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[1] This paper presents a joint inversion approach for combining crosshole seismic travel
time and borehole flowmeter test data to estimate hydrogeological zonation. The approach
is applied to a complex, fractured Department of Energy field site located at the Oak Ridge
National Laboratory in Tennessee, United States. We consider seismic slowness (the
inverse of seismic velocity) and hydrogeological zonation indicators as unknown variables
and use a physically based model with unknown parameters to relate the seismic slowness
to the zonation indicators. We jointly estimate all the unknown parameters in the model
by conditioning them to the crosshole seismic travel times as well as the borehole
flowmeter data using a Bayesian model and a Markov chain Monte Carlo sampling
method. The fracture zonation estimates are qualitatively compared to bromide tracer
breakthrough data and to uranium biostimulation experiment results. The comparison
suggests that the joint inversion approach adequately estimated the fractured zonation and
that the fracture zonation influenced biostimulation efficacy. Our study suggests that
the new joint hydrogeophysical inversion approach is flexible and effective for integrating
various types of data sets within complex subsurface environments and that seismic travel
time data have the potential to provide valuable information about fracture zonation.
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1. Introduction

[2] Crosshole geophysical techniques, such as seismic,
ground-penetrating radar (GPR), and electrical resistivity
tomography (ERT), have been increasingly used for char-
acterizing subsurface properties and for monitoring subsur-
face processes. This is because geophysical tomographic
data have the potential to provide high-resolution informa-
tion about subsurface properties at locations away from
boreholes in a minimally invasive manner. Conventional
approaches for combining crosshole geophysical data and
borehole hydrogeological measurements usually entail two
sequential steps. First, the crosshole geophysical measure-
ments (such as seismic or radar travel times) are inverted for
geophysical attributes (such as seismic or GPR velocity
values) at each pixel in space using a geophysical inversion
algorithm [e.g., Peterson et al., 1985]. Second, the inverted
geophysical attributes are combined with the borehole
hydrogeological measurements using various integration
methods, for example, direct mapping [e.g., Hubbard et
al., 1997; Binley et al., 2001], geostatistical cokriging [e.g.,

Cassiani et al., 1998], or Bayesian methods [e.g., Chen et
al., 2001, 2004].
[3] The two-step approaches are generally effective when

good site-specific petrophysical relationships between the
inverted geophysical attributes and the hydrogeological
properties are easily obtainable, and when the developed
petrophysical relationships are approximately uniform over
the region of interest. However, they are ineffective or even
fail in some situations, such as when geophysical inversion
errors are large or when petrophysical models are difficult to
obtain. It has been well recognized that the inverted tomo-
graphic data are subject to uncertainty and artifacts, are
often overly smooth, and have spatially varied resolution
[Day-Lewis and Lane, 2004], which are functions of mea-
surement errors, geometry of the interwell region, and the
heterogeneity of subsurface properties [e.g., Vasco et al.,
1996; Peterson, 2001]. It has also been recognized that
petrophysical relationships between geophysical attributes
and hydrogeological parameters may intrinsically be non-
unique and nonstationary [Linde et al., 2006]. Consequently,
treating the inverted geophysical attributes as data, and using
a stationary petrophysical relationships for integration of
geophysical and hydrogeological data sets may lead to
biased estimates of the hydrogeological parameters.
[4] Joint inversion of geophysical and hydrogeological

data for subsurface hydrogeological parameter estimation
has received much attention recently. For example,
Hyndman et al. [1994] jointly inverted seismic travel time
and tracer experiment data for hydraulic conductivity zona-
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tion using the split inversion method (SIP), and Kowalsky et
al. [2004] jointly inverted ground-penetrating radar (GPR)
travel time and borehole water saturation measurements for
permeability estimation in the vadose zone using the max-
imum a posteriori (MAP) method. Both studies used opti-
mization-based methods for solving unknown parameters.
However, those methods have limitations when the number
of unknowns involved is very large and geophysical and
hydrogeological forward models are complex.
[5] In this study, we develop a joint inversion approach

using a sampling-based stochastic model to integrate cross-
hole seismic travel time and borehole flowmeter test data for
characterizing hydrogeological zonation in a complex frac-
tured aquifer. Sampling-based stochastic methods have been
used recently by other researchers to jointly invert geophys-
ical data [Bosch et al., 2001; Malinverno, 2002; Buland and
Omre, 2003]. We apply the developed model to data sets
collected from a fractured Department of Energy (DOE)
field site located at the Department of Energy (DOE) Oak
Ridge Reservation in Tennessee. The conventional two-step
approach was unsuccessful at this field site because petro-
physical relationships between the inverted seismic slow-
ness and the hydraulic conductivity were not obtainable
from the colocated data. To improve the characterization,
we jointly consider crosshole seismic travel time (rather
than inverted seismic slowness) and borehole flowmeter test
measurements as data, and consider seismic slowness and
hydrogeological zonation indicators at each pixel as un-
known random variables. With the hydrogeological indica-
tor approach, we seek to estimate zones that have either
relatively high or low hydraulic conductivity. We use a
probabilistic petrophysical model with unknown parameters
to link seismic slowness to hydrogeological zonation. Within
a Bayesian framework, the unknown variables and param-
eters are simultaneously estimated using Markov chain
Monte Carlo (MCMC) methods by conditioning them to
crosshole seismic travel time and borehole flowmeter data.
Although the methodology is developed on the basis of
crosshole seismic travel time data collected within a frac-
tured aquifer, the developed framework could be used with

other geophysical data sets (such as crosshole GPR) for other
hydrogeological characterization objectives.
[6] The remainder of this paper is organized as follows.

