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Approximate occupation functions for density-functional calculations
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The density-functional free energy can be written in a form that is stationary with respect to variations in the
occupation function. For this reason it is useful to look for approximate occupation functions that are suffi-
ciently close to the Fermi function that accuracy is not compromised and yet have advantages for computation.
From a computational point of view it is useful to reduce the number of poles of the occupation function in the
upper half of the complex energy plane and to locate the poles as far from the real axis as possible. A family
of approximate occupation functions that economize computation is introduced. Their properties are discussed
and illustrated for a model system.@S0163-1829~97!04644-4#
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I. INTRODUCTION

In electronic structure calculations based on Gre
function approaches, it is common to circumvent integr
over real energy by analytic continuation into the comp
energy plane. The Green function has no poles in the up
half plane so the integration path over energy~that at zero
temperature typically extends from the energy,e52`, to
the Fermi energy,e5m) can be deformed upward into th
complex energy plane. This deformation moves the calc
tion of, for example, the density of states to complex en
gies where it is a smooth function. This procedure grea
reduces the number of required integration mesh points.
fortunately the integration contour must return to the r
axis ate5m and the integration mesh must be finer alo
this last segment. Another important advantage of havin
finite imaginary part to the energy is that the Koringa-Koh
Rostoker, KKR, matrix whose inversion accounts for t
vast majority of the computation time is much better con
tioned at complex energies and is amenable to rapid in
sion by iterative techniques.1

At finite temperature the Green function remains analy
in the upper half plane. Integration over energy extends fr
e52` to e51`, but the required integrals to determin
the electron density, eigenvalue sum, number of electro
and the electron-hole entropy involve products of the Gr
function and the Fermi distribution function. The Ferm
function does have poles in the upper half plane. When
integration over complex energy along a contour,e5Reif

whereR→`, vanishes one can utilize the residue theor
and evaluate the integral over the real energy by summ
over the residues at each of the poles of the Fermi funct
~As discussed below the entropy involves branch cuts
preclude deforming the integration contour to infinity.! We
emphasize that in this paper the temperature and ent
refer to the electronic degrees of freedom. The nuclear p
tions and occupations may be atT50 or some other tem
perature, in which case the formalism described here wo
apply to calculation of the free energy in the Bor
Openheimer approximation. It is evident that the positio
and number of poles of the occupation function determ
the amount of computation required. Of course the Fe
occupation function is known and is fixed for a given te
560163-1829/97/56~20!/12805~6!/$10.00
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perature so there appears to be no flexibility in the nature
the poles. However, the free energy is stationary with resp
to variation of the occupation function. This allows us
make small modifications to the occupation function witho
degrading the free energy.2 Beyond this, we are able to mak
large changes in the occupation function over energy ran
were the density of states is zero. The free energy is o
ously independent of changes in the occupation funct
over these ranges. Furthermore, the difference in free en
between two systems is independent of changes in the o
pation function over those energies at which the density
states of the two systems is the same.

Further freedom is attainable because different appro
mations to the occupation function can be used for differ
contributions to the charge, i.e., valence and core, single
and multiple scattering, ors, p, d, and f orbitals.

II. FREE-ENERGY FUNCTIONAL

The statement that ‘‘the free energy is stationary w
respect to the occupation function’’ is actually inaccura
Only certain forms of the expression for the free energy h
this property. The importance of using a free-energy expr
sion that is variational in the occupation function has be
recently emphasised by Wildbergeret al.5 However, the
cited literature proposes a final expression that is in fact
variational. To clarify this point and to demonstrate the w
in which any algorithm for the number of electronsN as a
function of the chemical potentialm determines the free en
ergy, we use the thermodynamic relation3 between the grand
potentialV and the number of electrons to derive the fr
energy,

]V

]m
52N. ~1!

