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1.  INTRODUCTION

With the growing awareness and debate over the potential changes associated with global
climate change, the polar regions are receiving increased attention.  Since greenhouse forcings are
expected to be amplified in polar regions (Wetherald and Manabe, 1980; Schlesinger and Mitchell,
1987; Steffen and Lewis, 1988), these regions may act as early warning indicators of actual climate
shifts.  Global cloud distributions can be expected to be altered by increased greenhouse forcing.
In the polar regions, cloud cover changes can be expected to have a significant effect on sea ice
conditions (Shine and Crane, 1984) and on regional ice-albedo feedbacks (Barry et al., 1984).  In
particular, polar stratus is very important to the polar heat balance and directly affects surface
melting (Parkinson et al., 1987).  However, to monitor changes in polar surface conditions and
polar cloudiness, more accurate procedures must be developed to distinguish between cloud and
snow-covered surfaces.

Owing to the similarity of cloud and snow-ice spectral signatures in both visible and infra-
red wavelengths, it is difficult to distinguish clouds from surface features in the polar regions.  In
the visible channels, thin ice, ice fragments, wet ice, and pancake ice have low albedos and can be
misinterpreted as water, melt ponds, or as thin cloud/haze.  Persistent surface inversions and low
clouds in winter, and near isothermal structure and extensive stratiform clouds in summer, limit
discrimination in the infrared channels (Steffen et al., 1993).

2.  BACKGROUND

2.1  Overview

The experience of many investigators has been considered in the classification methodology
described in this document.  Some of them include:  Key and Barry (1989); Li and Leighton
(1991); Ebert (1987, 1989, 1992); Key (1990); Allen et al. (1989); Saunders and Kriebel (1988);
Raschke et al. (1992); McGuffie et al. (1988); Ormsby and Hall (1991); Sakellariou and Leighton
(1988); Crane and Anderson (1984); Simpson and Humphrey (1990); King and Tsay (1993);
Menzel and Strabala (1994); Welch et al. (1988a,b, 1990, 1992); Tovinkere et al. (1993); Rossow
(1989); Stowe et al. (1991); Rossow et al. (1989a,b); Seze and Rossow (1991a,b); Kuo et al.
(1988).

Typical cloud masking algorithms assume that clouds can be detected using visible and in-
frared channel thresholds.  Reflectance thresholds typically are set about 3% above the back-
ground, and thermal thresholds typically are set about 3°C below the background.  Other ap-
proaches rely upon bispectral thresholding (Minnis and Harrison, 1984) and a variety of statistical
methods (Saunders and Kribel, 1988).  However, Rossow et al. (1989b), Stowe et al. (1989), and
many others have reported difficulties associated with polar cloud cover retrievals.  Indeed, Land-
sat imagery shows that clouds often are darker than the background snow and ice (Welch et al.,
1990).  In particular, cloud cover often is confused with melt ponds, thin ice, and pancake ice.

Much of the experience in cloud masking described in the literature is based on low resolu-
tion non-polar imagery (e.g., AVHRR LAC and GAC).  Relatively little work has been performed
on high spatial resolution polar imagery.  In particular, there is virtually no experience with high
spatial resolution polar imagery for the full complement of ASTER channels (especially multispec-
tral imagery in the thermal IR region of the spectrum from 8-12 mm).

There are three main factors that must be addressed in the development of an operational
polar cloud masking algorithm: (1) proper identification and labeling of sample or test regions, (2)
the choice of features, and (3) the choice of the classification methodology.
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No classification scheme can be expected to produce accurate results if the labeling of sam-
ples or test regions is incorrect.  A wide variety of information needs to be examined before label-
ing a region.  A new Interactive Visual Image Classification System (IVICS) has been developed
which provides a wide variety of analysis tools to the user.  This system has greatly facilitated the
selection of pure training samples and accurate labeling.  This is particularly important in polar
scene analysis where erroneous labeling is problematic.  By virtue of using this system, very high
classification accuracies (> 95%) have been attained for AVHRR data of polar regions (Berendes et
al., 1996).

A relatively new intuitive approach has been developed for feature ranking and selection.
The distributional overlap between each pair of classes is examined.  Those features that most fre-
quently show the least overlap and are least correlated with other features are selected as the best
features for the classifier.  Several studies have shown that textural signatures can be used in re-
gional AVHRR classification schemes to distinguish between cloud, snow-covered mountains,
solid and broken sea ice and floes, and open water (e.g., Welch et al., 1990, 1992; Ebert, 1987,
1989; Key, 1990; Rabindra et al., 1992; Tovinkere et al., 1993).  We have indicated in past ver-
sions of this document that textural features would be an important element in the feature vector.
However, after comprehensive testing, we have found that, in pixel (as opposed to regional) level
classification of high spatial resolution Landsat TM data, textures provide little improvement in ac-
curacy.  Therefore, because they incur significant computational expense, we have concluded that
only spectral signatures are necessary in the feature vector for our classification strategy.

The classifier of choice in this algorithm is a hybrid between some simple thresholding
techniques, use of ancillary information, and back propagation neural networks.  Through thresh-
olding and use of ancillary information, the class ambiguity of a pixel feature vector is reduced.
The ambiguity is then resolved through appropriate selection of one of a number of especially
trained neural networks.

The ASTER operational duty cycle is estimated to be approximately 8%.  We estimate that
90% of the time the ASTER is on will be during the daytime.  During the remaining 10% of the
cycle time, it will be on at night.  Both a daytime and nighttime algorithm are being developed;
however, more developmental emphasis is on the daytime algorithm.  Polar regions are defined in
this algorithm to consist of all high latitude regions poleward of 60°N and 60°S.

This Algorithm Theoretical Basis Document is organized as follows.  Section 2 includes an
overview of the problem (this section), the instrument characteristics, a summary of the develop-
mental data sets, the labeling procedure, and a description of the class spectral characteristics.
Section 3 contains the algorithm description, including preprocessing, classification, and spatial
context consistency tests.  Section 3 also presents results obtained from testing of the classifier on
Landsat TM data. Finally, Section 4 considers the constraints, limitations, and assumptions used in
the algorithm and describes the validation methodology and quality assurance plan.

2.2  ASTER instrument characteristics

ASTER will provide data in three spectral regions using three separate radiometer subsys-
tems.  These are the visible and near-infrared (VNIR) subsystem being provided by NEC, the
short wavelength infrared (SWIR) subsystem provided by MELCO, and the thermal infrared (TIR)
subsystem provided by FUJITSU.  The instrument band passes, radiometric accuracies, and ra-
diometric and spatial resolution are given in Table 1.  The VNIR includes a separate, single-
spectral-band (0.76-0.86 mm, channel 3B) radiometer inclined backward at an angle of 27.7° to the
other sensors to provide a 15-m same-orbit stereoscopic imaging capability.  A wide dynamic
range and multiple gain settings will help ensure useful data for a variety of investigations.
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The swath width for all three systems is 60 km.  The ASTER instrument has a cross-track
pointing capability of 8.55° for the SWIR and TIR subsystems, and 24° for the VNIR subsystem.
This gives cross-track observing ranges on the ground of approximately 136 km and 343 km, re-
spectively, ensuring that any point on the globe will be accessible at least once every 16 days for
the SWIR and TIR, and once every five days for the VNIR.  However, in most instances, all three
radiometer systems will image the same 60-km ground swath.

TABLE 1.  Spectral and spatial characteristics of the Advanced Spaceborne Thermal
Emission Reflectance Radiometer (ASTER).  Asterisk indicates the stereo band.  Stereo
B/H ratio 0.6.

ASTER
Wavelength
Region

Band
Number

Spectral
Range

Radiometric
Accuracy

Radiometric
Resolution

Spatial
Resolution

1 0.52-0.60 +/- 4% £ 0.5% 15m
VNIR 2 0.63-0.69 +/- 4% £ 0.5% 15m

3 0.76-0.85* +/- 4% £ 0.5% 15m

4 1.60-1.70 +/- 4% £ 0.5% 30m
5 2.145-2.185 +/- 4% £ 1.3% 30m
6 2.185-2.225 +/- 4% £ 1.3% 30m

SWIR 7 2.235-2.285 +/- 4% £ 1.3% 30m
8 2.295-2.365 +/- 4% £ 1.0% 30m
9 2.360-2.430 +/- 4% £ 1.3% 30m

10 8.125-8.475 1-3K £ 0.3K 90m
11 8.475-8.825 1.3K £ 0.3K 90m

TIR 12 8.925-9.275 1-3K £ 0.3K 90m
13 10.25-10.95 1-3K £ 0.3K 90m
14 10.95-11.65 1-3K £ 0.3K 90m

2.3  Developmental dataset

Landsat TM data currently provides a good match to ASTER data, both spatially and spec-
trally, and serves as the primary developmental dataset for the daytime version of the algorithm.  A
total of 82 quarter scenes are currently being used in this development.  Twenty-four of them were
obtained over coastal Antarctica or over sea ice near Antarctica.  The other 58 were obtained over
northern latitude regions located in places such as Greenland, Iceland, and Alaska. Labeled sam-
ples of contiguous pixel regions have been extracted from all of these scenes and total more than
3700.  They represent approximately 200,000 pixels.  Results from testing on the labeled samples
are presented in section 3.6. The classifier also has been applied to each of the 82 scenes in the in-
ventory.  Pertinent information for each of the 82 circumpolar Landsat TM scenes is shown in Ta-
ble 2.  A wide range of conditions are included in this data set, such as:  thin cirrus, thin and thick
stratocumulus, cumulus, fog, ice-covered land, snow-covered mountains, glaciers, snow-free
land, broken sea ice, slush, and melt ponds.