Section 2 describes the field site and available data. Section 3
describes the developed Bayesian model. Section 4
describes our MCMC sampling method for solving the
developed statistical model. Application of the developed
methodology is given in section 5, and a summary is
provided in section 6.

2. Site Information and Data

2.1. Study Site

[7] The Field Research Center (FRC) of the Natural and
Accelerated Bioremediation Research Program (NABIR) is
located on the DOE Oak Ridge Reservation in Tennessee
(Figure 1). Underlying the research center is the Nolichucky
Shale bedrock that dips approximately 27 degrees to the
southeast and has a geological strike of N58E [Fienen et al.,
2005]. Our investigation was performed at FRC Area 3,
where ongoing research is focused on developing and
evaluating biostimulation techniques for remediation of
U(VI) within the near subsurface materials [Criddle et al.,
2003; Wu et al., 2006a, 2006b].
[8] Overlying the Nolichucky Shale bedrock is uncon-

solidated materials that consist of weathered bedrock (re-
ferred to as saprolite) and a thin layer of human-placed fill
near the surface. The fill is too shallow and thin (1–2 m
thick) to have an impact on the zones targeted during this
study. The saprolite overlying the Nolichucky Shale is
approximately 13 m thick at the study site. To a depth of
approximately 10 m, the saprolite is clay-rich and has a low
permeability [Watson et al., 2005]. Between the shallow,
low-permeability clay-rich saprolite and deeper competent
bedrock is a transition zone of fractured bedrock that has
been weathered to varying degrees. Remnant fracturing in
the clayey saprolite and transition zone increases the per-
meability relative to the silt, clay, and rock matrix. The
transition zone tends to be a zone of higher permeability
than the saprolite and bedrock because of a combination of
higher fracture density and low clay content. Understanding

Figure 1. Location of the NABIR Field Research Center (FRC) near Oak Ridge, Tennessee [Watson et
al., 2005]. Shadowed lines indicate major rivers in the state of Tennessee.
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the distribution of high-permeability flow zones within the
saprolite transition zone is critical to the understanding of
contaminant fate and transport at the site for optimal design
of remedial treatments.

2.2. Crosshole Seismic Travel Time Data

[9] Surface and crosshole geophysical techniques have
been used to characterize subsurface properties at the FRC
Area 3 site over various spatial scales. For the initial
investigations, surface resistivity surveys and seismic re-
fraction tomography were used to image the large-scale
subsurface geological structure [Doll et al., 2002]. To
characterize heterogeneity and to potentially estimate the
hydrogeological properties at the local scale, we collected
high-resolution crosshole seismic data along several trans-
ects as is shown in Figure 2.
[10] Seismic tomographic acquisition includes placing

seismic sources and receivers (geophones) in two separate
boreholes. Seismic waves from the sources in one borehole
are recorded by the receivers in the other borehole. The
source and receiver positions are changed and the recording
is repeated until both the sources and the receivers have
occupied all possible positions within the two boreholes.
Crosshole seismic travel time data were collected using a
central frequency of 4 KHz with a bandwidth from approx-
imately 1 KHz to 7 KHz. Both seismic P wave travel times
between all pairs of the source/receiver positions and the
amplitude of the direct arrivals were obtained from the
recorded data. The measured seismic travel time data can be
inverted by using deterministic geophysical inversion algo-
rithms, such as the method used by Peterson et al. [1985],
to obtain tomographic seismic slowness (or velocity) at each
pixel along the two-dimensional cross section. Figure 3
shows the inverted seismic tomograms along geological dip
and strike directions. At a depth between 11–13 m is a low-
velocity lens, which is the target zone for the FRC Area 3
biostimulation experiment.

2.3. Borehole Flowmeter Test Data

[11] Subsurface hydraulic conductivity estimates at this
site (Figure 2) were obtained using data collected from the
pumping test carried out at well 24 and the flowmeter tests
conducted within several boreholes. The pumping test
provides information about depth averaged hydraulic con-
ductivity, whereas the flowmeter tests provide information
on the relative values of hydraulic conductivity at various

Figure 2. Geometry and locations of borehole and seismic tomographic data at the FRC Area 3 study
site.

Figure 3. Conventionally inverted seismic velocity along
the geological dip (approximately 107-109) and strike
directions (24-26) in the saturated section. In this study, we
focus on an area between 10 and 14 m, which contains a
high-conductivity zone that is the target of the biostimula-
tion experiment.
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discrete intervals along the depths between 3 and 16 m. The
sampling intervals of the flowmeter tests vary from 0.03 m
to 0.60 m. Both traditional deterministic methods [Molz et
al., 1994] and Bayesian inversion methods [Fienen et al.,
2004] were used to estimate hydraulic conductivity values
as a function of depth from the combined slug and flow-
meter test data at the site. The hydraulic conductivity values
at this site range from 2.0 � 10�12 cm/s to 1.7 � 10�1 cm/s,
with a median value of 2.8 � 10�5 cm/s. However, from the
flowmeter test data, we observed that there are essentially
two zones in each well, a flow zone and a zone of almost no
flow. The maximum value of hydraulic conductivity in the
zone of little or no flow is about 1.0 � 10�4 cm/s. Therefore
we chose the hydraulic conductivity value of 1.0 �
10�4 cm/s, rather than the median (2.8 � 10�5 cm/s), as

the cutoff value between the flow zone and the zone of no
flow. We define conductivities greater or equal to 1.0 �
10�4 cm/s as ‘‘high’’ and conductivities less than 1.0 �
10�4 cm/s as ‘‘low.’’ The threshold value of 1.0� 10�4 cm/s
is the same as found by Ellefsen et al. [2002] for the fractured
bedrock near Mirror Lake in New Hampshire.