Within the Kohn-Sham scheme of density-functional theo
N is given by N5*2`

` den(e) f (e2m), wheren(e) is the
density of states. Integrating over the chemical potential
addingmN the free energy is obtained:

F5mN2E
2`

m

dmE
2`

`

den~e! f ~e2m!. ~2!
12 805 © 1997 The American Physical Society



io

on
e

u
ot
xi

e
tr
xi
te
be
th
n
r
a
i

o
res-

e

by

e
ed

its

12 806 56D. M. C. NICHOLSON AND X.-G. ZHANG
This expression is manifestly first order in the occupat
function f . Using an identity relatingn(e) to the integrated
density of states,N(e)5*2`

e den(e),

f ~e!n~e!5
d~N f !

de
1

d~N f !

dm
2 f

dN

dm
~3!

and usingdN/dv52r and v5d(U1Exc)/dr we arrive at
the more familiar form,

F5Nm2E
2`

`

deN f1E
2`

m

dmE
2`

`

deE
0

`

dr
dN

dv
dv
dm

5Nm2E
2`

`

deN f2E
0

`

dr r~r !v~r !1U~r!1Exc~r!,

~4!

whereU andExc are the electron-electron plus electron-i
energy and the exchange-correlation energy, respectiv
This form fits well with techniques that use the Lloyd4,5 in-
tegrated density of states formula to accelerate the ang
momentum convergence of the ‘‘band’’ energy. It is n
however, the best form to use in conjunction with appro
mate occupation functions, because it is not stationary inf . It
should be noted that even if the exact Fermi function is us
any energy integration mesh used to construct the elec
density or the eigenvalue sum implies an implicit appro
mation to f . The approach in Ref. 5 is to converge the in
gration mesh. This convergence is reached fairly rapidly
cause the integration path is far from the real axis in
region where the Green function varies smoothly with e
ergy. We avoid the issue of converging the energy integ
by approximating the occupation function and employing
extremal free energy. In order to obtain a form stationary
f we must integrate by parts using the identity,

~e2m!
d f

de
5kBT

d

de
@ f lnf 1~12 f !ln~12 f !#, ~5!
f
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valid for the Fermi function,f F5(e(e2m)/kBT11)21. Pro-
ceeding, we obtain an expression forF with the desired
stationarity,6–9

F@r#5E
2`

`

de e f ~e2m!n~e!2E dr rv1U@r#1Exc@r#

1mFN2E
2`

`

de f ~e2m!n~e!G
1kBTE

2`

`

de n~e!$ f ~e2m!ln@ f ~e2m!#

1@12 f ~e2m!# ln@12 f ~e2m!#%. ~6!

The fact that the free energy is stationary with respect tr
makes it easy for the reader to verify that the above exp
sion is stationary with respect tof . At this point we turn our
attention to approximate forms forf that can take advantag
of this stationarity.

III. APPROXIMATE OCCUPATION FUNCTIONS

It was demonstrated in a previous paper2 that functions
with a limited number of poles can accurately reproducef F .
The form described in this earlier work was motivated
replacing the exponential inf F by the well known approxi-
mationex'(11x/N)N for largeN, obtaining

f N
1 ~z2m!5

1

S 11
z2m

NkBTD N

11

. ~7!

Here the subscriptN indicates the number of poles, and th
superscript 1 is the value of a parameter that will be defin
later. f N

1 can also be written less compactly in terms of
poles in the upper half plane,
f N
1 ~e2m!5

1

2
2~e2m!/kBT (

j 51

N/2
~e2m!

NkBT
12

F ~e2m!/kBT1NS 12cosp
2 j 21

N D G2

1FNsinp
2 j 21

N G2 . ~8!
se-
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This can be compared with the corresponding expression
the exact function,

f F~e2m!5 1
2 2~e2m!/kBT

3(
j 51

`
2

@~e2m!/kBT#21@p~2 j 21!#2
. ~9!

An obvious distinction betweenf N
1 and f F is that the former

hasN/2 poles and the latter has an infinite number of pol
The Fermi function converges slowly in the number of po
included in Eq.~9! so it is not feasible to simply truncate th
sum at a convenient number. One possible approach for
or

.
s

n-

structing approximate occupation functions would be to
lect a number of poles and then optimize the position a
residue of each pole with respect to agreement withf F over
a specified range. Optimization for a particular type of de
sity of states in order to reproduce the band energy would
possible. This might reduce computation time, but one wo
have to be mindful of the fact that energies calculated w
different occupation functions probably cannot be used
evaluate energy differences. An approach based on suc
optimization of poles and residues provides the most gen
set of possible occupation functions. In this work we inve
tigate a more limited set generated by rational polynom
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56 12 807APPROXIMATE OCCUPATION FUNCTIONS FOR . . .
approximation of the exponential that appears inf F . Several
criteria will be imposed to reduce the number of candid
expressions to an even smaller set that can be describe
the number of poles in the upper half plane and the ma
mum deviation of the occupation function from zero at po
tive energies.