Table 2.  Summary of pertinent information for the Landsat TM daytime develop-
mental data set.
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Label Location Sat
ID

Quad
#

Path Row Lat
(deg)

Lon
(deg)

Date  
Year-Mn-D

l311 Antarctic   4 1 030 115 -77.030 -153.50 1989-03-03
l312 Antarctic   4 2 102 107 -66.944  114.97 1989-03-28
l313 Antarctic   4 4 116 106 -65.579   94.72 1989-03-14
l314 Antarctic   4 2 078 108 -68.265  150.46 1989-02-15
l315 Antarctic   4 2 060 114 -75.875  163.95 1989-02-01
l316 Antarctic   4 2 124 108 -68.267   79.41 1989-02-18
l317 Antarctic   4 4 128 108 -68.280   73.31 1989-03-18
l318 Antarctic   4 1 090 107 -66.933  133.44 1989-02-19
l319 Antarctic   4 2 040 116 -78.110 -173.51 1989-02-21
l320 Antarctic   4 1 030 115 -77.027 -153.52 1989-02-15
l321 Antarctic   4 3 199 112 -73.459  -44.69 1989-01-30
l322 Antarctic   4 2 118 107 -66.940   90.24 1989-03-12
l323 Antarctic   4 1 050 117 -79.101  165.61 1989-01-10
l324 Antarctic   4 2 008 113 -74.690 -112.42 1989-02-05
l325 Antarctic   4 1 207 110 -70.896  -52.44 1989-02-07
l326 Antarctic   4 2 040 116 -78.116 -173.48 1989-03-09
l327 Antarctic   4 2 062 113 -74.696  164.16 1989-03-03
l328 Antarctic   4 2 210 107 -66.945  -51.87 1989-03-16
l329 Antarctic   5 2 070 109 -69.614  161.23 1989-01-14
l330 Antarctic   4 2 008 113 -74.694 -112.39 1989-02-21
l331 Antarctic   4 2 215 106 -65.583  -58.21 1989-03-19
l332 Antarctic   4 1 035 116 -78.113 -165.76 1989-03-06
l333 Antarctic   4 1 215 107 -66.935  -59.67 1989-03-03
l334 Antarctic   4 2 014 118 -80.001 -145.11 1989-02-15
p1_1 Greenland - S Coast   5 1 006 015  64.202  -50.39 1987-07-20
p1_2 Greenland - S Coast   5 2 006 015  64.202  -50.39 1987-07-20
p1_3 Greenland - S Coast   5 3 006 015  64.202  -50.39 1987-07-20
p1_4 Greenland - S Coast   5 4 006 015  64.202  -50.39 1987-07-20
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Table 2.  (Continued)

Label Location Sat
ID

Quad
#

Path Row Lat
(deg)

Lon
(deg)

Date  
Year-Mn-D

p2_1 Jones Sound   4 1 043 006  75.869  -89.17 1988-07-01
p2_2 Jones Sound   4 2 043 006  75.869  -89.17 1988-07-01
p2_3 Jones Sound   4 3 043 006  75.869  -89.17 1988-07-01
p2_4 Jones Sound   4 4 043 006  75.869  -89.17 1988-07-01
p3_1 Fairbanks, AK   5 1 069 015  64.238 -147.96 1984-09-22
p3_2 Fairbanks, AK   5 2 069 015  64.238 -147.96 1984-09-22
p3_3 Fairbanks, AK   5 3 069 015  64.238 -147.96 1984-09-22
p3_4 Fairbanks, AK   5 4 069 015  64.238 -147.96 1984-09-22
p4_1 Denali Nat Park, AK   5 1 070 016  62.873 -150.77 1986-06-15
p4_2 Denali Nat Park, AK   5 2 070 016  62.873 -150.77 1986-06-15
p4_3 Denali Nat Park, AK   5 3 070 016  62.873 -150.77 1986-06-15
p4_4 Denali Nat Park, AK   5 4 070 016  62.873 -150.77 1986-06-15
p5_1 Camden Bay, AK   5 1 071 011  69.615 -145.20 1985-06-03
p5_2 Camden Bay, AK   5 2 071 011  69.615 -145.20 1985-06-03
p5_3 Camden Bay, AK   5 3 071 011  69.615 -145.20 1985-06-03
p5_4 Camden Bay, AK   5 4 071 011  69.615 -145.20 1985-06-03
p6_1 Drew Point, AK   5 1 078 010  70.922 -154.16 1985-07-22
p6_2 Drew Point, AK   5 2 078 010  70.922 -154.16 1985-07-22
p6_3 Drew Point, AK   5 3 078 010  70.922 -154.16 1985-07-22
p6_4 Drew Point, AK   5 4 078 010  70.922 -154.16 1985-07-22
p7_1 Deviation Peak, AK   5 1 079 013  66.951 -160.79 1985-07-13
p7_2 Deviation Peak, AK   5 2 079 013  66.951 -160.79 1985-07-13
p7_3 Deviation Peak, AK   5 3 079 013  66.951 -160.79 1985-07-13
p7_4 Deviation Peak, AK   5 4 079 013  66.951 -160.79 1985-07-13
p8_1 Novaya Zemlya   5 1 178 008  73.501   55.84 1986-03-16
p8_2 Novaya Zemlya   5 2 178 008  73.501   55.84 1986-03-16
p8_3 Novaya Zemlya   5 3 178 008  73.501   55.84 1986-03-16
p8_4 Novaya Zemlya   5 4 178 008  73.501   55.84 1986-03-16
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Table 2.  (Continued)

Label Location Sat
ID

Quad
#

Path Row Lat
(deg)

Lon
(deg)

Date  
Year-Mn-D

p9_1 Iceland   5 1 217 015  64.236  -16.62 1985-08-05
p9_2 Iceland   5 2 217 015  64.2 36  -16.62 1985-08-05
p9_3 Iceland   5 3 217 015  64.236  -16.62 1985-08-05
p9_4 Iceland   5 4 217 015  64.236  -16.62 1985-08-05
p10_1 Iceland   5 1 219 015  64.239  -19.73 1984-09-17
p10_2 Iceland   5 2 219 015  64.239  -19.73 1984-09-17
p10_3 Iceland   5 3 219 015  64.239  -19.73 1984-09-17
p10_4 Iceland   5 4 219 015  64.239  -19.73 1984-09-1-
p11_1 Greenland - E Coast   5 1 227 012  68.305  -28.07 1986-08-14
p11_2 Greenland - E Coast   5 2 227 012  68.305  -28.07 1986-08-14
p11_3 Greenland - E Coast   5 3 227 012  68.305  -28.07 1986-08-14
p11_4 Greenland - E Coast   5 4 227 012  68.305  -28.07 1986-08-14
wrang_1 Wrangell Mtns, AK   5 1 065 017  61.497 -144.02 1986-09-16
wrang_2 Wrangell Mtns, AK   5 2 065 017  61.497 -144.02 1986-09-16
wrang_3 Wrangell Mtns, AK   5 3 065 017  61.497 -144.02 1986-09-16
wrang_4 Wrangell Mtns, AK   5 4 065 017  61.497 -144.02 1986-09-16
forbin_2 Forbindel Glacier, Grnld   5 2 230 012  68.302 -32.69 1986-09-04
forbin_4 Forbindel Glacier, Grnld   5 4 230 012  68.302 -32.69 1986-09-04
mala_1 Malaspina Glacier, AK   5 1 062 018  60.103 -140.27 1985-08-07
mala_2 Malaspina Glacier, AK   5 2 062 018  60.103 -140.27 1985-08-07
mala_3 Malaspina Glacier, AK   5 3 062 018  60.103 -140.27 1985-08-07
mala_4 Malaspina Glacier, AK   5 4 062 018  60.103 -140.27 1985-08-07
chug_1 Chugach Mtns, AK   5 1 068 017  61.485 -148.58 1985-08-01
chug_2 Chugach Mtns, AK   5 2 068 017  61.485 -148.58 1985-08-01
chug_3 Chugach Mtns, AK   5 3 068 017  61.485 -148.58 1985-08-01
chug_4 Chugach Mtns, AK   5 4 068 017  61.485 -148.58 1985-08-01

The Landsat TM sensor has 7 channels with spectral bandwidths as follows:  Channel 1
(0.45-0.52 _ m), Channel 2 (0.52-0.60 _ m), Channel 3 (0.63-0.69 _ m), Channel 4 (0.76-0.90 _ 

m), Channel 5 (1.55-1.75 _ m), Channel 6 (10.4-12.5 _ m), Channel 7 (2.08-2.35 _ m).  These
bands are located over visible, near-infrared, and thermal infrared window regions. The spatial
resolution of the Landsat TM data is 28.5 m at nadir, except for the thermal IR channel, Band 6,
which has a spatial resolution of 120 m.  Calibration of pixel brightness to reflectance (Bands 1-5
and 7) and brightness temperature (Band 6) is performed according to Markham and Barker
(1986).

Since late in 1997, we have been using the MODIS Airborne Simulator (MAS) data for al-
gorithm development.  This instrument has 50 channels.  The advantages of the MAS data set over
LANDSAT TM are that 1) the MAS channels are more comparable to those of ASTER in both
wavelength and spatial resolution, and
 2) MAS has three thermal infrared (TIR) channels (channels 42, 44 and 45) that correspond well
to ASTER TIR channels (11,13 and 14).  MAS data used in this development effort have been
taken from the ARMCAS and ALASKA data sets.  One problem in using these data is the fact that
the classifier appears to find the data sets to be slightly different in calibration.  This will be ad-
dressed later.



