Flow-based Multistage Co-allocation Service

Sudeepth Anand,? Srikanth Yoginath,?> Gregor von Laszewski,!*
Beulah Alunkal,’? Xian-He Sun?

!'Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL 60440

2Department of Computer Science, Illinois Institute of Technology, Chicago, IL 60616

*Corresponding Author: gregor@mcs.anl.gov

to be published in:
The 2003 International Conference on Communications in Computing,
June 23-26, 2003, Las Vegas, Nevada, U.S.A.
this preprint is avalable at Argonne National Laboratory, Argonne, IL 60439, U.S.A.
Number ANL/MCS-P1046-0403

Abstract

The concept of co-allocation provides a simple
mechanism to request and bind resources in a coor-
dinated fashion in Grids across virtual organization
boundaries. We have designed an advanced multi-
stage co-allocation strategy based on resource hier-
archies defined through user-specific patterns. The
model manages simple flows between resources to
perform managed job executions. We demonstrate
the usefulness of our model on several examples
and discuss advantages and disadvantages of the

model.

Keywords: co-allocation, Grid, workflow, Com-
modity Grid Kit, CoG

1 Introduction

Grids promote a collaborative approach [?] to
computing that enables the integration of geo-
graphically resources as part of a virtual orga-
nization [?]. Such resources include computers,
data repositories, scientific instruments, and
advanced display devices [?]. To use these re-
sources at the same time as part of an adhoc
environment, the user needs to request the re-
sources under quality-of-service guaranties and
bind a reservation with the requested resources
in order to assemble a cooperatively managed

resource pool for the application. Often re-
sources must be reserves and bound at the
same time to fulfill large numbers of reserva-
tion requests [?].

The collaborative assembly of such an adhoc
resource pool accessed by the user is known in
the Grid community as co-allocation. A typi-
cal strategy for co-allocating resources include
an iterative process of reservation and binding
until a quality constraint defined by the appli-
cation user is fulfilled.

In order to facilitate complex co-allocations
in Grids, a co-allocation service is needed
that takes care of resource co-allocation un-
der quality-of-service guaranties. This ser-
vice must be designed under software engi-
neering guidelines promoting usability, conve-
nience, simplicity, platform independence, and
scalability.

This paper provides an initial step address-
ing issues related to the development of a
service-based model for co-allocation. We con-
sider advanced allocation strategies that ben-
efit from a hierarchical resource model that
may be implicitly imposed through a virtual
organization and exposed through a hierarchi-
cal resource specification. As a result, bet-
ter scalability for large numbers of resources
is achieved.

The paper is structured as follows. First,

we describe the present Globus Toolkit re-
source management architecture. Then we in-
troduce the concept of multistage co-allocation
and compare it with single-stage co-allocation.
Next we describe and compare various co-
allocation architectures. We illustrate how to
achieve workflow-based job execution using our
multistage co-allocation strategy. Finally, we
discuss implementation issues.

2 Motivation

Co-allocation of compute resources was intro-
duced by the Globus Toolkit [?] in order to re-
serve multiple supercomputers and to conduct
large-scale MPI-based [?] calculations across
domain boundaries. The toolkit provides an
API called DUROC (dynamically updated re-
quest online co-allocator) with which a co-
allocation service can be designed. DUROC
provides neither a protocol nor a language-
independent design, and thus is unsuitable for
advanced Grid environments that must address
language independence. It also uses a nonstan-
dard communication library (Nexus) [?] that
has been phased out as part of the Globus
Toolkit. Hence, co-allocation has not been dis-
tributed with protocol-based toolkits such as
the Java CoG Kit. Our goal was to demon-
strate that one can easily provide a service-
based replacement for DUROC that will al-
low users to use such a service any application
through a protocol. We also worked to deter-
mine architectural changes that provide added
functionality and scalability for large numbers
of resources.