2.4. Relationship Between Seismic Velocity and
Hydraulic Conductivity

[12] Following the conventional approach, we first de-
velop petrophysical models on the basis of the inverted
seismic tomograms (Figure 3) and borehole hydraulic
conductivity data. Figure 4 shows the cross correlation
between the inverted seismic velocity near boreholes and
the logarithmic hydraulic conductivity at boreholes from
depths 10 m to 14 m. The poor correlation is not surprising
because we observed seismic anisotropy at this site. For
example, Figure 5 shows the inverted seismic velocity as a
function of depth at well 24, which were extracted from
two different seismic tomograms: 107-24 and 26-24 (see
Figure 2). Figure 2 reveals that although the changes in
seismic velocity as a function of depth are similar (i.e., the
low seismic velocity and high-conductivity zones are located
approximately at the same depths), the direction of the
tomograms influences the absolute values of the inverted
seismic velocity. Such angle dependency of inverted seismic
velocity results in a poor correlation between seismic veloc-
ity and hydraulic conductivity. As is illustrated in Figure 4.
With the poor correlation, it is difficult to develop an
empirical petrophysical relationship to obtain quantitative
information about hydraulic conductivity from the inverted
seismic tomograms.
[13] We do, however, expect seismic velocity to be

qualitatively related to hydraulic conductivity in fractured
media because both are affected by the geometry of the void
space of fracture networks [Pyrak-Nolte et al., 1990].
Seismic velocity is a function of elastic stiffness and bulk
density of the medium, which is typically low for high
fracture density and high for low fracture density. Flow
properties are functions of void space and connectivity of
the void space, and the aquifer materials with high fracture
density tend to have high hydraulic conductivity. Conse-

Figure 4. Cross plot between the inverted seismic velocity
and logarithmic hydraulic conductivity showing the poor
correlation obtained using conventional approaches.

Figure 5. (a) Seismic velocity extracted from transects 107-24 and 26-24 near well 24. (b) Hydraulic
conductivity collected from well 24.
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quently, fractured subsurface materials with low seismic
velocity likely have high hydraulic conductivity. However,
since seismic velocity is a measure of the effective mechan-
ical properties of the medium and the hydraulic behavior of
the medium is not entirely governed by its mechanical
properties, the relationship between seismic velocity and
hydraulic conductivity is nonunique and subject to uncer-
tainty [Majer et al., 1990, 1997]. In addition, since quan-
titative correlation between the geometry and density of
fractures and hydraulic conductivity in field conditions has
not been established [Illman, 2005; Illman and Neuman,
2000], we focus on estimating hydrogeological zonation in
this study.
[14] The physical connection between seismic velocity

and hydraulic conductivity in fractured media described
above is supported by data collected from the FRC site.
Figure 6 shows a box plot between the inverted seismic
velocity and the indictor values (0 = low and 1 = high) of
hydraulic conductivity, based on data collected from all the
wells shown in Figure 2. Although the inverted seismic
velocity is subject to a large degree of uncertainty, the mean
seismic velocity of the high-conductivity zone is lower than
that of the low-conductivity zone, with a ratio of about 1.05.
Similar results were also observed using seismic data
collected from the fractured bedrock near the Mirror Lake
in New Hampshire [Ellefsen et al., 2002]. We also per-
formed the t test for the difference in the mean seismic
velocity and found it is statistically significant with the
cutoff value of 0.05.
[15] Since the inverted seismic velocity data are affected

by the orientation of transects and the relationship between
the seismic velocity and the hydraulic conductivity are thus
subject to uncertainty, we follow an approach that is
different from our previous hydrogeological parameter
estimation approaches developed for porous media [Chen
et al., 2001]. First, we estimate the zonation indicator rather
than continuous value of hydraulic conductivity at each
pixel in space. Second, we consider crosshole seismic travel
times instead of inverted seismic slowness as data, and
consider seismic slowness and zonation indicator at each
pixel as random variables. This should reduce the effect of
uncertainty associated with seismic travel time data inver-
sion because we can combine some information from
boreholes with seismic data in a joint inversion procedure.

Finally, we use a probabilistic model to link the unknown
seismic slowness to the unknown zonation indicator values
at each pixel. We assume that seismic slowness in the high-
and low-conductivity zones is normally distributed with
unknown variances and unknown means. We also assume
that the ratio of mean conductivity values between the high
and low zones is available, which is site-specific and
derived from nearby borehole data. As will be illustrated
in section 5, our joint inversion approach yields estimates of
seismic slowness and zonation indicators at each pixel, as
well as the means and variances of seismic slowness in the
high- and low-conductivity zones.

3. Joint Hydrogeophysical Inversion Approach

[16] This section describes the methodology that we
developed to characterize the fracture zonation at the FRC
study site given crosshole seismic travel time and borehole
flowmeter test data. We estimate the probability of
encountering the high-conductivity fracture zone (i.e.,
indicator = 1) at each pixel between boreholes using a
Bayesian framework, where the seismic slowness and
zonation indicator at each pixel in space are considered as
random variables. The petrophysical models between seis-
mic slowness and zonation indicator include unknown
parameters that are estimated during the inversion approach.
The unknown parameters, as well as the unknown slowness
and zonation indicators, will be estimated jointly by condi-
tioning to both seismic travel time and flowmeter test data.
In this section, we focus on the development of the
Bayesian framework, and the sampling methods that we
use for solving those unknown variables are described in
section 4.