12

2.4  Pixel labeling

A critical aspect of this algorithm development is the extraction of an accurately-labeled set
of pixel subregions.  Accurate labeling is the key to accurate classification.  Therefore, it is impor-
tant to provide an analyst performing the sample extraction and labeling with as much information
as possible.  Figure 1 shows an example of the Interactive Visual Image Classification System (IV-
ICS) which displays three-band color overlays.  A series of pull-down menus are available to the
analyst, which allow a wide range of channel displays and image processing functions.  By de-
fault, all bands are histogram equalized for contrast enhancement.  However, any combination of
band differences and band ratios can be designed and displayed on command.
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Figure 1.  Example display of Interactive Visual Image Classification System
(IVICS) used in pixel labeling.
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The large central image in Figure 1 is a full spatial resolution subsample of the original im-
age.  The region labeled "A" is water, "B" is shadow on ice, "C" is stratocumulus cloud, "D" is
ice-covered land, and "E" is broken sea ice.  Directly under the central image are 10 small regions
which display Landsat TM channels 1, 4, 5, 6, 7, 4/1, 4/5, 4/7, and 7-6.  The analyst immediately
can examine the region outlined in the box in each of these channels.  These 10 small regions also
are used as icons for mouse control, as explained below.  Starting at the lower left corner of the
monitor and moving to the right, a series of special purpose displays are provided.  First a spatial
coherence (2 x 2 pixel plot of mean versus standarddeviation) (Coakley and Bretherton, 1982) is
provided.  Next are histograms of all three channels where channels 4 and 5 are displayed in terms
of albedo, and channel 6 is displayed in terms of temperature (°C).  In the lower center is an 8x
zoom of channel 1, followed by a three-color enlarged display of the selected regions (shown in
black and white here).  At the bottom right, a color density sliced version of channel 1 is displayed
to the operator; the percentage of pixels in each color range is given at the top right.  In addition, to
the far right, a morphological dilation (Serra, 1982) is shown for channel 1.  The analyst has vari-
ous options for each of these special displays which are activated by clicking the mouse on any of
the 10 icons.  Finally, three-dimensional cluster analysis is shown in the center right cube; this
cube displays 3-D clusters, computed from the selected region (i.e., box), for the selected red,
green, and blue bands.  The cluster cube rotates continuously, but can be halted with the mouse
button.  A trained analyst can see immediately from the three-dimensional cluster display if the
boxed region contains pure classes.  In Figure 1, the boxed region labeled as "2" in the main dis-
play contains both cloud and water, which is clearly differentiated in the 3-D cluster display.

IVICS-2000 is a new visualization and classification tool that has been developed for satel-
lite data.  It has been developed using OSF Motif and OpenGL, both industry standards, for each
maintenance and later upgrades.  It also allows for cross-platform deployment.  IVICS-2000 re-
places the SIVIS and earlier version of IVICS described above.

SIVIS used the Silicon Graphics Inc., (SGI) GL graphics library as its user interface
builder.  It has now been replaced by OpenGL, so the maintenance and upgrade of SIVIS became a
major difficulty.  IVICS-2000 provides most of the original functionality of SIVIS and IVICS with
additional visualization options.  One such option is the capability to examine classification results
produced by the classifier.  This allows the user to investigate classification ambiguity derived
from incorrect sample labeling.  IVICS-2000 greatly enhances our capability to refine the classifier
as new results are obtained.  IVICS-2000 is currently deployed but with constant upgrades taking
place.

2.5  Classes

2.5.1  Daytime mask

The primary motivation for this algorithm development is the production of a polar cloud
mask (i.e., distinguishing cloud from clear); however, a necessary byproduct for classifier training
is the distinction among several cloud and clear classes.  The following clear and cloud classes
were arbitrarily selected for labeling and, subsequently, for classification:

Clear  Cloud   

water thin cloud over ice/snow
slush/wet ice/thin ice thin cloud over water

ice/snow thin cloud over land
shadowed ice/snow thick cloud
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land
shadowed land

The major distinction in the clear classes is between land and some phase of water (liquid,
frozen, freezing/melting).  The major distinction in the cloud classes is between thin and thick
clouds.  If the cloud is thin, often the underlying surface (ice/snow, water, land) can also be de-
termined.  In this context, thin cloud implies one in which the optical properties are affected by the
albedo of the underlying surface.

2.5.2  Nighttime mask

With the adoption of MAS data, the development of the nighttime cloud mask became pos-
sible.  Daytime MAS images were used for the nighttime algorithm development, since labeling of
samples was done by visual inspection.  However, only data from thermal channels were used in
training the nighttime algorithm.  Visual inspection in the visible channels appears to be the only
feasible way to assess the performance of the nighttime classifier.

2.6  Class spectral characteristics

2.6.1  Water

Water is very dark (i.e., of low reflectance) in all 3 ASTER VNIR bands (i.e., Bands 1-3)
and all 6 SWIR bands (i.e., Bands 4-9).  In non-polar scenes, the reflectance of water is typically
less than 0.06; however, in polar scenes water can appear to have a higher reflectance due to the
presence of subpixel resolution ice and slush, resulting in reflectance that can be as high as 0.1.
Fortunately, specular reflection is not a problem in ASTER imagery due to the small observation
angles.  In the ASTER TIR window bands (i.e., Bands 10-14), water is greater than 273 degrees
K in non-polar regions. However, for the same reason that the VNIR and SWIR Band reflectance
can be atypically bright, the sea water temperature can be as low as 271K and appear to be as low
as 268K due to the presence of subpixel scale slush.  Water in streams, lakes, and coastal areas,
especially near river mouths, is more problematic.  The water can be shallow and transparent to the
bottom, or contaminated with silt and vegetative matter.  This type of water can have the same
spectral characteristics as wet or shadowed land.

2.6.2  Land

Land spans a relatively broad range of reflectance in the ASTER VNIR and SWIR bands
and can be ambiguous in any of those bands with water, ice, or cloud.  Fortunately, most land sur-
faces (including bare soil and vegetation) are brighter in ASTER Band 3 than Band 1, and the dif-
ference increases linearly with increasing reflectance in Band 3.  By using ASTER Band 3 and
Band 1 together, most land surfaces can be resolved from water, ice, and cloud regions (e.g., Li
and Leighton, 1991, used AVHRR Bands 1 and 2 in the same manner).  Unfortunately, some land
surface types manifest unusually small differences in ASTER Band 3 - Band 1 reflectance, and
they are difficult to resolve from cloud regions.  Through the use of land cover and ecosystem
maps, the classifier potentially can be adapted to these regions.  It is also possible that these land
regions will be resolvable in the ASTER SWIR Bands 5-9 due to some unique spectral features or
ASTER TIR Bands 10 through 14 due to some unique emissivity characteristics.  In all the daytime
imagery that is currently being used in the development, land surfaces are always above 273K.
While this condition is not universally present, especially in winter, this information is valuable for
some seasons and geographical locations, and is useful for resolving the aforementioned unusual
land surfaces and ice.  Wet land surfaces are a classification problem as they are ambiguous spec-
trally, often with shadowed land surfaces (either caused by topography or by clouds) and some-
times with water.  Land surfaces in mountainous regions can be ambiguous with thin cloud over
land.  Their reflectance is erroneously retrieved due to topography.  Topography dramatically im-
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pacts the observation geometry and can introduce bidirectional reflectance and lighting effects that
are impossible to model without high resolution elevation models.  Navigation of the imagery pro-
vides the potential for customizing classification in these regions.

2.6.3  Freezing or frozen water (slush-ice-snow)

Ice and snow span a large range of reflectance in the ASTER VNIR bands depending on
the temperature and age of the ice or snow.  Wet or melting ice, thin ice, and slush can all have re-
flectance as low as 0.05 in the ASTER VNIR bands and are ambiguous with water, thin cloud, and
shadowed or wet land surfaces.  Ice packs and snow can have moderate to very high reflectance in
the ASTER VNIR bands and are frequently brighter than clouds.  In general, it is impossible to
resolve clouds from slush-ice-snow in the ASTER VNIR bands.  A similar problem is also true for
the ASTER TIR Bands 10-14.  From a temperature standpoint, slush-ice-snow are everywhere
ambiguous with clouds.  In polar regions, one cannot assume that clouds are colder than the un-
derlying surface.  Frequently occurring inversions in the polar regions result in cloud top tempera-
tures greater than the underlying slush-ice-snow surface.  However, slush-ice-snow can be unam-
biguous with cloud in ASTER TIR Band 10 minus Band 13 and Band 13 minus Band 14.  Emis-
sivity differences from ASTER Band 10 to Band 13 are typically larger in clouds than in slush-ice-
snow resulting in larger temperature differences for clouds.  Atmospheric path differences from
ASTER Band 13 to Band 14 are also larger for clouds, again resulting in larger temperature differ-
ences.  These two temperature differences augment the resolution of clouds from the surface in the
daytime algorithm, and form a major basis for resolving clouds from the surface in the nighttime
algorithm.  In the daytime algorithm, ASTER Band 4 is critical to resolving slush-ice-snow from
clouds.  Relative to clouds, solar radiation in the 1.6 to 1.7 mm region (i.e., Band 4) is strongly
absorbed by snow and ice; this is due to the larger ice crystal particle sizes and smaller single scat-
tering albedos of snow/ice.  Ice cloud absorbs more strongly than does water cloud, but less than
ice and snow.  In general, using ASTER Band 3 and Band 4 together, slush, ice, and snow are
spectrally linear, from water to the brightest fresh snow surface, and other classes are spectrally
orthogonal to them; however, the slope of the line is scene dependent.

