to determine the inlet and exhaust sound power
levels.

Using strip theory for the source model always raises
questions of validity. Namba (Ref. 10), who developed a
three-dimensional lifting surface analysis, reported that
the three-dimensional effects become less important for a
given spanwise gust wave number as the acoustic response
frequency increases. This was also verified by Kobayashi
(Ref. 11) who assessed the importance of including three-
dimensional effects by comparing strip theory to a three-
dimensional lifting surface code for several fans. He
concludes that “two-dimensional calculations of the
unsteady forces are reasonably adequate for fan noise
prediction.”  The acoustic power of the duct modes agreed
to within ±2 dB. At this time, most of the applications were
concerned with inflow distortions from either inlet guide
vanes, inlet boundary layers, or engine angle-of-attack.
Today, inlet guide vanes are less common in turbofan
engines and inlet design technology has evolved to where
inflow distortions are not as severe. The emphasis has now
changed to fan wakes interacting with stators and struts. It
should also be pointed out that all of this work was done
for subsonic flows. While this may be adequate for fan/
stator interaction where the mean flow is subsonic,
disturbances interacting with the rotor typically involve

supersonic relative flows near the tip of the fan. Even
transonic flow can significantly distort the vortical gusts
and change the local propagation characteristics of the
acoustic energy (Ref. 15).

Concerns about “real” blade effects for both
aeroacoustic and aeroelastic applications have led unsteady
aerodynamicists to develop computational methods for
the gust response problem. Frequency domain approaches
typically use perturbation methods from a nonlinear, two-
dimensional mean flow (Refs. 13 to 16). There have been
a few applications of these class of codes to aeroacoustic
problems. Preliminary results indicate that gusts convecting
through a cascade of airfoils with a transonic mean flow
can generate significantly different sound. Figure 3 was
taken from Atassi, Fang and Hardy (Ref. 15) and shows
how the upstream and downstream acoustic pressure can
be significantly different for an airfoil in transonic flow
when compared to a flat plate calculation. They
conclude that the magnitude of the acoustic modes can be
significantly larger for a loaded cascade. Lorence and Hall
(Ref. 16) applied a similar analysis to study the sensitivity
of sound to design variables like blade thickness, camber,
and stagger angle. They found that it is possible to
redistribute the inlet and aft sound levels by varying these
parameters, but the overall levels were not significantly
changed.

Three-dimensional versions of these methods are
now being developed. An analysis based on the linearized
Euler equations has been developed by Montgomery and
Verdon (Ref. 17) for turbomachinery applications. The
unsteady flow field is assumed to be a small perturbation
from the nonlinear steady flow. This method uses modal
analysis and the solutions are determined for a single blade
passage, which helps reduce computational requirements.
Since this approach analyzes the fan and stator as separate
components, the unsteady boundary conditions in the
interstage region where swirling flow exists have presented
a major computational technology hurdle (Refs. 18 and
19). One way to circumvent this difficulty is to model both
the fan and the stator simultaneously, which eliminates the
computational boundary in the swirl region. This has been
done by Rangwalla and Rai (Ref. 20) for acoustic
applications. This approach relies on the analysis to predict
the fan wake properties (as opposed to specifying the
wake from data or other analyses) and requires solutions
from multiple blade passages to account for uneven fan/
stator blade counts. Since the grid representing the fan
blades rotates relative to the stator grid, sufficiently small
time steps are needed to accurately transmit the acoustic
waves across the interface boundary (Ref. 21). All of these
issues make time-marching solutions for interaction tone
predictions difficult, requiring hundreds of hours of CPU
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time to obtain accurate three-dimensional solutions for
even one fan speed/configuration.

Very little has been done yet to apply the three-
dimensional codes to aeroacoustic fan problems.
Parametric studies are needed to determine when the two-
dimensional flat plate models can be used and when more
complex codes are needed, particularly for transonic flows.
It is unlikely that the three-dimensional codes that solve
the Euler or Navier-Stokes equations will be used in a
design environment in the near future, but they can be used
to sort out what is important for improving fan noise
prediction methods.