In the current DUROC design reserving a
large number of independent resources leads
to overhead because every machine needs to
be contacted and the likelihood that all ma-
chines will be available is little. Hence the
direct contact promoted by DUROC between
client and resource during the resource reser-
vation phase results in additional overhead
while not utilizing the different communication
speeds in Grids. Our design involves a hier-
archy of smart co-allocation services based on

natural virtual organization boundaries. By
considering changes in inter-resource commu-
nication speeds, we reduce the communication
costs dramatically. The complexity for reserv-
ing resources (under the assumption that a
reservation succeeds immediately) is O(n) in
the case of DUROC. On the other hand, the
lower bound of the reservation in our hierar-
chical system for large numbers of resources is
O(nlogn).

3 Architecture

The main components (see Figure ?7) of the
co-allocation service are (a) a selection agent
that selects appropriate resources under the
clients service constraints (indicating which
may take part in a co-allocated computation),
(b) a request agent that requests resources for
inclusion in the allocation once they have been
selected, and (c) a barrier agent that makes the
resources available at the same time. Synchro-
nization is achieved by making each resource
wait on the barrier call until the barrier ser-
vice hears from all the resources. A timeout
can be specified in order to not block the re-
sources for an indefinite amount of time while
preventing deadlock with other co-allocations.
Upon failure, each of these agents iteratively
tries to lower the resource constraints specified
by the client, in order to allocate a suitable set
of resources. The request and barrier agent,
contact each resource individually.

To use the hierarchies implicitly or explicitly
expressed as part of a Grid environment, we
need to enhance the single-stage co-allocation
service in two ways. In a multistage co-
allocation, a co-allocation service forwards re-
quests to other co-allocation services at suc-
cessive stages. Hence, we must provide au-
tonomous behavior within a co-allocation ser-
vice that prevents excessive communication
with the client. Additionally, we provide a reg-
istry within the co-allocation service to which
we can register other co-allocation services to
construct a hierarchy across virtual organiza-
tions (Figure ??(b)). The co-allocation ser-

[Client]

$ Iterate

Information
Service

lterate

/ \

................. Resource) * - * (Resource

Figure 1: Single-stage co-allocation service

vice has been augmented with the authoriza-
tion and authentication service that can dele-
gate security credentials between the services
to the resources so that permitted use of the
resources is supported.

Iterate .
’
’
7
’
/

Resource ’
Binding

Request

Co-Allocation
Service

. I lterate
Register 1
1

Co-Allocation
Service

Co-Allocation
Service

More Levels

]
1
P A’ v 3
EDEDIEDED @D @D
P&
(a) ! (b)

Figure 2: (a) Single-stage co-allocation, (b)
Multistage co-allocation

4 Job-based Co-allocation

Service

Although our architecture is applicable to any
resource, we consider in the rest of the pa-
per only compute resources to simplify our dis-
cussion. Job request are first formulated in a
portable way using an XML based language as
depicted in Figure ??. Here two resources (hot

and cold) are co-allocated, executing a tightly
coupled climate model in parallel on the two
compute resources. Nesting co-allocations in
the <coallocate> tag enables one to specify
easily a hierarchy.

<coallocate name="climate-model">

<resource="hot.mcs.anl.gov" type="compute">

<executable="climate.out"/>
<directory="/gregor/coalloc"/>
<arguments="europe"/>

</resource>

<resource="cold.iit.edu" type="compute">
<executable="climate.out"/>
<directory="/vonlaszewski/coalloc"/>
<arguments="America"/>

</resource>

</coallocate>

Figure 3: Pseudo multirequest specification in
XML

To simplify the notation of complex flows,
we use in the rest of the paper a notation that
is an extended version of the one introduced
by the Globus Toolkit Resource Specification
Language (RSL) [?]. While replacing XML
tags with “(” and “)” we denote single-stage
co-allocation with a “+” and multistage co-
allocation with a “*”. Hence, a multirequest
is best thought of as a conjunction of individ-
ual resource descriptions, or individual RSLs.
A multirequest co-allocation specified by the
client is parsed by the co-allocation service, the
resources are requested, and upon successful al-
location through the barrier service (that also
checks authentication and authorization) the
compute resources can be used in conjunction
for a calculation.