2.6.4  Clouds

Of all the classes, clouds span a larger range of reflectance and temperatures than does any
other class.  This is due to the fact that clouds can be semi-transparent, and their spectral reflec-
tance characteristics can be similar to that of the underlying surface.  Thin clouds in daytime im-
agery can be resolved using some of the spectral characteristics described in previous paragraphs.
Resolving thin clouds in nighttime scenes requires the use of Band differences.  Emissivities of
thin cloud vary significantly across the ASTER TIR bands.  The difference in emissivity is largest
for smaller particles, like those found in water and ice clouds.  In ASTER Band 10 minus Band 13
vs. Band 13 minus Band 14, pixels from cloudy regions scatter widely away from zero, while pix-
els from clear regions are concentrated in a narrow region nearer to zero.  Opaque clouds in day-
time imagery can easily be resolved from surface features by virtue of their uniquely high reflec-
tance in both ASTER Bands 3 and 4.  However, opaque clouds can be more difficult to resolve in
nighttime scenes because the ASTER TIR band differences (Band 10 - Band 13 and Band 13 -
Band 14) are small and are more similar to surface regions.  Most surface regions have tempera-
tures greater than 220 K, depending on their location and season.  Very cold clouds can be re-
solved based on temperature alone.

2.6.5  Glaciers and moraines
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Moraines are a collection of gravel, rock, and dirt deposited by glaciers that can be wet or
icy.  They pose a particular classification problem in that they can be spectrally ambiguous with
water, ice, land, or cloud.  The ice in glaciers can also be difficult to classify correctly, as it is fre-
quently contaminated with the same material found in moraines.  Here navigational and land char-
acterization information are especially important for classification.

3.  ALGORITHM DESCRIPTION

3.1  Overview

The methodology implemented in this algorithm can be characterized as hybrid, hierarchi-
cal, or multi-stage.  The intent is to link several techniques in such a way that efficiency and speed
are optimized while not compromising classification accuracy.  A relatively simple technique based
on both adaptive and fixed thresholds is used to reduce the pixel class ambiguity, followed by a set
of especially trained back propagation neural networks which resolve the remaining ambiguity and
classify the pixel.  To the maximum extent possible, the classification strategy is derived in knowl-
edge of physical phenomenology.

The algorithm has four stages or levels.  In the first stage, the image is navigated, normal-
ized, and sub/super sampled.  In the second stage, a preclassification is performed to reduce the
class ambiguity of a feature vector, with small computational expense, through the use of a few
key features and ancillary information such as coastline data, land/water mask, land character
mask, and ecosystem mask. In the third stage, additional features are computed and a set of back
propagaton neural networks are used to resolve the class of the feature vector to one of ten possible
classes.  In the fourth stage, a simple spatial concistency test is performed on the classification
mask and pixels that are not spatially consistent with their neighbors are reclassified.

Details concerning the ASTER Polar Cloud Mask also can be found in Logar et al, 1998.
Details concerning the ASTER preflight and inflight calibration program and the validation proce-
dure for Level 2 products can be found in Thome et al, 1998.

The algorithm consists of the following elements (Fig. 2):

ALGORITHM FLOW
¯

STAGE 1:
Preprocessing -
Median Filter
Sample data to
30 m Normalize
Day/Night Navigation Earth Sur-
face Types

¯
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STAGE 2:
Preclassification
(class ambiguity
reduction)

¯
STAGE 3:

Back propagation
Neural Networks
(one of ten classes)

¯
STAGE 4:

Spatial Consistency Test

Figure 2:  Algorithm flow chart

Each pixel is classified using a byte code.  The current coding scheme is: (1) water, (2)
slush/wet ice, (3) ice/snow, (4) thin cloud over ice/snow, (5) thin cloud over water, (6) thin cloud
over land, (7) thick cloud, (8) land, (9) shadow on ice/snow, and (10) shadow on land.  The
slush/wet-ice class includes melt ponds, slush ice, and thin ice.  This class has values of reflectiv-
ity intermediate between that of water and ice/snow, and with temperatures near 0°C.  If the optical
thickness of the clouds are sufficiently thin such that their reflective characteristics are impacted by
the albedo of the underlying background, then the classifier attempts to identify the underlying
background in classes 5, 6, and 7.  In classes 9 and 10 the shadowing can be due either to cloud or
topography.  The distinctions among classes 4 though 7, between 8 and 10, and among 2, 3, and 9
are more difficult to make than among the more basic classes of water, ice/snow, cloud, and land.

3.2  Stage 1: Preprocessing

First, a 3x3 Median Filter is applied to the data to eliminate "salt and pepper" noise.  The
ASTER data are obtained at three different spatial resolutions (i.e., VNIR-15 m, SWIR-30 m,
TIR-90 m, see Table 1).  The classification is derived at 30 m spatial resolution in the daytime al-
gorithm.  Therefore, the VNIR data is subsampled, by half, to 30 m pixel spacing.  The TIR data
is supersampled, by 3, also to 30 m pixel spacing.  The SWIR data remains unaltered.  In the
nighttime algorithm, this step is skipped and the classification is performed at the resolution of the
TIR sensor (i.e., 90 m).  In the daytime algorithm, the VNIR and SWIR band DNs are normalized
for solar irradiance, solar zenith angle, observation angle, and calibration coefficients.  The TIR
band DNs are converted to temperature.  Finally, the scene is navigated to a  world data bank sys-
tem, with coastlines, oceans, lakes, rivers, marshes, reefs, permanent ice regions, deserts, and salt
beds noted.  The data bank information is used in stage 2 to augment the class ambiguity reduction
process.

3.3  Stage 2:  Preclassification (or class ambiguity reduction)

The second stage is designed to reduce the class ambiguity of a pixel to 2 to 4 classes based
on adaptive thresholds and the aforementioned ancillary information.  The adaptive thresholds are
derived from the scene statistics.  The class ambiguity of pixels with spectral feature vectors that are
located close to class cluster centers can in many cases be reduced to two classes.  Pixels with
spectral feature vectors that are located between class cluster centers and are ambiguous retain their
10 class ambiguity into Stage 3.  Based on results obtained from applying this stage to Landsat TM
and MAS imagery, it is estimated that, on the average, the CPU time can be reduced by 50%
through the use of this preclassification process.
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Five features are utilized in this stage.  They are B4, B5, B6, ATAN(B4,B5), and B2 ·

cos(10°) Ð B4 · sin(10°).  (Note the band numbers indicate Landsat TM bands.  Landsat TM bands
2, 4, 5, and 6  will be supplanted by ASTER bands 1, 3, 4, and 14 when applied to ASTER im-
agery; a similar assignment can be made with MAS channels, not shown).  A sequence of tests are
performed based on these 5 features.  The tests utilizing ATAN(B4,B5) and B2 · cos(10°) Ð B4 ·
sin(10°) are determined adaptively for each scene.  They are derived from the histogram of the fea-
ture for the scene being classified and are key to the algorithm's performance.  Significant spectral
variability is apparent in our 82-scene Landsat TM and MAS circumpolar datasets.  Some of the
variability is due to the natural variations in the atmospheric path and some is due to the natural
variability of a specific class.  For example, in the land class, the spectral characteristics of boreal
forests are not the same as wetlands or bogs and are not the same as bare rock in treacherous
mountain ranges.  In the ice/snow class, the spectral characteristics of fresh snow are different
from those of ice floes or glaciers.  By using adaptive thresholds it is possible to compensate for
some of this natural variability occurring in each class type.

The feature ATAN(B4,B5) is especially important in separating all types of frozen water
surfaces from cloud over those surfaces.  The distribution of all types of frozen water (slush, wet
ice, pancake ice, snow, etc.) are distributed narrowly in the ATAN(B4,B5) feature while cloud is
distributed much more broadly and uniformly.  An example of this characteristic is shown in Fig-
ure 3a for one scene.  The optimum threshold for separating ice from cloud is indicated in the fig-
ure.  Another example is shown in Figure 3b for another scene.  Again the optimum threshold is
indicated but note that its location is significantly different from that in Figure 3a.  If the threshold
from Figure 3a  were applied to the scene corresponding to Figure 3b, significant numbers of mis-
classification errors occur.  The converse is also true when applying the threshold of Figure 3b to
the scene corresponding to Figure 3a.