An outstanding issue for any of the approaches
mentioned so far is how to deal with near sonic flows on
the fan. All discretized approaches have problems when
the local Mach number is nearly one and the acoustic
wavelengths become small for upstream propagating
waves. Many of the current computational methods require
10 to 20 points/wavelength to accurately model the
acoustics. Can these regions near the blade be ignored?
Studies are needed that identify how severe this problem
is for fan applications.

When the source model is used for a single blade row,
specification of the fan wake is usually done through
empirical correlations. Important parameters for tone
predictions include wake width and depth as a function of
axial distance between the fan and stators. Wake models
based on measured data have been developed (Ref. 22)
and updated as more fans are tested. The correlations relate
the wakes to local characteristics of the fan, like blade
section drag and loading. A disadvantage of this approach
is that correlations may not be representative of a particular
fan. Sutliff, et al. (Ref. 23) compared acoustic predictions
using measured fan wakes versus empirical wake
correlations. They found that the differences between
measured and correlated wake characteristics can influence
the duct power by a few decibels (Fig. 4), but the trends are
similar as a function of fan speed (for a subsonic rotor).
Ultimately, CFD predictions may be used to provide wake
properties for a specific fan design. Since the acoustic
source models need this information near the stators, CFD
codes need to be able to accurately convect the wakes over
a few fan chord lengths.

Duct Propagation and Radiation Models. There are a
variety of approaches available for propagating the sound
through the nacelle and predicting far field levels. Input is
required that specifies source levels from either predictions
or experimental measurements. Early methods based on
ray tracing and Wiener-Hopf methods (Ref. 24) were
developed that are quick, but typically do not include flow

effects with realistic geometry. There were also methods
available that analyze the modal characteristics of the
source (based on cut-off ratio) to project far field directivity
and sound levels (Ref. 25). These methods include
convection effects assuming a uniform mean flow through
the duct. Numerical methods have been developed that
account for mean flow variations and acoustic wave
interactions with curved center bodies and ducts. This was
initially done for inlet radiation problems (Refs. 26 to 28),
and later extended to the nozzle radiation problem (Ref. 29).
An important aspect for aft radiation is including the
refraction effects from the nozzle shear layer. These
methods use a two-dimensional grid that cuts the engine in
an x-r plane (Fig. 2) and uses duct mode information as
input at a specific axial plane inside the nacelle.
Applications of the numerical methods are usually
restricted to frequencies around 3 BPF and below for a
typical fan. This is constrained by grid size requirements
and practical CPU times on current computers.

Results from predictions have been encouraging for
axisymmetric nacelles. Improvements in measurement
techniques (Ref. 30) that determine duct mode source
strengths have allowed researchers to validate propagation
codes. Heidelberg, et al. (Ref. 31) have shown how these
codes can do an excellent job of predicting far field
directivity when the source levels are known (Fig. 5).
Improvements have been made (Ref. 32) in the midangle
regions by properly accounting for the inlet and aft mode
phase relationships. These results suggest that work should
concentrate on source models that can accurately predict
the duct modes in the nacelle.

The radiation code cited in Refs. 28 and 29, uses finite
element analysis in the near field and a wave envelope
method to obtain far field information. This method gives
good overall results for sound pressure amplitudes, but
falls short if both amplitude and phase information are
needed. Spence (Ref. 33) recently showed how phase
accuracy can be improved by using a Kirchhoff analysis in
place of the wave envelope method.

The methods presented above assume axisymmetric
nacelle geometries. In reality, turbofan engines have
asymmetric nacelles, struts and pylons, requiring three-
dimensional analyses. Advances in computing technology
and development of highly efficient methods offer ways to
meet these needs (Refs. 34 and 35).

System Predictions. In recent years, the effects of
mode trapping between the fan and stator due to swirling
flows, transmission effects through the fan, frequency
scattering and reflections from the inlet/nozzle have also
been included in fan noise prediction (Refs. 36 to 40).
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Again, the approach is to use components consisting of the
inlet, fan, stator and nozzle. Influence coefficients are
used at the interface boundaries to model interactions
from all components. Topol (Ref. 39) recently presented
sample predictions for a subsonic fan and compared them
with experimental data from a model scale test (Fig. 6).
The results show that including coupling and swirl effects
can significantly change the predicted directivity of the
interaction tones. Overall, it looks like the predictions are
in better agreement with the data, but more applications are
needed. Sijtsma, Rademaker, and Schulten (Ref. 41) also
reported that reflections from the inlet and nozzle can be
significant over a wide range of speeds and should be
included in fan noise predictions. Schulten’s method
(Ref. 42) uses a three-dimensional lifting surface code for
the source model.