5 Single-stage vs. Multistage

Co-allocation

Multistage co-allocation has a number of ad-
vantages over single-stage co-allocation. The
user can feed in a hierarchical job request to
the co-allocation service. Thus, job requests
can provide a meaning through a structured re-
quest by grouping related jobs based on classes
formed through contextual or infrastructure

properties. Hence, we can provide better guid-
ance for advanced allocation strategies while
using the domain-specific properties of the ap-
plication and the infrastructure. Furthermore,
through multistage co-allocation we can pro-
vide for an optimal and efficient resource usage
by employing a lazy resource acquisition pat-
tern. This pattern defers resource acquisition
to the latest possible time during system execu-
tion. Unlike single-stage co-allocation that fol-
lows eager acquisition where all the resources
are to be acquired in advance, multistage co-
allocation can delay resource acquisition by
delegating it to later stages. Thus, it can han-
dle resource scarcity better by not forcing all
resources to be available at time of execution
of the job.

Consider a scenario where a co-allocation
job has a large resource requirement and there
are not enough resources in the virtual organi-
zation to meet them. Single-stage co-allocation
cannot proceed until all the resources become
available, whereas multistage co-allocation will
proceed if there exist some stages in a multi-
stage where the resource requirements can be
met. The other stages can wait until their re-
quirements are met as could happen once an-
other stage relinquishes its resources after com-
pletion of its requests.

RSL: #(*(a) (b) (¢)) (*(d)(*(e) (1))

Stage §

Stage 2 iRSL #a) (k) (<) RSL: *(d) (*(&) (F))

Stage 2 ‘KSL;, RSL: b RSL.c »/RSLd\Rs 5(e) (1)
Stage 4 /RSL:e \RSLH'
(3
i

Figure 4: Multistage co-allocation

To clarify these issues, we consider a mul-
tistage request as depicted in Figure 77:

*(x(a)(0)(c)) (x(d)(x(e)(f))), where a,b,c,d,e,

and f are single-stage RSLs. Now let us
consider the scenario when the topmost co-
allocation service in the processes this request.
It understands from the * that this RSL is a
multistage RSL, so it parses the RSL, separates
the two RSLs *(a)(b)(c) and *(d)(x(e)(f)), and
submits each to two other co-allocation ser-
vices. This hierarchical process is continued
until single-stage co-allocations are reached at
which point the resources are requested and
acquired to conduct the calculation specified.
Hence, at Stage 3, co-allocation services Cy,
C5, Cg, and C7 execute a,b,c, and d, respec-
tively. Similarly, at Stage 4, Cy and C1g, exe-
cute e and f, respectively.

As a result the user can specify a structured
job request that is handled by the Grid infras-
tructure while using multistage co-allocation.
The burden of managing such a structured job
is placed on the autonomous co-allocation ser-
vices. In the following sections we evaluate
our multistage co-allocation service and discuss
how it can easily be modified to schedule job-
oriented workflows.

6 Workflow-based
Co-allocation

We discuss two different concepts for achiev-
ing workflow-governed co-allocation. The first
is implicit flow-based multistage co-allocation,
where the workflow is implied by the mul-
tistage tree structure. The second concept
is explicit flow-based multistage co-allocation,
where the workflow dependencies are explic-
itly specified within the RSL. Our architec-
ture provides the advantage of enhancing the
core functionality of the Globus Toolkit with
the concept of workflows in a straightforward
fashion based on a distributed peer-to-peer
model while supporting barrier synchroniza-
tion within a virtual organization. Other ap-
proaches use mostly centralized workflow en-
gines [?, 7, ?7]. We note that recently we de-
scribed how to formalize workflow management
in a coordinated fashion based on the Grid ser-
vices framework [?]. This work is not covered

here.