The same methodology is applied to B2 · cos(10°) Ð B4 · sin(10°); however, in this case
the adaptive thresholding is important to distinguishing land from cloud over land.  The importance
of adaptive thresholding is demonstrated in Figure 4a and b in which histograms of B2 · cos(10°)

Ð B4 · sin(10°) are shown for two scenes.  Again, if the threshold for one scene is applied to the
other, significant numbers of pixel misclassification occur.  The 10° rotation is performed to adapt
to the soil line in this feature space.  This angle varies from scene to scene but 10° was chosen as a
nominal value based on observations of our Landsat TM data set.
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Figure 3.  Histogram of arctan (4,5) for one Landsat TM Antarctic scene
with (a) a relatively low threshold, and (b) a relatively high threshold.
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Figure 4.  Histogram  of B2·cos (10°) - B4·sin (10°) for one Landsat TM northern hemisphere
polar region scene with (a) a relatively high threshold, and (b) a relatively low threshold.
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The remainder of the tests, using the aforementioned 5 features, rely on fixed thresholds
and were derived from analysis of the histograms of those features for approximately 200,000 la-
beled pixels.  Most of the tests are conditional on previous tests such that a pixel is only classified
if it has not been already.  The following eight combinations of classes are possible as output from
this stage and are provided as input to the next stage (i.e., the set of back propagation neural net-
works):

land, shadow on land
one of the four cloud classes
water, slush/wet ice
slush/wet ice, ice/snow, shadow on ice/snow
slush/wet ice, ice/snow
thin cloud over water or land, thick cloud
thin cloud over water or land, land, shadow on land
any class (no class ambiguity reduction)

3.4  Stage 3: Back propagation neural networks

3.4.1  Overview

This stage applies a more sophisticated and, consequently, a more computationally expen-
sive technique than in the previous stage (i.e., Stage 2).  Here more spectral features are computed.
They include the basic 14 ASTER bands, but also include derivative spectral features such as nor-
malized differences, arctangents, and ratios.  The goal in this stage is to be able to classify at the
rate of one million pixels (approximately one quarter of an ASTER scene) in less than 5 minutes
using a modest workstation (e.g., SGI Indy).  The key to this stage is a comprehensive set of rep-
resentative samples for all classes.  Approximately 3700 samples (i.e., about 200,000 pixels) have
been extracted from 82 Landsat TM quarter scenes      ( likewise, a large number of samples have
been extracted from the ARMCAS and ALASKA MAS data sets).  These samples provide the ba-
sis for training the neural networks.  Currently, the networks are being trained on Landsat TM and
MAS data.

3.4.2  Features

Potentially, a total of 140 features are computed for each pixel to be used by one of the
back propagation neural networks.  They are as follows (Note that the band numbers refer to
Landsat TM.)  The appropriate ASTER bands will be supplanted when computing these features
for ASTER data):

a) The seven reflectance/temperature values for Bands 1-7;
b) The 21 unique band ratios for all paired combinations of seven bands (Note:  Unique

implies that, for example, Band 1 / Band 2 is computed but not Band 2 / Band 1);
c) The 21 unique band differences for all paired combinations of seven bands (e.g., Band

1 - Band 2);
d) The 21 unique arctangents for all paired combinations of seven bands (e.g., arctan

(Band 1, Band 2) );
e) The 21 2-D Euclidean distances  for all paired combinations of seven bands (e.g.,

( ) (band band1 2)2 2+  );
f) The 3-D Euclidean distances for the following three-way combinations: [1,4,5],

[1,4,6], [1,5,6], [4,5,6] (e.g., ( ) ( ( )band band band1 4) 52 2 2+ +  );
g) The 21 unique normalized differences for all combinations of seven bands (e.g., (Band

1 - Band 2) / (Band 1 + Band 2) );
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h)  The sets of hue, saturation, and intensity (HSI) for the following eight three-way com-
binations: [1,4,5], [1,4,6], [1,5,6], [4,5,6], [1,1-4,6], [1-4,4-5,6], [1-4,4-5,5-6], [4-
5,5-6,1-5].  Often it is useful to cluster points within a 3D subspace that can be repre-
sented within the RGB color cube in which each of the three channels is assigned to
one of the three colors.  This model, however, does not directly relate to the notions of
hue, saturation and intensity.  HSI space can be related to RGB space by defining the
Intensity axis along the diagonal from (0,0,0) to (1,1,1) in the RGB color cube.  Satu-
ration then is the distance from the Intensity axis and ranges in value from 0 to 1.  Hue
is the angle around the Intensity axis with respect to some reference and ranges in value
from 0 to 2p.  The RGB to HSI transformation equations are given in Ballard and
Brown (1982).  The HSI metrics provide the best separability among all 140 features
for some class pairs.

3.4.3  Feature selection

Training a neural network with feature vectors containing 140 elements is computationally
expensive, extremely time consuming, and generally impractical.  Therefore, it is necessary to re-
duce the input vector size and make it as small as possible. This reduction of features for input into
the networks is achieved through the use of two metrics of distributional separation.  In the first
metric, histograms for each feature and pair of classes are constructed.  The histogram ranges are
scaled to the minimum and maximum feature values of both classes and discretized into 256 bins.
The histogram contains the frequency of occurrence for each class, normalized by the number of
samples in the class.  From each pair of histograms Overlap, O, is computed as follows:

O(f) I (x)J (x)ij f f
x 1

256

=
=

�

where f is a specific feature, i and j are the 2 classes under comparison, I and J are the corre-
sponding histograms for classes i and j, and x is the histogram bin number.

An additional metric, divergence (Richards 1993), is also computed for each feature and
class pair.  It is defined as:

DIV(F) m m / (s s )ij i j i j= - +

where mi and mj are the means for classes i and j, and si and sj are the standard deviations for those
classes.  The features with the lowest overlap (zero representing no overlap) and highest diver-
gence are rated as the top separating features for a given class pair.  For a selected set of classes,
the features are then ranked by the number of times they are rated as a top feature in a pairwise
comparison of all classes.  The top ranked features then are selected as input to a given neural net-
work.

3.4.4  Weight projection in neural network training

The neural networks use a method of weight projection which produce a decrease in train-
ing time of approximately 50% (Logar et al., 1992, Logar et al., 1993).  During training, a se-
quence of weight values are maintained for each weight.  A quadratic-least-squares curve is then
calculated for each weight and a prediction is made for a future value based on the curve.  With the
predicted weights in hand, an error is calculated.  If the error has decreased, the new weights  are
retained.  Otherwise, the old weights are retained and training resumes.

3.4.5  Back propagation neural network
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The multilayer perceptron network, trained using the back propagation algorithm, used in
this development, is described in many sources such as Rumelhart et al. (1986), and, more re-
cently, in an excellent review article by Paola and Schowengerdt (1995).  The network is com-
posed of three layers of perceptrons: an input layer, a single hidden layer, and an output layer.
Each perceptron receives weighted inputs and computes a sum, then generates an output using a
non-linear and continuous function.  The sigmoid function:

f(x)
1

1 e x
=

+ -

is used in this application.

During training the error is computed as the aggregate squared difference between the de-
sired output and the output actually produced.  The weights are then adjusted using a gradient de-
scent to minimize the error.  The network is trained until the error reaches a minimum.  This proce-
dure does not guarantee a global minimum but most often finds a local minimum which is a good
solution.

Currently, several sets of back propagation neural networks have been trained Ñ one each
for the southern and northern hemisphere polar region Landsat TM data sets Ð and one each for the
ALASKA and ARMCAS MAS data sets.   To determine the best features to use for training each of
these sets of networks, the feature selection technique described in section 3.4.3 is applied.  Eighty
randomly-generated data sets were derived from the total set of approximately 200,000 labeled
pixel samples (40 data sets each from the southern and northern hemisphere polar region data).  Of
the 40 data sets for each latitude extreme, 10 sets each representing 10%, 33%, 50% and 66% ran-
dom selections from the total available data set were selected.  After deriving the overlap and diver-
gence metrics for each class pair, for each feature, the features were ranked based on the number of
times a feature is top rated as explained in section 3.4.3.  All features that are top rated less than 20
times are eliminated leaving 39 and 25 selected features that were used in training the northern and
southern hemisphere polar region classifiers, respectively.  Experience indicates that using addi-
tional lower-ranked features does not improve performance

Once the input vector composition is determined, each network topology can be deter-
mined.  The number of elements in the feature vector determines how many nodes are in the input
layer, (for the current Landsat TM data set, 39 for northern latitude and 25 for southern latitude).
The hidden layer contains

# of input nodes

2
�

��
�

��

nodes.  The number of output nodes in each network corresponds to the number of classes from
Stage 2.  The training rate is held constant at 0.1 and the momentum rate at 0.5 for all experiments.
Experience has shown that these values produce good results for a wide variety of data sets.
Training is terminated when the change in error is less than a predefined threshold, approximately
1% of the previous error, for 50 consecutive iterations, or when the error begins to increase.

3.5  Stage 4:  Spatial consistency test

One final test is performed on the entire classification mask from Stage 3.  Spatial consis-
tency is tested by examining the eight nearest neighbors of each pixel.  If six or more of the nearest
neighbors are of the same class, then the pixel is reclassified to the class of the most frequently oc-
curring near neighbor.
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3.6  Testing of the classifier using labeled samples derived from Landsat TM and
MAS data - confusion matrices

The labeled samples extracted from the Landsat TM circumpolar developmental data set and
the MAS data sets each were split into two sets corresponding to a fundamental geographic separa-
tion; that is, southern hemisphere polar region and northern hemisphere polar region data.  The
southern latitude data was obtained over coastal Antarctica and, consequently, only 7 of the 10
classes are present in these scenes (water, wet ice, ice/snow, thin cloud over ice/snow, thin cloud
over water, thick cloud, and shadow on ice/snow).  In this region of the world, bare land is rarely
seen and is not present in any of the imagery; therefore, no samples for land, shadow on land, or
thin cloud over land are available.  The northern latitude data does contain samples for all 10
classes.  Due to the presence of land classes in the northern latitude data, the classifier performs
better when trained on each set individually.  Note that another factor possibly contributing to a
difference in the two data sets is that the southern latitude data was obtained from Landsat 4 while
most of the northern latitude data was obtained from Landsat 5.  The two regions also differ physi-
ographically and climatologically.  For example, much of the southern polar region is covered by a
snow- and ice-laden continent surrounded by sea ice and open ocean, while the central area of the
northern polar region is ice-covered ocean which is surrounded by land masses which are fre-
quently ice- and snow-free during the summer months.