3.1. Bayesian Model

[17] We develop a Bayesian model to combine crosshole
seismic travel time data with borehole indicator values of
flowmeter test data. For example, in the case of well pair
107-109 shown in Figure 7, the available data include
seismic travel times obtained from waveforms recorded at
well 109 and zonation indicator values of hydraulic con-
ductivity at wells 107 and 109. We divide the cross section
between the two wells into n pixels, and m seismic ray paths
pass through the cross section. Let Ki and Si denote the
hydraulic conductivity zonation indicator and the seismic
slowness at pixel-i, respectively, where i = 1, 2, � � �, n. Let tj
denote the seismic travel time measurement of the jth ray

Figure 6. Box plot of the inverted seismic velocity.

Figure 7. Schematic diagram of the model setup, where
the gray areas in the boreholes represent the high-
conductivity zone, and the open areas in the boreholes
represent the low-conductivity zone.
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path, where j = 1, 2, � � �, m. Let {kw} denote the indicator
values of all the flowmeter test data.
[18] Our objective is to estimate the conditional probability

distributions of seismic slowness and zonation indicators,
given the crosshole seismic travel time data and the indicator
values of borehole flowmeter data. Let squared brackets
represent probability functions for discrete random variables
and probability density functions (pdfs) for continuous ran-
dom variables. Let other brackets {} represent vectors. With
this notation, our Bayesian model can be written as

Sif g; Kif g; ts;0j tj
� �

; kwf g
� �

/ Sif g; Kif g; ts;0; kwf g½ 	
� tj
� �

j Sif g; ts
� �

; ð1Þ

where ts denotes the inverse variance of the travel time
measurement errors, and 0 is a vector including all the
unknown parameters associated with a petrophysical model,
which are specified later in this section. Equation (1)
ignores a constant that does not depend on the unknown
variables. The first term on the right side of the equation is
referred to as the prior model, and the second term is
referred to as the likelihood model. Those models are
described in sections 3.2 and 3.3, respectively.

3.2. Prior Model

[19] The prior model summarizes all information about the
unknown variables that are not included in seismic travel time
data. For application at the FRC site, we must specify a
petrophysical model that links the seismic slowness to the
zonation indicator at each pixel. As was mentioned in
section 2.4, we assume that seismic slowness within the high-
or low-conductivity zones has a normal distribution with
unknown means and variances. We denote u and w as the
mean seismic slowness values in the low- and high-
conductivity zones, respectively, and assumes that u < w.
[20] For simplicity, we also assume that the ratio between

the mean seismic slowness in the high- and low-conductiv-
ity zones is a constant. We determine the ratio using
colocated flowmeter and inverted seismic slowness data.
We can relax this assumption by allowing the ratio to be
changed within a small range, for example, as a function of
direction, which is justified because the relative values of
seismic slowness are more stable than their corresponding
absolute values. The absolute estimates of seismic slowness
are affected by many factors, such as seismic inversion
methods, model discretization, and the distance between
two boreholes [Peterson, 2001]. If we write w = u + ru,
variable r will be equal to 0.05 on the basis of Figure 6 as
given in section 2.4. Let tk be the inverse variance of
seismic slowness in the low- and high-conductivity zones.
Therefore the unknown parameters associated with the
petrophysical model include u and tk, that is, 0 = (u, tk).
[21] Figure 8 shows dependence among various unknown

variables and parameters. The probabilistic petrophysical
model for linking colocated seismic slowness and zonation
indicators is given by

SijKi; u; tk½ 	 ¼ 1ffiffiffiffiffiffi
2p

p t1=2k exp � tk
2

Si � u� ruKið Þ2
n o

: ð2Þ

Equation (2) implies that seismic slowness in the low-
conductivity zone (Ki = 0) is normally distributed with mean

u, and seismic slowness in the high-conductivity zone
(Ki = 1) is normally distributed with mean w = u + ru. If we
assume that the seismic slowness at pixel i is independent of
those at other pixels given its colocated indicator value Ki,
and {Ki}, u, tk, and ts are also independent of one another,
the prior model in equation (1) thus is given by

Sif g; Kif g; u; tk ; ts; kwf g½ 	 / Kif g; kwf g½ 	 u½ 	 tk½ 	 ts½ 	
Yn
i¼1

� SijKi; u; tk½ 	: ð3Þ

Equation (3) also ignores a constant that is not dependant on
the unknown variables. The detailed distributions of
variables Ki, u, tk, and ts are given in section 4.