To simplify the presentation we will measure energy
multiples ofkBT from the chemical potential. Note that

f F
21215ex5 lim

N→`
S 11

x

ND N

,

5 lim
N→`

1

S 12
x

ND N ,5 lim
N→`

1

S 11
x

ND 2N ,

5 lim
N→`

P i~11a ix!b iN if (
i

a ib i51. ~10!

We take N to be finite ~roughly between 8 and 64) an
restrict ourselves to choices ofa i and b i that lead to func-
tions that grow rapidly at largex. It is therefore convenien
to separate the factors in the equation above according to
sign of b i :

f F
21215ex5 lim

N→`

~11a1x!b1N~11a2x!b2N
•••

~11g1x!d1N~11g2x!d2N
•••

, ~11!

whereb i.0, d i.0, andN( ib i@N( id i . The poles off F
occur when this fraction is equal to21. If, by raising the
fraction to a power, it is converted into the ratio of two lo
order polynomials the roots can be found by standard te
niques. If we restrict our selection to choices that allow
poles of the occupation function to be determined by
solution of a quadratic equation the fraction must be redu
to the ratio of a quadratic to a linear function. We are the
fore limited to the form

f N
g 2121'

F11xS 11g

2N D GN

F12xS 12g

N D GN/2 , ~12!

g5122F S 12 f max

f max
D 2/N

11G21/2

, ~13!

f max5
1

@4~12g!2221#N/211
. ~14!

We restrictN to be a multiple of 4; other values ofN give
occupation functions that are either greater than 1 or nega
over some ranges. This approximation gives an occupa
function with a maximum atx54N/(12g2) of height f max.
It has a minimum of zero atx5N/(12g) and a maximum of
one atx522N/(11g). In the limit g→1, f becomes the
original approximation given in Eq.~7!. In Fig. 1, for the
case of 16 poles the positions of the poles in the upper
plane are shown, for even values ofNg, ranging from zero to
N. The corresponding functions on the real axis are co
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pared tof F in Fig. 2. These occupation functions are ve
accurate for energies above aboutxbot(N,g)524(2N212
16g)/(11g)2. At xbot, f N

g has dropped bye26, about 1
4%.

For g51 the function drops rapidly nearxbot(N,g). As g is
reduced the drop in the occupation function is less prec
tous and occurs at lower energy. As a result the occupa
functions employing smallerg remain valid over a wider
range. The fit tof F nearx50 also improves. Wheng50 the
second derivative agrees with that off F at x50. The choice
g50 therefore gives the best approximation for smalluxu,
but other choices yield better approximations over the wh
range that is of interest in calculations.

Because values ofg smaller than 1 extend the range ov
which f N

g accurately reproducesf F , smaller values ofN can
be used for a given bandwidth. The penalty for using sma
g is that the maximum at positive energies grows and mo
lower in energy. The low-energy tail of the occupation fun
tion also lengthens and may extend to core states. As m
tioned in the introduction a different occupation function c
be used for the single-site core states. The appropriate o
pation for the single-site core states in this case isf core51
2 f N

g . The single-site core electron density and eigenval

FIG. 1. Poles of thef N
g for N516 andNg50,2,4, . . .,16. The

poles are in concentric rings encirclingz5216; Ng50 is the larg-
est ring;Ng516 is the smallest.

FIG. 2. The Fermi function is compared tof N
g for N516 and

Ng50,2,4, . . .,16.
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12 808 56D. M. C. NICHOLSON AND X.-G. ZHANG
should be weighted byf core, instead of one, since the othe
small contributions to the core density have already b
included in the residues off N

g . These residues account fo
the core banding for a fraction,f N

g (ecore), of each core level,
ecore. This is an advantage. It eliminates the need for
abrupt and arbitrary delineation between the valence b
and core states.

In order to determine a ‘‘best’’ value forg we considered
the following. The functionf N

g differs from f F by an amount
that can be expanded in powers of 1/N:

f F~x!2 f N
g ~x!5

2x2ex

8N~11ex!2
~126g1g2!1OS 1

N2D .

~15!

The value ofg that gives the most rapid convergence inN is
32A8 because it makes theO(1/N) term vanish. This
choice is independent of the band structure and elimin
the need or temptation to look for a value that optimize
particular calculation. For thisg, the maximum at positive
energies is located atx54.1N and has a value of 2.22N.