Note that there were inconsistencies found with the ALASKA and ARMCAS MAS data
sets.  There appears to be a calibration inconsistency between these data sets to which the classifier
is sensitive.  Additional testing is necessary to identify the basis for these inconsistencies.  While
not major in scope, these variations lead to decreases in classification accuracy of about 3%.  That
is, a classifier based upon the ALASKA data set produces accuracies about 3% lower than does the
classifier based upon the ARMCAS data set, and vice versa.

Confusion matrices were generated which show a comparison of the classification results
with the actual or known classes of the labeled samples.  The elements of the confusion matrix are
normalized to percent of the total number of test samples for the class tested.  The results are pre-
sented in three confusion matrices for each of the northern and southern latitude data sets (Tables 3
and 4, respectively).  The first matrix shows the accuracy of the classifier in its most important role
- as a cloud mask.  It is a 2 by 2 matrix in which all the classification results for the clear classes
and the cloud classes have been accumulated together.  For example, the value in the first row and
column show the percent of samples from cloud classes classified as one of the cloud classes while
the value in the second row and column show the percent of samples from clear classes classified
as one of the clear classes.  The off-diagonal elements, row one - column two and row two - col-
umn one, show the errors; that is, they show the percent of samples from cloud classes classified
as one of the clear classes and the percent of samples from clear classes classified as one of the
cloud classes, respectively.  The second matrix shows the classification results for those samples
from clear classes correctly classified as one of the clear classes while the third matrix shows the
classification results for those samples from cloud classes correctly classified as one of the cloud
classes.  These two matrices depict the accuracy of the classifier in its secondary role in distin-
guishing between clear classes or cloud classes.  The diagonal elements in these two matrices indi-
cate the classification accuracies for each class while the off-diagonal elements indicate the percent
inaccuracies or ÒconfusionÓ of the classifier.  The accuracy over all classes for each of these matri-
ces is shown below the matrix (i.e., the percent of correctly classified samples).  In the case of the
second matrix for the cloud classes, the main distinction is thin or thick cloud and, if the sample is
from a thin cloud, the distinction is the underlying surface (water, land, ice/snow).  In the case of
the third matrix for the clear classes, the main distinction is between land and some phase of water
(liquid, frozen, melting) and shadowed or unshadowed.
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Confusion matrices, 3 each for the northern and southern hemisphere polar region data, are shown
in Tables 3 and 4, respectively.

Table 3.  Confusion matrices for the northern hemisphere
polar region Landsat TM daytime samples.

Cloud vs. Clear Cloud Classes
Cld Clr 4 5 6 7

Cld 97.3 2.5 4 93.0 0.3 4.5 2.3
Clr 2.7 97.5 5 2.6 94.2 8.0 0.0
Unk 0.0 0.0 6 2.8 5.5 86.9 0.4
Total: 97.4 7 1.6 0.0 0.6 97.2

Unk 0.0 0.0 0.0 0.0
Total:   92.1

Clear Classes
1 2 3 8 9 10

1 96.3 7.4 0.0 0.4 7.1 9.3
2 2.4 82.3 0.5 0.0 5.5 0.8
3 0.1 3.4 96.9 0.8 5.3 0.9
8 0.6 0.4 0.9 95.7 15.4 27.6
9 0.3 6.4 1.7 0.1 63.9 6.3
10 0.5 0.2 0.0 3.0 2.9 55.1
Unk 0.0 0.0 0.0 0.0 0.0 0.0
Total: 90.4
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Table 4.  Confusion matrices for the southern hemisphere
polar region Landsat TM daytime samples.

Cloud vs. Clear Cloud Classes
Cld Clr 4 5 7

Cld 94.3 2.7 4 83.8 9.2 12.8
Clr 5.7 97.3 5 8.1 83.7 21.1
Unk 0.0 0.0 7 0.4 0.9 65.1

Unk 0.0 0.0 0.0
Total: 95.9 Total 84.5

Clear Classes
1 2 3 8

1 92.3 3.6 0.1 0.8
2 7.3 87.9 6.1 4.9
3 0.0 5.3 91.2 2.9
8 0.4 3.3 2.7 91.4
Unk 0.0 0.0 0.0 0.0

Total: 90.3
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These results indicate that the algorithm is approximately 95 percent accurate in distin-
guishing between clear and cloudy pixels.  They also indicate that it is approximately 90 percent
accurate in distinguishing among clear classes and 85-90% accurate in distinguishing among cloud
classes.

3.7  Application of the ASTER Polar Cloud Mask algorithm
to Landsat TM quarter scenes

The above results suggest that the algorithm should work well as a Landsat TM circumpo-
lar scene classifier (for the classes selected).  However, these results are based on tests from la-
beled samples.  These labeled samples necessarily were selected as unambiguous and spectrally
homogeneous representatives of specific classes.  The imagery, overall, is spectrally more diverse
than the samples are.  A confusion matrix generated from classification results of labeled samples
may indicate, for example, that only 3 percent of the thin cloud over ice/snow samples are misclas-
sified as ice/snow; however, in a given scene, if more than 3 percent of the scene is comprised of
pixels with feature vectors of thin cloud over ice/snow that manifest this type of misclassification,
then visual examination of a color-coded classification mask would lead one to state that the classi-
fier is less than 97 percent accurate.  The confusion matrices indicate an upper estimate on the accu-
racy of the classifier, on the average.  An important part of the process of evaluating the perform-
ance of a classifier, when applied at the pixel level to an entire scene, is visual examination of the
scene classification results.  Unfortunately this process is subjective and it is difficult to arrive at a
quantitative estimate of the performance.  Our subjective evaluation of the masks indicates that the
classifier is performing the cloud masking function at greater than the 90% level.  More details of
the cloud mask can be found in Logar et al, 1998, The ASTER Polar Cloud Mask, IEEE Transac-
tions on Geoscience and Remote Sensing, p1302-1312.

Researchers often question whether the more advanced techniques, such as Neural Net-
works, indeed possess advantages over the conventional methods in classifying cloud regions.  In
1998 we compared three classification schemes,

1) the conventional maximum likelihood,
2) the innovative paired histogram, and
3) the back-propagation neural network,

in search for the best classifier in terms of accuracy and computational efficiency (Berendes et al,
1998).  The NN emerged from the comparison as the best choice, achieving 98.69% accuracy on
daytime channels in distinguishing cloud versus non-cloud pixels in MAS data sets.  An NN
proved to be more computationally efficient as well, sometimes by a factor of two, than other
methods.  The nighttime NN classifier also achieved the highest accuracy, 86.95%.

4.  CONSTRAINTS, LIMITATIONS, AND ASSUMPTIONS

4.1  Validation

4.1.1  Introduction

4.1.1.1  Measurement and science objectives.  The overriding objective of the
ASTER Polar Cloud Mask product is to identify or classify all pixels in imagery obtained poleward
of 60N and 60S as cloud or clear.  Depending on the type of user, the product can be used to mask
out all cloudy pixels for surface studies (e.g., ice process studies) or, conversely, all clear pixels
for polar cloud studies.  The product will be available on request for both daytime and nighttime
imagery; however, a different scheme will be used in each case.  The daytime algorithm will utilize
visible, shortwave IR, and thermal IR for the feature space.  In the nighttime algorithm, only the 5
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ASTER thermal IR channels can be used.  In the case of daytime imagery (estimated to be 90 per-
cent of the total data obtained from ASTER), as a secondary objective, the underlying surface of
thin cloud will be identified as either water, land, snow/ice, or unknown.  Also pixels identified as
clear will be further classified into one of the 6 subclasses of water, wet/thin ice, ice/snow, shadow
on ice/snow, land, and shadow on land.

4.1.1.2  Mission.  ASTER will fly on the EOS AM-1 platform which is planned for
launch in September 1999.  The ASTER instrument is described in the EOS Reference Handbook
and a brief description of it is provided in 2.2 of this document.

4.1.1.3  Science data products.  The ASTER Polar Cloud Mask constitutes one,
level 2 data product which is a coded pixel map.  It will be accompanied by metadata containing
statistics for percent occurrence of each class and cloud/clear fraction, in addition to any "pass
through" information derived from input streams for radiance/reflectance/temperature.  Pass
through information will include general quality assurance information such as the presence and
location of bad pixels.

4.1.2  Validation criterion

4.1.2.1  Overall approach.  Currently Landsat TM and MAS data are being used as a
surrogates for ASTER in the testing and validation of the daytime algorithm.  The instruments have
similar spatial resolution characteristics (i.e., Landsat TM bands 1-5, and 7 at 28.5m and band 6 at
120m; ASTER Bands 1-3 at 15m, bands 4-9 at 30m, and bands 10-14 at 90m).  The spectral
resolution capabilities of some of the bands are very similar, but some are significantly different.
For example, bands 2, 3, 4, and 5 of Landsat TM are a good match for ASTER bands 1, 2, 3, and
4.  However, band 7 in Landsat TM is a broad shortwave IR band covering the 2.1 to 2.4 mm re-
gion, while ASTER has 5 discrete 50 nm (approximately) wide bands centered between 2.1 and
2.4 mm.  In addition, Landsat TM has only one thermal IR band covering the 8-12 mm range while
ASTER has 5 contiguous, higher spectral resolution bands within the same region.