3.3. Likelihood Model

[22] We develop the likelihoodmodel in equation (1) on the
basis of a straight ray path forward model [Peterson et al.,
1985], which connects crosshole seismic travel time data
recorded along boreholes to seismic slowness at pixels on the
cross section. In this model, seismic travel time along a given
ray path is simply the summation of the product of the
slowness and the length of the ray path passing through a
pixel. Let aij denote the length of the jth ray passing through
the ith pixel, and ej denote the measurement error of the travel
time along the jth ray path. Thus travel time tj is given by

tj ¼
X
i2Cj

aijSi þ �j; ð4Þ

where Cj is a collection of pixel indices that the jth ray path
passes through. Suppose that measurement errors of seismic
travel times have a normal distribution with zero mean and
the inverse variance of ts. The likelihood function for the jth
travel time measurement is then given by

tjj Sif g; ts
� �

¼ 1ffiffiffiffiffiffi
2p

p t1=2s exp � ts
2

tj �
X
i2Cj

aijSi

0
@

1
A

28<
:

9=
;: ð5Þ

Figure 8. Dependence among seismic slowness, zonation
indicator, and parameters associated with the petrophysical
model. The circles represent unknown variables, and the
rectangle represents the given data.
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[23] To facilitate the incorporation of equation (5) into the
posterior estimation procedure described below, we regroup
the terms in the small brackets. We divide those terms into
two parts: one is related to Si and the other is not related to
Si. Let bij = tj �

P
l2Cj;l 6¼ialjSl, where l is a pixel index. The

term bij is not related to Si. This equation can be written as
follows:

tjj Sif g; ts
� �

¼ 1ffiffiffiffiffiffi
2p

p t1=2s exp � ts
2

aijSi � bij
� �2n o

: ð6Þ

3.4. Posterior Model

[24] A posterior model can be obtained once the prior and
likelihood models are specified. By assuming each travel
time measurement is independent of others and using
equations (3) and (6), we obtain the posterior model as
follows:

Sif g; Kif g; u; tk ; tsj tj
� �

; kwf g
� �

/ Kif g; kwf g½ 	 u½ 	 ts½ 	 tk½ 	
Yn
i¼1

� SijKi; u; tk½ 	
Ym
j¼1

tjj Sif g; ts
� �

:

ð7Þ

[25] Equation (7) is a joint posterior distribution. Our goal
is to obtain estimates of each unknown variable from this
joint posterior distribution at each pixel in space using a
sampling-based procedure.

4. Sampling Method

[26] The section outlines an approach for estimating
unknown seismic slowness and zonation indicators, as well
as the unknown parameters associated with the petrophys-
ical model, from the joint posterior distribution shown in
equation (7). With this approach, we strive to obtain many
samples of unknown variables using an algorithm similar to
the one used by Chen et al. [2004]. As will be described
below, we first derive the conditional distribution of each
unknown variable given the travel time data and all the
other variables, which is referred to as the full conditional
distribution of the variable. We then sequentially draw
samples from each full conditional distribution. We monitor
the convergence of the sampling procedure using the
method developed by Gelman and Rubin [1992]. After
convergence, we can calculate the mean, variance, predic-
tive intervals, and even density or probability function of
each variable from those samples.

4.1. Deriving Full Conditional Distributions

[27] A full conditional distribution of any variable is
proportional to the joint posterior distribution shown in
equation (7) on the basis of Bayes’ theorem [Bernardo and
Smith, 1994]. By omitting the terms at the right side of
equation (7) that are not directly related to the variable under
consideration, we can obtain the full conditional distribution
of each variable individually as described below.
4.1.1. Full Conditional PDF of Si
[28] Let [Sij�] denote the full conditional pdf of slowness

Si given the travel time data and all other variables. After

omitting all the terms in equation (7) that are not directly
related to Si, we obtain

Sij�½ 	 / SijKi; u; tk½ 	
Y
j2Di

tjj Sif g; ts
� �

; ð8Þ

where Di is the index set of all the ray paths passing through
the ith pixel. By using equations (2) and (6) in equation (8),
and omitting the terms not including Si, we obtain

Sij�½ 	 / exp � tk
2

Si � u� ruKið Þ2
n o

exp � ts
2

X
j2Di

aijSi � bij
� �2( )

:

ð9Þ

[29] From equation (9), we found that [Sij�] has the
normal distribution with the mean (m*s) and inverse variance
(t*s) given by

ts* ¼
X
j2Di

a2ijts þ tk ð10Þ

ms* ¼
X
j2Di

aijbijts þ uþ ruKið Þtk

 !
=ts*: ð11Þ

4.1.2. Full Conditional Probability of Ki

[30] Similar to the derivation of [Sij�], the full conditional
probability function of the hydraulic conductivity, Ki, is
given by

Kij�½ 	 / SijKi; u; tk½ 	 Kij Kj; j 6¼ i
� �

; kwf g
� �

; ð12Þ

where {Kj, j 6¼ i} denotes the zonation indicators at the
pixels surrounding the ith pixel. Inserting equation (2) into
equation (12), and using identity equation Ki

2 = Ki, we
obtain

Kij�½ 	 / exp tkurKi Si � 0:5ur � uð Þf g Kij Kj; j 6¼ i
� �

; kwf g
� �

;

ð13Þ

We assume that zonation Ki depends only on the zonation at
its adjacent pixels [Chen and Rubin, 2003]. Let set Ai be the
index set of the pixels adjacent to pixel i. For those pixels
not near boreholes, the conditional probability of Ki does
not depend on borehole zonation measurements, and thus it
is given by

Kij Kj; j 6¼ i
� �

; kwf g
� �

¼ KijKj; j 2 Ai

� �
� Bernoulli p*ð Þ; ð14Þ

where p* is the probability of zonation having high
conductivity given the zonation at its surrounding pixels,
which was obtained for our study using the same indicator
krigingmethod as used byChen et al. [2004]. Equation (14) is
immediately applicable for those pixels near boreholes, when
we replace zonation indicator variables at pixels in boreholes
with the borehole flowmeter measurements. Consequently,
[Kij�] has a Bernoulli distribution with probability pi given by

pi ¼
p* exp tkur Si � 0:5ur � uð Þf g

1� p*þ p* exp tkur Si � 0:5ur � uð Þf g : ð15Þ
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4.1.3. Full Conditional PDFs of Parameters Tk, Ts,
and u
[31] We first derive full conditional pdfs of ts. Notice

from equation (7) that

tsj�½ 	 / ts½ 	
Ym
j¼1

tjj Sif g; ts
� �

: ð16Þ

Since ts only takes a positive value, we assume the prior
distribution of ts has gamma distribution with shape
parameter as and inverse-scale parameter ls, both of which
are determined from our prior knowledge about ts. Let Ts =Pm

j¼1 (tj �
P

l2Cj
aljSl)