6.1 Implicit Flow-based
Co-allocation

By combining the features of multistage co-
allocation and the barrier service, we can
achieve a workflow-based co-allocation that en-
ables the user to dictate the job execution flow.
This co-allocation is achieved by progressing
only when all registered members to a bar-
rier service report back. If the co-allocation
service gets a multirequest RSL, meaning that
no successive lower stage of co-allocation is re-
quired, it immediately calls the barrier before
processing the request. On the other hand, if
the co-allocation service gets a multistage re-
quest, implying that a successive lower stage of
co-allocation is required, it delays calling the
barrier until it hears from the successive stage.
All these factors contribute to stalling the exe-
cution of jobs at a co-allocation service until all
the jobs at successive lower stages in the sub-
tree have finished execution. Thus, if there is
a job a at a lower stage in the subtree than an-
other job b, then job b waits until job a finishes.
In essence we achieve a workflow of a — b.

(0) OO0
.@ O
() ONOnO

(@ (b) (©)
Figure 5: Workflows

To see how we formulate such workflows,
consider Figure ?7(a). Here, the workflow
specifies that jobs b and ¢ are dependent on
job a; job d is dependent on jobs b and c;
and job e is dependent on job d. In or-
der to achieve the workflow specified by the
user, the following multistage RSL is created:
«(x(x(x(a))(b)(c))(d))(e), where a, b, c,d, and e
are multirequest RSLs. This multistage RSL is
submitted to a co-allocation service, and a mul-
tistage execution tree structure is generated.
Figure 7?7 shows the corresponding multistage

execution structure. To understand the pro-
cess, we consider “Stage 4”7 of the multistage
co-allocation tree. This stage has three co-
allocators Cg, C7, and Cg. Co-allocators Cy
and Cg are leaf nodes, with no lower stages
below them. Hence they wait on the barrier
before running the jobs b and ¢, respectively.
Cs, not being a leaf node, does not execute the
barrier until it submits job a to co-allocator
Cy and subsequently gets the result back from
Cy. After getting back the result, Cg signals
C7 and Cg out of the barrier. Co-allocators
C7 and Cg then continue on to execute b and
¢, respectively. Thus the flow shown in Figure
?? (b) has been achieved. Similar operations
take place at every stage of the multistage co-
allocation tree, with the final result of achiev-
ing the specified workflow shown in Figure 77
(a). This architecture can achieve simple work-
flows that map from a direct acyclic Graph into
a tree.

RSL: *((*(*(a)(b)< D(d))(;‘
\

RSL: *(*(*(a))(b)(e)d RSL"i Stage 2 ‘\

5

CURSLe st () e RSLid 3
: @ Stage 3 => Barrier
= = Service
f 4
RSL: by RSL: ¢ 4 ,“
iy
’

Stage 5

Stuge 1

Figure 6: Multistage Tree Structure

A disadvantage of the implicit flow-based
multistage allocation services (IFMAS) is that
each job executing at any stage in the multi-
stage co-allocation tree waits for the comple-
tion of all the jobs in stages lower down the
subtree. There might be jobs at a stage that
do not depend on some other jobs lower in
the subtree, that distinction cannot be made
in this architecture.

To clarify this point, we consider the work-
flow shown in Figure ??(c). In this example,

job d depends on both jobs a and b, whereas
job ¢ depends only on job b. Although the flow
can be achieved by using the IMAS architec-
ture, it will lead to a nonoptimal schedule as
Figure ?7?(b) shows. It is inefficient because
job ¢, which depends only on job b, is made to
wait until both jobs a and b complete. Hence,
this architecture will not be suitable for many
workflows.