As mentioned previously, MAS data is being used for both daytime and nighttime algo-
rithm development.  MAS offers a very wide range of channels, many of which overlap the AS-
TER channels.  This is particularly valuable for the thermal channels, especially in the 8.5, 11 and
12 mm regions.

In validating the operation of the daytime and nighttime algorithms on Landsat TM im-
agery, three approaches are being used.  The first and third are quantitative approaches and the
second is more subjective.  All three have limitations but, in general, they complement each other.
They are described following.

In the first method, the algorithm is applied to a labeled set of samples.  To date approxi-
mately 3700 contiguous pixel regions (made up of several hundred thousand pixel samples) have
been extracted and labeled by a human expert trained in identifying features in polar imagery.  For
every pixel, in every contiguous sample, the classification result from the algorithm is compared to
the labeling and a "confusion" matrix is generated indicating the percentage of classification for
each combination.  If the algorithm performed perfectly, the confusion matrix would be diagonal in
which each diagonal element was 100 percent.  This validation method somewhat overestimates the
accuracy of the algorithm because the human expert tends to select spectrally homogeneous and
unambiguous samples which are generally classified at a higher accuracy rate than for an entire
scene.  However, it serves to provide an indication of the upper limit of performance and, empiri-
cally speaking, indicates within 5 percent the overall scene classification accuracy, on the average.
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This method serves as the basis for validating the accuracy of the algorithm over the life of the
product.

The second approach is somewhat subjective and involves visual comparison of the classi-
fication result with the imagery by a human expert.  The expert has access to a tool that allows him
to augment his analysis through the use of three-band overlays, and various image processing
techniques such as contrast stretching and histogram equalization.  When available, more than one
expert is used and, generally, their subjective estimates of the accuracy are within 5 percent of each
other.

The third approach is an attempt to quantify the overall scene classification accuracy.  This
is derived from a tool that a human expert uses to label randomly selected regions within sets of
Landsat TM imagery.  It is very much like the process that an expert uses to extract labeled samples
except the computer randomly selects the region to be labeled as opposed to the expert selecting the
region.  The random selection of samples by the computer provides for a more objective estimate
of classification accuracy when these samples are compared against the results obtained from the
classifier.

The results obtained from these methods will also be compared with independent observa-
tions from ground-, air-, and other satellite-based observations.  Comparisons with these other
types of observations will be conducted over an extended period of time for a variety of circumpo-
lar regions.

4.1.2.2 Sampling requirements and trade-offs.  Although current testing
and validation of the algorithm is based on approximately 100 Landsat TM quad scenes, due to the
limited areal coverage of each quad scene (approximately 100 km by 100 km), the entire circum-
polar region is  represented at a fraction of a percent.  Antarctica is only represented in 24 scenes
for 3 months in 1989 and only over coastal areas.  Likewise, MAS scenes only are available for a
limited time and a limited area.  These sample sets poorly represent the polar regions both in space
and time.  Currently it is not possible to define the accuracy of the classification, for example, by
latitude, ecosystem, season, etc.; however, during post-launch, as ASTER obtains data over vari-
ous polar regions, representative samples will be extracted and included in the training set for the
classifier.  Analysis of the distributional nature of important features for classification will be con-
ducted periodically.  If warranted either the classifier will be retrained or if correlative analysis
manifests a unique condition by latitude, ecosystem, etc., an additional version of the classifier will
be installed to accommodate it. (Note an additional version of the classifier implies a new file con-
taining a set of weights for the neural network classifier.)

4.1.2.3  Measures of success.  If the classification accuracy for cloud/clear is greater
than 95 percent, when applying the algorithm to all available labeled pixel samples (several hun-
dred thousand to date), the validation will be considered successful.  During the prelaunch phase,
samples are extracted primarily from Landsat TM and MAS.  During the post-launch phase, labeled
samples will be extracted primarily from ASTER and secondarily from Landsat 7 ETM+.

Once confidence has been gained with the cloud masking algorithm, the results will be
compared to independent observations.  There are problems with comparing satellite-derived re-
sults with ground-based lidars, radars, and surface-based observations.  For example, the rela-
tively small field of view of the lidars and radars, the aspect angle, and time of observation as
compared to the satellite sensor are important.  Similar problems must be considered for surface
observer estimates of cloud cover location.  Cloud sides are seen by surface observers and satel-
lites at different observational angles and from opposite sides of the cloud (top vs. bottom).  There
are two approaches for comparing the independent observations with satellite cloud masks.  First is
to compare the imager pixels closest to the ground site with temporally averaged (e.g., 10 minutes)
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lidar or radar data.  The second approach is to perform a temporal average of the ground-based data
over a period of hours and to compare it with a spatially averaged cloud mask.

4.1.3  Pre-launch algorithm test/development activities.

4.1.3.1 Field experiments and studies.  The most efficacious approach for algo-
rithm development and testing has been through the use of the existing NASA
government archives of Landsat TM and MAS data.  In terms of both spectral
and spatial resolution, and circumpolar region coverage, Landsat TM and MAS
data serve as the best surrogates for ASTER data.  The best quantitative method
for validating the algorithm results is through analysis of the cloud mask and
testing of the algorithm on labeled samples

4.1.3.2 Operational surface networks.  It is anticipated that the following prod-
ucts will be used in pre-launch activities:

1. National Weather Service observations (especially in polar regions such as in Fair-
banks and Anchorage, AK)

2. Ceilometer network (limited to wintertime conditions at continental U.S. sites)
3. DOE ARM site data from Oklahoma (during wintertime conditions)

4.1.3.3 Existing satellite data.  To the degree affordable, Landsat TM data has
been purchased to support the testing and validation of the algorithm.  In addi-
tion, more Landsat TM data has been obtained at no charge through data sharing
agreements.  The large ALASKA and ARMCAS MAS data archive is being
utilized.

4.1.4  Post-launch activities

4.1.4.1  Planned field activities and studies.  The validation effort for this algo-
rithm will take advantage of any data obtained from field studies conducted post-launch in which
polar-like conditions are present.  No special field activities are planned for validation of this prod-
uct.  When coincident cloud masking data is available from Landsat 7 (ETM+), comparisons will
be made.  In the case of reasonable agreement, supporting validation is provided.  If they do not,
additional analysis will be required. The validation effort using surface observations will take ad-
vantage of the enhanced surface based measurement capabilities located at the DOE ARM sites in
Alaska and Oklahoma.  The use of the ARM site data from Oklahoma will be limited to wintertime
conditions, especially when snow and clouds are present during the time of overpass.  An oppor-
tunity for validating the algorithm in the detection of thin cirrus will also occur during overpasses
of Salt Lake City, UT using the long range lidar located there (Sassen).

4.1.4.2  ASTER STAR Sites for CERES and MODIS

Note:  Daytime acquisitions include all 14 VNIR, SWIR and TIR channels
Nighttime acquisitions include all 5 TIR channels

In Priority Order:

I.    ARM sites  :  5 sites, 1200 total scenes over 5 years,  (58% during daytime)
Purpose is to help validate retrievals of cloud properties, radiative fluxes and aerosol
properties.  The sampling strategy is dependent upon how rapidly the surface properties
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and clouds change.  The Oklahoma ARM site is the most variable for land and cloud both
in terms of season and day-to-day.  ARM sites have the best characterization of the at-
mosphere anywhere in the world, and these are the highest priority CERES and MODIS
acquisitions.  The tropical ocean and polar ARM sites experience slower and fewer
changes in cloud type and surface conditions with season; therefore, they require fewer
acquisitions.

Site Lat/Long Requirement
ARM, Oklahoma 40.03/-105.27 4 daytime/mo * 60 mo = 240

2 night/mo      * 60 mo = 120

ARM, Manus Island  -2.06/147.43 2 daytime/mo * 60 mo = 120
2 night/mo      * 60 mo = 120

ARM, Nauru Island -0.53/166.92 2 daytime/mo * 60 mo = 120
2 night/mo      * 60 mo = 120

ARM, Kiritimati Is. 1.87/-157.33 2 daytime/mo * 60 mo = 120
(Christmas Is) 2 night/mo      * 60 mo = 120

ARM, Barrow* 71.27/-156.83 1 daytime/mo * 60 mo = 60
1 night/mo      * 60 mo = 60

*Note that the polar scenes will be 2 daytime per month (polar day) plus 2 nighttime per
month (polar night).

I.    BSRN sites   (Baseline Surface Radiation Network):  Purpose is to obtain verification of
surface radiation and cloud properties in climatic regimes not covered by the ARM sites.
These sites have the worldÕs most accurate surface radiation measurements.  Each site re-
quires 1 daytime and 1 nighttime acquisition per month for each of the 60 months of the
mission, or 120 acquisitions per site.  14 sites * 120 acquisitions/site = 1680 total
scenes.
 

 BSRN Site Lat/Long
 Alice Springs, Australia -23.70/133.87
 Aswan, Egypt 24.00/33.00
 Bermuda 32.37/-64.70
 Bondville, Illinois 40.05/-88.37
 Boulder, Colorado 40.03/-105.30
 Carpentras, France 44.05/5.05
 Florianopolis, Brazil -27.58/-48.52
 Fort Peck, Montana 48.00/-105.00
 Georg von Neumayer, Antarctica* -70.65/-8.25
 Goodwin Creek, Mississippi 34.00/-90.00
 Ny Alesund, Spitsbergen, Norway* 78.93/11.93
 Ping Chuan, China 28.00/102.00
 Syowa base, Japan, Antarctica* -69.00/39.35
 Toravere Obs/Estonia 58.33/26.73
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II.    SURFRAD and AERONET sites  :  These sites are primarily to characterize different
aerosol types around the world.     Daytime sampling only   .  1 daytime acquistion per month
for each of the 60 months, or 60 acquisitions per site.
 20 sites * 60 acquistions/site = 1200 total scenes.