2. By using equation (5), we obtain

tsj�½ 	 / tas�1
s exp �lstsf gt0:5ms exp �0:5Tstsf g

� Gamma as þ 0:5m;ls þ 0:5Tsð Þ: ð17Þ

Similarly, let Tk =
Pn

i¼1 (Si � u � ruKi)
2. Since tk only

allows for positive values, we assume that the prior
distribution of tk also has a gamma distribution with shape
parameter ak and inverse-scale parameter lk. The full
conditional pdf of tk thus is the gamma distribution with
shape parameter ak + 0.5n and inverse-scale parameter lk +
0.5Tk.
[32] From equation (7), we know that

uj�½ 	 / u½ 	
Yn
i¼1

SijKi; u; tk½ 	: ð18Þ

Suppose the prior distribution of u is the normal with mean
u0 and the inverse variance of t0. The full conditional pdf of
u thus is the normal distribution with mean (m*u) and inverse
variance (t*u) given as below:

tu* ¼ tk
Xn
i¼1

1þ rKið Þ2 þ t0

mu* ¼ tk
Xn
i¼1

Si 1þ rKið Þ þ t0u0

 !
=t*:

4.2. Sampling Algorithm

[33] We sample the joint posterior distribution shown in
equation (7) using the Gibbs sampler [Geman and Geman,
1984]. Let N = {1, 2, 3, � � �, n} represent the index set of all
pixels. The main steps of the sampling approach are given
as follows:
[34] 1. Assign initial values to {Si}, {Ki}, u, ts, and tk

and refer to them as {Si
(0)}, {Ki

(0)}, u(0), ts
(0), and tk

(0),
respectively. Let p = 1.
[35] 2. Draw a sample from the normal distribution [Sij�]

in equation (9) and refer to it as Si
(p) for i 2 N.

[36] 3. Draw a sample from the gamma distributions [tsj�]
and [tkj�], and normal distribution [uj�] in equation (18) and
refer to them as ts

(p), tk
(p), and u(p), respectively.

[37] 4. Draw a sample from the Bernoulli distribution
[Kij�] given Si

(p), u(p), {Kj
(p), j = 1, 2, � � �, i � 1}, and {Kj

(p�1),
j = i + 1, � � �, n} and refer to it as Ki

(p) for i 2 N.
[38] 5. Let p = p + 1. If p > m, where m is the maximum

number of iterations allowed, stop; otherwise, go to step 2.

4.3. Monitoring Convergence of the Sampling

[39] Samples obtained from the algorithm described in
section 4.2 are typically not the samples of their individual
posterior distributions. However, theoretically, after a suffi-
ciently long run (for example t iterations), referred to as burn
in, {Si

(k), Ki
(k), u(k), ts

(k), tk
(k):k = t + 1, � � �, m, i 2 N} obtained

from the algorithm are approximately samples from their
corresponding true posterior distributions [Gelfand and
Smith, 1990]. In addition, as indicated by the ergodicity
theorem [Gilks et al., 1996], the mean of any measurable
function of those variables obtained using the generated
samples after discarding the burn-in samples asymptotically
converges to its true expectation as k ! + 1.
[40] We use the Gelman and Rubin [1992] method to

monitor the convergence of the sampling process in this
study. We first run several Markov chains [Gilks et al.,
1996] with very different initial values, and then calculate a
criterion (referred to as the scale reduction score) on the
basis of the multiple Markov chains [Brooks and Gelman,
1998]. If the scale reduction score is less than 1.2, the
Markov chain is considered convergent; otherwise, more
runs are needed.

5. Application to Field Data

[41] We apply our developed joint inversion approach in
this section along several cross sections shown in Figure 2.
We jointly estimate seismic slowness, the probability of
being in the high-conductivity zone, and the unknown
parameters associated with petrophysical models by com-
bining crosshole seismic travel time and borehole flowmeter
test data.
[42] Figure 9 shows the prior and posterior distributions

of the mean seismic slowness (u) in the high-conductivity
zone (Figure 9a), of the reverse variance of the seismic
slowness (tk) in the two conductivity zones (Figure 9b), and
of the reverse variance of seismic travel times (Figure 9c),
along the geological strike cross section 26-24. We found
that the posterior distributions of those parameters are
primarily determined by data. Figure 10 shows the inverted
mean seismic velocity along the same cross section. There is
a low seismic velocity zone in the middle of the cross
section, which likely corresponds to the high hydraulic
conductivity zone as explained later.
[43] In the following, we show the probability of being in

the high-conductivity zone for other cross sections, and
discuss the results. To assess the validity of the obtained
zonation estimates, we qualitatively compare the images
with bromide breakthrough data obtained by conducting a
tracer test along the same transect direction.