System predictions that model multiple components
of an engine have been needed for many years and are
finally being developed. The next step is to determine when
system predictions are needed over simpler approaches.
System predictions are considerably more complex and
require expert users, at least for now.

Multiple Pure Tones
Predictions for Multiple Pure Tone (MPT or “buzz-

saw”) noise are typically not robust. This noise source is
caused by variations in the fan blade geometry (like
stagger angle) that results from either manufacturing or
installation. Unless careful inspection is done for each fan
after production, it is difficult to know what the MPT
characteristics will be in advance. The spectra for MPT
noise is experimentally distinguished by observing shaft-
order tones in the near field inlet microphone measurements
as the fan speed becomes supersonic. Prediction methods
need to input blade-to-blade variations in order to predict
the orders of the shaft frequency where the tones will be a
problem.

There has been work done recently to predict the fan
speeds for the onset of MPT noise using CFD (Ref. 43).
This approach only requires knowledge of the steady flow
field near the fan since MPT noise can be related to the
formation of shock waves. Sufficient grid resolution is
needed to capture the bow shock from a single blade and
its interaction with adjacent blades.

Broadband Noise

Methods for predicting fan broadband noise have
been mostly empirical in nature. They usually rely on
correlations from engine or model data that relate the
measured fan broadband noise with fan loading and tip

speed. Since the tone levels have been significantly reduced
from modern turbofan engines with higher bypass ratios
(Ref. 44), methods that can predict broadband noise with
less empiricism are needed. Analyses that calculate the
unsteady aerodynamics associated with broadband noise
can use, in principle, the same gust response methods cited
for tone noise prediction. However, many more frequency
bands must be considered compared to tone prediction
methods. This significantly increases the computational
time. Time marching methods are also difficult to use
since they need accurate resolution of the temporal and
spatial flow properties. One of the underlying requirements
for any pure prediction method for broadband noise is
accurate representation of the flow turbulence. Another
challenge to fan broadband noise is a general lack of
understanding of important source mechanisms as the
operating conditions vary. It is likely that the total
broadband noise levels result from a number of different
sources within the engine.

Interaction Noise
 Broadband noise can result from either inflow

turbulence interacting with the fan or fan turbulent wakes
impinging on stators and struts. There is a version of the
tone noise prediction code cited in Ref. 4 that also predicts
broadband interaction noise. It uses a two-dimensional,
flat plate gust response model for specific turbulence
intensity levels and distributions. A sample prediction
was done for a generic cascade subjected to vortical
excitations that simulate the fan wake turbulence interacting
with a stator. The turbulence was assumed to be isotropic
at the stator leading edge with an intensity of 1 percent.
The inlet sound power levels (taken from Ref. 4) are
plotted in Fig. 7 for four different integral length scales
and frequencies ranging from BPF to 3 BPF. As the
integral length scale becomes sufficiently large,
haystacking occurs near the harmonic frequencies. This
work was one of the first attempts to predict fan broadband
noise by first principle estimates of the source.

More recent work for interaction noise has been done
by Mani, et al. (Ref. 45) and Martinez (Ref. 46). Mani uses
a flat plate source model that includes both dipole and
quadrupole distributions using a strip approach. The steady
loading effects are estimated to assess quadrapole
contributions. He shows how the quadrapole effects can
be significant for higher frequencies when compared to
the dipole contributions. Martinez has also investigated
blade loading on fan broadband noise by applying a
two-dimensional linearized Euler code (Ref. 47) to model
“real” blade effects.  This work is relatively new and has
not yet been rigorously applied.
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Fan-Alone Sources
Rotor blade self noise has been investigated for