6.2 Explicit Flow-based
Co-allocation

To enable a larger range of workflows, we de-
veloped an architecture that enhances IFMAS
with some minor changes. First, we change
the barrier service model to a wait-and-signal
model. We introduce a unique job-ID for
each job. According to this new model a co-
allocation service executing a wait call on a job-
ID can be released from its waiting state only
by a co-allocation service executing a signal
call on the same job-ID. Figure 7?7 (b) depicts
which job-IDs propagate down the multistage
co-allocation tree. We also modified our mul-
tistage RSL to include references to job-IDs.
Because we explicitly define the workflows, we
call this architecture explicit flow-based multi-
stage co-allocation service (EFMAS).

¥

RSL:a RSL:b RSL:c¢ RSL:d

oo
o /- () (=)
A

_- RSL: c RSL: d
Pt u
i -C5 .C6
RSL: a (by ®RSL:m
Figure 7: (a) Multistage tree structure, (b)

propagation of job-IDs

Using this new architecture, we can achieve
the workflow shown in Figure ??(b) by sub-

mitting the multistage RSL: *(a)(b)(c(wait =
2))(d(wait = 1,2)). The resulting multistage
tree structurej is shown in Figure ?7?(c). The
co-allocation service C parses it and then sub-
mits jobs a, b, ¢, and d to co-allocation services
Cy, C3, Cy, and Cs, respectively. The multi-
request RSL submitted to Cy is c(wait = 2),
which implies that the co-allocator should ex-
ecute a wait call on job-ID of 2 before running
job ¢. Once C3 gets the RSL b from C4, it runs
job b, since no wait is specified in its RSL. On
completion of job b, Cs signals on job-ID 2.
This signal prompts Cy out of its waiting state.
Similarly Cs waits on C and C3 and will ex-
ecute job d only after it gets signals from Cy
and C3. As we can see, with little modification
this new architecture provides more flexibility
and efficiency to the user.

7 Implementation

We developed a prototype implementation
based on our architectural design to perform
job-based co-allocation through reuse of ele-
mentary Grid services such as job execution,
file transfer, and security authentication. We
access such services through the Java CoG Kit
[?], which allows the application programmer
or middleware developer to readily use a subset
of Globus Toolkit Grid services from a higher-
level framework. It thus allows for easier and
more rapid application development. We aug-
mented in our implementation the workflow
co-allocation service with appropriate error-
handling routines that react upon failures to
provide a more fail-safe environment. The user
can decide how to react to failures: either wait
for an unbounded time for the necessary re-
sources to become available or retract the job
execution after a configurable number of retri-
als. The user specifies these details within the
multistage RSL. For example, (on_error=2)
specifies a maximum of two retrials for nec-
essary resources, and (on_error=n) implies
that the current job is a high-priority one and
thus the co-allocator is required to wait until
the necessary resources becomes available. For

propagating the failure messages to all depen-
dent jobs, we have enhanced our barrier service
to give either a positive or a negative reply to
all clients depending on the outcome.

8 Conclusions

In this paper we have introduced a new multi-
stage co-allocation strategy based on resource
hierarchies. = This strategy handles simple
workflow-related resource scheduling. We have
implemented and successfully tested our strat-
egy, focusing on resources that allow job sub-
missions on the Grid. The implementations
achieves better scalability than traditional co-
allocation methods for large number of re-
sources. It also provides more flexibility and
efficiency. Convenient workflows not based on
this research can already be used as part of
the Java CoG Kit [?] through known under the
names GridAnt [?], and GSFL [?7].

9 Acknowledgment

This work was supported by the Mathemati-
cal, Information, and Computational Science
Division subprogram of the Office of Advanced
Scientific Computing Research, Office of Sci-
ence, U.S. Department of Energy, under Con-
tract W-31-109-ENG-38. Globus Toolkit re-
search and development have been supported
by DARPA, DOE, and NSF. The Globus
Toolkit and Globus Project are trademarks
held by the University of Chicago.