IV. ENTROPY

As alluded to in the introduction, evaluation of the e
tropy requires integrals involving logarithms off F as seen in
Eq. ~6!. We take the branch cut of the logarithm to be alo
the negative real axis. This means that the entropy exp
sion will have branch cuts where the phase of the appr
mation toez goes through odd multiples ofp. These branch
cuts emerge fromz522N/(11g), pass through the poles
and return to the real axis atz5N/(12g). The branch cut
nearestm50 for g532A8 is shown in Fig. 3 for the case
N516, 32, and 48. The integration required to evaluate
entropy cannot be reduced to a sum of residues becaus
the branch cuts. Fortunately the entropy is not required w
the charge is iterated to self-consistency. It is needed only
the evaluation of the free energy. Furthermore the entr
integrand is zero except nearm, where it is sharply peaked
The most straightforward approach is to integrate along
arc that begins atm210KBT and ends atm210KBT span-
ning m. However, such a contour would entail the evaluat

FIG. 3. The branch cut nearestm is shown forN516, 32, and
48 with g532A8.
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of the Green function at many points fairly close to the re
axis. It is preferable to integrate along the branch cut clos
to m. This moves the integration away from the real axis to
region where the Green function is smoother and can usu
be approximated by a ratio of linear functions ofz. In many
cases even a constant approximation is sufficient for ene
differences. The coefficients of a rational fit can be det
mined from values at the pole~this would have already bee
calculated! and two additional points along the branch c
separated from the pole by'2kBT. The integration should
actually be performed on a contour displaced slightly dow
ward from the branch cut to avoid the singularity in th
occupation function. It is computationally inexpensive to u
as many points as are required to converge the integral
cause only the fit must be reevaluated. We find it conven
to integrate the singularity in the fit analytically.

V. EXAMPLE

Visual comparison of the approximate occupation fun
tions to f F satisfies us that they can be used interchangea
However, our argument is that the stationarity of the fr
energy permits us to choose a very small value ofN resulting
in an occupation function, with only a few poles, that m
significantly depart fromf F within the occupied band and ye
the impact on the free energy remains small. To demonst
this we calculate the free energy for a nearest-neighb
single-band, tight-binding model for a one-dimensional ch
for which the on-site Green function is

g~z!52 i
20

w

1

A124S z2e0

w
D 2

. ~16!

This g(z) resembles~see Fig. 4! that of a transition metal;
the band holds 10 electrons and has Van Hove singular
at the band edges. The band filling can be changed by
justinge0 to move the band relative tom, which is held fixed
at zero. In Fig. 5 we show the error in the free energy t
results from usingf N516

g532A8 . This approximation works very
well, and only fails at large bandwidths; it fails first at larg
band filling. This occurs simply because the width of t
occupied band exceeds the range over which the approx
tion is valid, uxbotu. This particular modelg(z) is very unfor-
giving in this regard because it has a singularity at the b

FIG. 4. The real and imaginary parts ofg(z) are shown in the
upper half plane.
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tom of the band. Therefore, the effect from any deviation
the occupation function from the exact form at the bottom
the band is accentuated. However, in most real systems
density of states at the bottom of the band is free-elec
like and goes smoothly to zero. Another feature in this plo
a low broad ridge that begins atw'60 at zero band filling
and moves to larger bandwidths as the filling increases. T
small ridge results when the peak inf N

g at positive energies
coincides with the top of the band. Even forN516 this is a
small error and we know from Eq.~12! that the height of the
peak goes down exponentially withN. IncreasingN to 32,
we obtain essentially the exact free energy; see Fig. 6.

Alternatively it is always possible to increase the tempe
ture and thereby move this smaller peak to a position ab
the ‘‘d bands’’ where it will have a smaller effect. Going t
higher temperatures also extends the validity off N

g to lower
energies, thus accommodating wider bands. However,
usually the free energy at absolute zero, or room temp
ture, or at least somewhere below melting that is desi
The computational advantage of calculating at higherT must
be weighed against the error of extending the hig
temperature results to the temperature range of interest.
free energy at low temperature can often be accurately de
mined because we are doing more than extrapolation.
can calculate the free energy and entropy at a numeric
convenient temperature and we know that the entropy aT
50 is zero. The negative of the entropy is the derivative
the free energy with respect toT; so we can make a quadrat
fit to the free energy. This implies that ifO(T4) terms are
small the energy atT50 is given by the average of the fre
energy and the internal energy at any temperature,Tcalc:

10

FIG. 5. Error in the free energy is shown forN516 as a func-
tion of bandwidth and band filling. The curve in the base plane
@xbot /(e/w)#, which is the width at which the occupation functio
deviates from one at the bottom of the band by about1

4%.