isolated airfoils by a number of researchers (see Refs. 48
and 49 for listings). Sources mechanisms for isolated
airfoils include turbulent boundary layer/trailing edge
noise, separation stall noise, laminar boundary layer vortex
shedding noise, tip vortex formation noise, and trailing
edge bluntness vortex shedding noise (Ref. 50). For ducted
fan applications, these sources are influenced by the
presence of the casing and hub. Glegg (Refs. 48 and 49)
has extended this work to ducted fans by using measured
spectra from the isolated airfoil tests to evaluate blade
surface unsteady pressure distributions. The surface
pressures were input to a strip approach for rotating blades
(similar to methods described earlier in this paper) to
determine mode amplitudes for a ducted fan. Results show
that the duct sound power scales with the fifth power of the
fan speed for low fan speeds, and the sixth power for high
fan speeds. The effect of rotor incidence was determined
through the experimental correlations for airfoil angle of
attack. Glegg reports that blade incidence increases the
self noise as 2.4 dB/degree for an unstalled fan. This is
consistent with Gliebe (Ref. 51), who found that forward
radiated fan broadband noise increases 2.5 dB/degree of
incidence.

While this approach looks promising, it still relies on
empirical relationships for the sound sources. Methods
are needed that can accurately predict the source spectra,
which ultimately depends on improved turbulence models.

Computational Aeroacoustics

Computational AeroAcoustics (CAA) has gained
considerable attention over the past few years. If successful,
it offers a way to reduce the number of component analyses
needed to predict the total noise and provide a more
realistic and accurate prediction tool. For example, fan
tone and broadband noise can be computed together with
the mean flow and unsteady pressures solved
simultaneously. All nonlinearities and complexities
associated with three-dimensional geometries in high-
speed flows can be computed. An immediate challenge for
CAA is to demonstrate accurate noise predictions in a
reasonable amount of CPU time. For internal flows,
unsteady boundary conditions are still an issue.

There have been various workshops and conference
sessions dedicated to CAA and its applications to selected
problems. The Second Computational Aeroacoustics
Workshop on Benchmark Problems (Ref. 52) concentrated
on applications to various model problems. One of the
problems designed for turbomachinery noise applications
uses the same two-dimensional gust response model

utilized in the source model from Ref. 4 to benchmark
state-of-the-art CAA codes. It is imperative that CAA
methods demonstrate accurate predictions of linear flows
where analytical solutions can be used for comparisons,
before attempting more difficult problems. There is no
reason to believe that a nonlinear code is producing
accurate predictions if it cannot match a linear subset of
the governing equations!  The turbomachinery benchmark
problem (designated “Category 3”) calls for the solution
to a gust convected with a mean flow interacting with an
unstaggered cascade of flat plates (Fig. 8). Four passages
are used with the gust phase offset by 90° for each plate
(interblade phase angle). The amplitude of the gust is
small so comparisons can be made with linear theory. Gust
frequencies corresponding to reduced frequencies of about
8 and 20 (based on plate length) are prescribed and the
inflow Mach number is 0.5. The resulting unsteady surface
pressure distributions on the plate and the upstream/
downstream sound intensity distributions are requested
from each participant in the workshop.

Four predictions for this problem were submitted to
the workshop and the results vary significantly.
Comparisons for “Problem 2,” which asks for solutions
for a convected gust that is introduced upstream, are
shown in Fig. 9 (low frequency case) and Fig. 10 (high
frequency case). The pressure distributions show the first
harmonic of the real and imaginary parts of the pressure
differential distribution across the plate after a Fourier
transform is applied to the unsteady pressures. The mean
square pressure distributions (sound intensity) are shown
along a line at x = –2 upstream of the cascade and along a
line at x = 3 downstream of the cascade.