5.1. Hydrogeological Zonation

[44] Figure 11 shows the probability image of being in
the high-conductivity zone along cross section 26-24. This
image suggests that there is a highly conductive fractured
zone between wells 26 and 24, which we interpret to be the
fracture zone. Figures 12, 13, 14, and 15 illustrate the
estimated probability of being in the high-conductivity zone
along the four geological dip cross sections 107-24, 107-
104, 107-103, and 107-109, within the approximate depth
intervals between 10 m and 14 m. At the well locations, the
indictor values of flowmeter test data are shown, whereas at
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locations away from boreholes, the estimated probabilities
of being in the high-conductivity zone are shown. In
subsequent cross sections, where borehole deviation data
[Geophex, Ltd., 2003] indicate that the boreholes are not
vertical, we plot the borehole indicator values along the
deviated locations. Recall that the high-conductivity zone
refers to areas where the conductivity value greater than
1.0 � 10�4 cm/s. If no crosshole seismic travel time data
were available, we would likely just connect the conductive
intervals between different wells to obtain estimates of the
hydraulic conductivity zonation between the wells. With the
incorporation of crosshole seismic travel time data, we
obtain a more detailed ‘‘image’’ of conductivity at locations
between the wells. For example, the conductivity distribu-
tions along cross sections 107-24 (Figure 12) and 107-103
(Figure 14) suggest that a hydraulic connection of the
defined high-conductivity zone does not exist between well
pairs 107-24 and 107-103, although wells 107, 24, and 103
indicate the presence of continuous high-conductivity zones
between depths of 11 m and 12 m. Figures 13 and 15 show
the probability images of being in the high-conductivity
zone along cross sections 107-104 and 107-109, respec-
tively. We can see that although a conductive layer exists

Figure 9. (a) Prior and posterior distributions of the mean
seismic slowness in the high-conductivity zone, (b) the
reverse variance of seismic slowness in the two conductivity
zones, and (c) the reverse variance of seismic travel times
along the geological strike cross section 26-24. The dotted
lines show the prior probability density functions, and the
solid lines show the posterior probability density functions.

Figure 10. Inverted mean seismic velocity along the
geological strike cross section 26-24.

Figure 11. Probability of being in the high-conductivity
zone along the geological strike cross section 26-24.

Figure 12. Probability of being in the high-conductivity
zone along a geological dip cross section 107-24. The
indicator values from flowmeter test data are shown along
the borehole locations (well 107 is deviated at depth
10.875 m), whereas estimated probabilities from the joint
inversion procedure are shown at all other locations.
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between the well pairs along these traverses, the thickness
of the zone appears to vary along the lateral direction.
[45] The five probability images delineate the high-

conductivity zones at the study site. These images show
that the high-conductivity zone, which we interpret to be the
fractured zone, is located between depths of 11 m and
12.5 m and is spatially variable. The conductive layer is
almost parallel along the direction from well 24 to well 26
(Figure 11). However, as shown by Figures 12–15, the layer
dips from Northwest to Southeast and is spatially variable in
thickness and in continuity. The hydraulic connection be-
tween well 107 and the line from well 24 to well 26 is not
uniform as shown in Figures 12–15. Importantly for the
biostimulation experiment, the high-conductivity zone is
discontinuous between wells 107 and 24 and between wells
107 and 103. In addition, the conductive layer is thicker

toward wells 108 and 109 than toward well 107 as shown in
Figure 15.

5.2. Comparison With Field Tracer Experiments

[46] To qualitatively assess the joint inversion procedure,
we compare the probability images with the results of a field
tracer experiment carried out at the site, as well as with
observations associated with the biostimulation experiment
[Wu et al., 2006a]. To develop a forced gradient, ground-
water was injected into well 24 (2.36 liter/min) and well 104
(4.0 liter/min), and pumped out from well 103 (1.4 liter/
min) and well 26 (3.0 liter/min). A bromide tracer was
injected into well 104 within the conductive zone, and the
breakthrough concentrations were measured over time using
multilevel samplers at wells 100, 101, and 102. As shown in
Figure 2, well 101 is located directly down gradient (0.9 m)
(or downdip along strike) from the tracer injection well 104,
and wells 100 and 102 are located along the strike downdip
and updip of the injection flow path, respectively. There are
seven ports in each of the multilevel sampling wells, but
only the deepest three registered a significant bromide
concentration response. From the top to the bottom, the
depths of the center locations of the three deepest sampling
intervals are 10.2 m, 11.7 m, and 13.2 m, respectively.
Figure 15 shows the approximate locations of the multilevel
sampling wells, superimposed on the top of the estimated
probability values along the cross section 107-109.
[47] Figure 16 shows the relative bromide concentrations

collected from those samplers at wells 100, 101, and 102
over time. Although the observation wells are not directly
on cross section 107-109, we can project them to the plane

Figure 13. Probability of being in the high-conductivity
zone along a geological dip cross section 107-104. The
indicator values from flowmeter test data are shown
along the borehole locations (well 107 is deviated at depth
8.375 m), whereas estimated probabilities from the joint
inversion procedure are shown at all other locations.

Figure 14. Probability of being in the high-conductivity
zone along a geological dip cross section 107-103. The
indicator values from flowmeter test data are shown along
the borehole locations, whereas estimated probabilities from
the joint inversion procedure are shown at all other
locations.