FIG. 6. Error in the free energy is shown forN532 as a func-
tion of bandwidth and band filling.
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F~T50!5
F~Tcalc!1@F~Tcalc!1TS~Tcalc!#

2

5
F~Tcalc!1E~Tcalc!

2
. ~17!

While the free energy is stationary with respect to the oc
pation function the internal energy and entropy are n
Hence there are errors, first order in the occupation funct
that affect theT50 free energy. We demonstrate that
practice these errors are small by calculating@F(Tcalc)
1E(Tcalc)/2# with f N516

g532A8 and f F for our model system; in
Fig. 7, we show the difference. The only region where d
ferences are significant is for bands narrower th
'10kBTcalc. For bands of typical width this corresponds
trying to find theT50 energy from a calculation at a ver
high temperature. If we increaseN to 32 the error atT50 is
reduced to essentially zero. We do not show a plot for t
case because it is indistinguishable from Fig. 6.

The entropy used to construct Fig. 7 was evaluated w
no approximation tog(z). The entropy evaluated using
rational approximation tog(z) as a function of bandwidth
and filling is shown in Fig. 8. The entropy is reproduc
accurately for bandwidths exceeding'10KBTcalc. Below
this the width of the occupation function approaches tha
the band and the rational approximation tog(z) is not valid
over the full integration range. A safe approach is to av
temperatures above a tenth of the occupied bandwidth.

It can be seen in Eq.~6! that the entropy arises from onl
those energies where the occupation function departs f
both 1 and 0. Forf F this happens only nearm, but for f N

g this
also occurs far belowm where the occupation function drop

s

FIG. 7. Error in free energy atT50 for N516 as a function of
bandwidth and band filling.

FIG. 8. The error in entropy that results from using a ration
approximation tog(z) is shown. The occupation function used
f F .
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12 810 56D. M. C. NICHOLSON AND X.-G. ZHANG
slowly from 1 to 0. The temperature andN should be chosen
so that at least the severest part of this drop is below
bottom of the band. In Figs. 5, 6, and 7, the ‘‘entropy’’ fro
the bottom of the band is included. This contribution is
artifact of the approximation and would not be present iff F

were used. Whenf N
g is used this entropy maintains the st

tionarity of the free energy. This entropy becomes no
negligible and therefore an issue only ifN is chosen such
that the bottom of the band is below the pointxbot(N,g), in
the region wheref N

g begins to drop below 1. This situatio
would occur only when maximum computational speed
being sought.

We have several options for dealing with the situati
when xbot(N,g) is above the bottom of the band. First, w
could calculate the contribution to the eigenvalue sum t
arises from the difference betweenf N

g and f F and not include
the entropy from the bottom of the band; this would ent
calculations at additional energies and defeat the objectiv
greater speed. Second, we could calculate the densit
states at a few points near the bottom of the band and ev
ate the entropy based on either a constant, constant
linear, or linear over linear approximation tog(z) near the
pole of f N

g nearest the bottom of the band. This procedure
analogous to the evaluation of the entropy from the ene
range nearm and costs essentially no time if the consta
approximation is adopted. Third, we could simply ignore t
first-order error introduced by failing to include the entro
.

ys
e

-

s

t

l
of
of
lu-
er

is
y
t

from the bottom of the band. This last and simplest opt
gives results that when plotted are indistinguishable fr
Fig. 7, which includes this entropy term. In light of th
observation we propose that the entropy from the bottom
the band not be evaluated or evaluated with the cons
approximation tog(z).

VI. CONCLUSIONS

We have introduced a family of approximate occupati
functions that accurately represent the Fermi occupa
function over the range of typical bands. It is demonstra
for a model system that the free energy at finite tempera
is given accurately and that a quadratic approximation to
temperature dependence gives accurate zero-temperatur
ergies. The use of these functions can reduce the amou
computation required for each iteration in the solution of t
Kohn-Sham equations. Furthermore, calculation at fin
temperature often reduces the number of iterations requ
to reach convergence.
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