Reasons for discrepancies are likely to be due to
either poor grid resolution, or problems with the unsteady
boundary conditions at the inflow and outflow. It is
possible that local nonlinearities may exist at the leading
or trailing edges of the flat plate, but this can be assessed
by simply reducing the gust amplitude. The CPU times for
these runs vary from just a few minutes for the frequency
domain solutions to many hours for the time marching
solutions. Predictions for fan noise require extensions to
three dimensional flows, including real blade effects for
staggered cascades, running the entire rotor and stator
blade passages instead of only the four used in this
problem (time domain approaches), accurate prediction of
the rotor wakes if including both the fan and stators, and
accurate propagation of the acoustic waves to the far field
(unless another code is used for duct propagation and
radiation). For the time domain solvers, this makes the
problem extremely complex and well beyond today’s
capabilities if the codes are to be used for design and
analysis. However, progress in both the algorithm
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development for CAA codes and computer speeds make
these efforts worth pursuing. For example, one of the
solutions (Ref. 52, Lockard & Morris) was done using an
algorithm for parallel computing and showed significant
reductions in CPU time over traditional time-marching
methods.

There have been other algorithms developed that
have demonstrated potential for significant savings in
CPU time. One approach (Ref. 34), called “Green’s
Function Discretation (GFD)” reduces the number of grid
points per acoustic wavelength to numbers near the Nyquist
criterion. This technique shows promise for being able to
use CAA for three-dimensional applications.

Codes using advanced CAA algorithms need to be
developed far enough to do noise predictions for fan
designs where acoustic data is available. The best way to
generate interest in CAA is to demonstrate that it can do a
better job of predicting fan noise than current methods,
even if this requires significantly more CPU time and user
experience. The turbomachinery benchmark problem is a
first step towards demonstrating what CAA algorithms can
offer as an eventual substitute for simpler source models.
Model problems for three-dimensional fan flows where
analytical comparisons can be made do not yet exist. This
is a problem that faces many applications of CAA and at
some point, comparisons to experimental data will be the
only available benchmark. However, there is a need for the
community to define three-dimensional problems that
researchers can use to compare the many prediction
methods that are becoming available. Meetings, like the
First and Second Computational Aeroacoustics
Workshops, need to continue and lead the CAA community
towards relevant applications that can eventually be used
by industry.

Summary and Recommendations

Considerable progress has been made in recent years
towards improving fan noise prediction. Portions of the
work have been highlighted in this paper. Better knowledge
and prediction of noise sources is a vital requirement for
improving prediction methods. Duct propagation and
radiation models do a good job of predicting far field levels
if the source distribution/amplitude inside the nacelle can
be accurately defined. As tone levels are being reduced in
modern turbofan engines, emphasis is being shifted to the
prediction of fan broadband noise. Efforts are needed to
characterize turbulence spectra of the flow near the fan
and stators, including intensity and integral length scale
distributions. Research is needed that identifies the level
of analysis required to accurately predict duct sound
power levels.

The following recommendations are made regarding
future work:

1. Apply three-dimensional source models to identify
important flow physics from an acoustic perspective.
Compare the results with two-dimensional source models
for both tone and broadband noise predictions.

2. Apply source models that include “real” blade
effects and compare them to flat plate source models for
transonic flows. Study high Mach number flow effects on
acoustic wave propagation through a fan.

3. Assess CFD capabilities to predict both steady and
unsteady (turbulence spectra) for fan wakes near stator
leading edges. Need to determine if descriptions of
turbulence can be predicted, or should wake/boundary layer
models be developed/updated from experimental
measurements.

4. Continue development of highly efficient and
accurate methods (through CAA or theory) that can solve
three-dimensional problems like asymmetric nacelles.
Work needs to continue in developing three-dimensional,
unsteady boundary conditions for internal flows.

5. Run parametric studies for various engine
configurations to identify when system predictions are
needed (that include inlet, fan, stators, struts, and nozzles),
as opposed to uncoupled methods that may neglect some
components.

6. A study should be done to determine whether
time-marching or frequency-domain methods are best
suited for broadband noise predictions.

7. Need to define benchmark problems that address
the three-dimensional aspects of fan noise prediction. The
aeroacoustics community should work together to define
these model problems. More code-to-code and code-to-
data comparisons are needed to identify which sources
should be included for providing accurate fan noise
predictions.
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Figure 3.—Magnitude of downstream pressure for 
   second acoustic mode, airfoil vs. flat plate 
   response to gust, M∞ = 0.8. (a) Upstream.
   (b) Downstream.
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