Figure 15. Probability of being in the high-conductivity
zone along a geological dip cross section 107-109. The
indicator values from flowmeter test data are shown along
the borehole locations, whereas estimated probabilities from
the joint inversion procedure are shown at all other
locations. Well 107 is deviated at depth 8.375 m, and well
109 is deviated at depths 6.875 and 11.375 m. The three
lines with boxes represent the projected locations of
observation wells 100, 101, and 102 on cross section 107-
109. The boxes represent the multiple sampler intervals
used during the field bromide tracer and uranium biosti-
mulation experiments. The center depths of the intervals
from the top to the bottom are about 10.2, 11.7, and 13.2 m,
respectively.
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(Figure 2), as is illustrated by the boxes in Figure 15. By
comparing Figures 15 and 16, we find that the estimated
hydrogeological zonation structure, described in section 5.1
and provided by the joint inversion approach, is useful for
understanding the tracer experiment results. Without the
tomographic information, we would expect that under
forced gradient conditions, the injected tracer would move
along the injection centerline, possibly migrate slightly
down to geological dip or the Southeast direction, and be
relatively evenly distributed about the centerline of the flow
field. Instead, Figure 16 shows that little tracer arrived at the
downdip sampling well 100, and what did arrive there did
so later in time than at the other samplers. In all the
sampling wells, only minor tracer was detected in the top
samplers. The middle samplers on wells 101 and 102
received most of the tracer, and the tracer arrived at those
ports about the same time as each other and earlier than all
other arrivals. This asymmetry is in part due to the mis-
alignment of the wells [Fienen et al., 2005] and in part due
to the discontinuity of the high-conductivity zone in the
region of well 100 as illustrated by the results of the
inversion method. The bromide breakthrough at the middle
ports in wells 101 and 102 was almost immediately
followed by the breakthrough in the lower samplers of
those wells. Similar results were also observed during the
uranium (VI) tracer experiments [Wu et al., 2006a, 2006b].
The nutrients injected at well 104 as part of the
biostimulation experiment have never been observed in
well 100, which suggests that this zone is hydraulically
isolated from the injection well as was suggested by the
tomographic information. These results highlight the
importance of heterogeneity on transport and remediation
efficacy.
[48] As shown in Figure 15, since the centers of all the

top samplers are outside the conductive layer, the observed
bromide concentrations within the top samplers are low in
each observation well. Again, as shown in Figure 15, the
middle samplers of wells 101 and 102 are within the
conductive layer, and thus we observe large concentrations
along those wells. For the bottom samplers, we also

observed high concentrations in those samplers that are
near the conductive layers. Since the thickness of the high-
conductivity layer in Figure 15 is greater near well 102, we
might expect more breakthrough near that well than well
101. However, well 101 is directly down gradient (0.9 m)
from the injection well 104. Consequently, the shorter travel
path to well 101 and the larger high-conductivity zone
associated with well 102 likely result in the tracer arriving
at the two wells at approximately the same time.
[49] Although the qualitative comparison of the estimated

zonation with the tracer and biostimulation observations is
reasonable, there are some minor discrepancies. Several
reasons may explain the disparities. For example, the
locations of wells 100, 101, and 102 shown on cross section
107-109 are projected onto the cross section, which may
account for small difference between the expected and
observed results. Additionally, the probability images are
sensitive to the given cutoff value; higher cutoff values
would have resulted in a smaller estimated high-conductiv-
ity zone, whereas lower values would have resulted in a
larger zone. Nonetheless, the obtained estimates agree well
with the transport observations and suggest the importance
of heterogeneity on tracer transport and remediation results.

6. Summary

[50] We have developed a joint inversion approach in this
study to combine crosshole seismic travel time and borehole
flowmeter test data, and have applied the developed method
to a real data set to estimate the zonation of high hydraulic
conductivity that we interpret to be the fracture zone. While
conventional hydrogeophysical two-step estimation
approaches are not viable at this site because of the poor
cross correlation between the inverted seismic velocity and
hydraulic conductivity (Figure 4), our joint inversion ap-
proach provided reasonable estimates of hydrogeological
zonation structure on the basis of a qualitative comparison
of the obtained estimates with the results of field tracer and
uranium biostimulation experiments. For applications of the
methodology to other sites, several assumptions can be

Figure 16. Recorded bromide concentrations versus travel times at observation wells 100, 101, and 102
[Wu et al., 2006a]. The dotted, dashed, and solid lines represent data obtained from the top, middle, and
bottom sampler intervals, respectively.
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relaxed, depending on data quality and specific field
situations. Estimates of continuous values or other types
of categorical values of hydraulic conductivity can be
obtained by using a more complicated petrophysical
model. In those cases, a procedure, similar to the one
shown in this study, can be used to develop a sampling-
based Bayesian model for solving the complex character-
ization problem.
[51] The joint inversion approach is expected to be

more effective for combining different types of data sets
than conventional sequential estimation approaches be-
cause the approach permits information sharing between
hydrogeological and geophysical data, which may lead to
the reduction of uncertainty in both geophysical data
inversion and hydrogeological parameter estimation. For
example, in this study, the estimates of seismic slowness
at pixels near boreholes benefit from proximal borehole
flowmeter test measurements. The developed approach is
also flexible; it allows us to use petrophysical models
with unknown parameters, so that we can consider the
effects of uncertainty in petrophysical models and in
geophysical inversion together on the estimates of hydro-
geological parameters. For example, the estimated proba-
bility images of being in the high-conductivity zone
reflect the effects of uncertainty in both the petrophysical
model and the travel time data inversion. In addition,
since we use a sampling-based Bayesian model, complex
numerical simulation models can also be incorporated into
the joint inversion approach. Our study suggests that the
developed joint hydrogeophysical inversion approach is
effective for integrating various types of data sets within
complex subsurface environment, and that seismic travel
time data have the potential to provide valuable informa-
tion about fracture zonation.
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