 

 Site Lat/Long
 Sable Island, Nova Scotia 43.93/-60.01 Perturbed Marine
 KÕpuszta, Keszcemet, Hungary 46.97/19.55 Perturbed Continental
 Cheeka Peak, Washington 48.30/-124.62 Clean Marine
 Tucson, Arizona 32.23/-110.95 Desert
 GSFC, Maryland 39.03/-76.88 Urban
 Bondoukoui 11.85/-3.75 West Africa
 Ouagadougou 12.20/-1.40 West Africa
 Catalina Island, California 34.00/-119.00 Urban
 Cuiaba -15.50/-56.00 Biomass Burning
 Dry Tortugas 24.60/-82.80 Florida
 Bermuda 32.37/-64.70 Atlantic
 Capo Verde 16.73/-22.94 W. Coast Africa
 Ascension Island -7.98/-14.41 Atlantic
 Barbados 13.00/-60.00 Caribbean
 La Reunion -20.00/55.50 S. Indian Ocean
 Mongu -15.50/23.00 S. Central Africa
 Male 5.00/74.00 S. India, ocean
 Tromelin -16.00/54.50 Biomass Burning
 Okinawa 25.50/128.00 S. China Sea
 Crete 35.00/25.00 Mediterranean
 

III.    Polar sites  :  These sites are in addition to the ARM and BSRN sites listed above.  They
are to cover major types of snow/ice/cloud conditions in the polar regions.  Note that the
polar scenes will be 2 daytime per month (during polar day) plus 2 nighttime per month
(during polar night). Average 1 acquisition/month * 60 months   (=60 acquisitions/site) * 9
sites = 540 total scenes.

 

 Polar Site Lat/Long
 Alert Airport, Canada 82.31/-62.17
 Baker Lake Airport, Canada 64.18/-96.05
 Upernavik, Greenland 72.47/-56.10
 Norilsk, Russia 69.20/88.06
 Franz Josef Land, Russia 80.00/55.00
 McMurdo, Antarctica -77.51/166.40
 Palmer, Antarctica -64.46/-64.05
 Casey, Antarctica -66.01/111.05
 Brockton, Antarctica -78.48/-174.40

 
 V.    Ocean sites  :  These sites are chosen to characterize the Scherr Global Cloud Climate re-

gions not covered by the existing land and island site data listed above.  Specific ocean lo-
cations are listed rather than strips, since clouds will not be independent in adjacent 60 km
ASTER scenes along an orbit track.  1 daytime and 1 nighttime acquisition per month is re-
quested for each site * 60 months
  (= 60 acquisitions/site) * 16 sites =  960 total scenes.
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 Lat/Long
 53.00/-150.00
 43.00/-153.00
 37.00/-123.00
 30.00/-119.00
 20.00/-133.00

 15.00/-103.00
   7.00/-90.00

 -7.00/-137.00
 -10.00/65.00
 -20.00/-75.00
 -28.00/37.00
 -30.00/-75.00
 -33.00/-142.00
 -40.00/150.00
 -45.00/-145.00
 -55.00/-147.00
 
IV.    Special MODIS sites:    These sites have been selected by the MODIS team.  The Tibetan

Plateau is expected to be an especially difficult region for cloud masking.  Two others sites
are in and out of the monsoon region, one in the middle of India and one that is often cloud
covered, in Borneo.  1 daytime and 1 nighttime acquisition is requested for each of the
three sites/mo * 60 months = 120 scenes/site.  Total 360 scenes over 60 months.
Site Lat/Long
Tibetan Plateau 33.00/90.00
India 17.00/77.50
Borneo 00.00/115.00

 
Summary of Scenes:

I. 1200
II. 1680
III. 1200
IV.   540
V.   960
VI.   360
Total    5940

4.1.4.3  Validation of the International Satellite Cloud Climatology Project
(ISCCP) Cloud Droplet Size Products in stratocumulus cloud
fields

Target Areas: Four scenes/year are requested for each of the following six target
areas for five years, for a total of 120 scenes.  The approximate date
for the scene acquisitions should be the first half of the month of
Jan, April, July and Oct of each year.

Sites:
Equator, 75W Near nadir of GOES-8
Equator, 135W Nadir of GOES-9
10S, 80W West coast of South America
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15S, 77W West coast of South America
33N, 120W West coast of North America
45N, 125W West coast of North America

Research Outline and Objectives: Cloud microphysics is an important factor in climate change
studies.  Currently, we are developing retrieval schemes to be used by  ISCCP, headed by Dr. Bill
Rossow at NASA GISS, to generate cloud particle size products.  To date the satellite data used
in this process has been AVHRR radiances.  While the results have veen verified through ground
observations, there are two potential problems that need further investigation.  The first is the
effect of sub-pixel cloud cover and the second is the viewing geometry effect on cloud droplet
size retrievals.  We propose to use the combination of ASTER and GOES data to evaluate these
two effects.

Reasons why ASTER data is necessary:  To order to evaluate the effect of fractional cloud cover on
particle size retrievals using AVHRR data at 1 km resolution at nadir, one requires imagery at much
finer resolution.  In evaluation of the viewing geometry effect, we must eliminate the possible ef-
fect of fractional cloud cover at sub-pixel scales.  With its spatial resolution of 15m in the VNIR
and spectral coverage from visible to infrared, ASTER data is ideal for this investigation.

4.1.4.4  Rainforests of the Cordillera De Tilaran of Costa Rica

Target Areas:
10 35Õ N  84 45ÕW
11 05Õ N  84 45ÕW
10 05Õ N  84 45ÕW
10 35Õ N  84 15ÕW
10 35Õ N  85 15ÕW

5 sites x 5 times/year (Jan, Feb, Mar, Apr, May) x 5 years = 125 total acquisitions

Research Outline and Objectives:  To relate aspects of ground-level cloudiness to vegetation struc-
ture and species distribution of the rainforests of Costa Rica.  This is of critical importance to hy-
drological management, biodiversity conservation, and land-use planning in the montane  tropics
during an era of dramatic environmental changes.  This project will correlate floristic and structural
features of the tropical montane ecosystems in the Cordillera de Tilaran or northwestern Costa Rica
with features of the trade wind cloud field.  This will provide quantitative data on the impact of
variations of trade wind cumulus on the local biogeography of vegetation structure and composi-
tion of a tropical mountain range at a spatial scale relevant to evolutionary and metapopulation
processes.  Topographic dissection of tropical mountain ranges, particularly those exposed to di-
rectionally reliable winds, and the consequent edaphic and climatic heterogeneity, result in steep
gradients in vegetation structure and ecosystem function, habitat patchiness, and species ranges
that are highly fragmented.  This environmental heterogeneity makes for explosive speciation with
the result that cloud-forested tropical mountains are major centers of biodiversity.  Yet, at the same
time, the isolated nature of habitat units and their limited size dictate steep environmental gradients
which makes these regions sensitive to environmental changes Ð particularly those involving the
cloud fields which literally define the distribution of cloud forest.  The data on the relationships
between the cloud field and montane forest structure and local species distributions will provide
quantitative assessments of the ecological impacts of changes in cloud fields due to climatic oscilla-
tions like ENSO.

Reasons why ASTER data are necessary:  High spatial resolution satellite imagery is necessary for
this project, both to determine cloud base height and for forest mapping.  Cloud base level will be
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determined from cloud shadows and eill be compared to those determined daily at specific ground
monitoring sites in the upper Rio Guacimal/San Luis valley, the Monteverde/Cerro Plano plateau,
and the upper Penas Blancas valley.  Vegetation sampling will be conducted at 50 sites in a strati-
fied partially randomized array between 1000 and 1860 m elevation (20 sites on the Pacific slope
and 30 sites on the Caribbean side).  From previous work in the area, anticipated spatial accuracy
for the ground validation work is to within 200m.  This will be improved using GPS technology.
Geographic data for each site will include elevation, azimuth and slope.  Detailed height to canopy
strata, defined as regions of foliage bearing leaves vertically separated by at least 3m from layers
above and below, tree height, crown breadth and trunk size will be measured.  Certain forest types
are readily distinguishable from satellite data, as are clumps of some species of canopy trees.
Ground data will provide exact locations of homogeneous vegetation as well as those of known
mixed composition.  A neural network will be trained to inventory forest vegetation and changes in
that vegetation at the sub-pixel scale.  Ground personnel equipped with GPS will verify the loca-
tion of road intersections, outcrops, peaks and stream confluences for use as tie points.  It is es-
sential to have the highest possible spatial and spectral resolution for these studies.

4.1.4.5  Satellite Archeology

Area and Purpose  :  Eastern Utah for an archeological mapping project of ancient Anasazi roads
which are currently being destroyed in the wake of urban expansion and development.  Previous
research has shown that prehistoric roads in Chaco Canyon and elsewhere in northwest New
Mexico link important prehistoric Pueblo (Anasazi) Ògreat houses,Ó dwelling units, and ritual cen-
ters. These roads are characteristically up to 10 meters wide and very straight, passing over hills
and valleys rather than following landscape contours. Recently, archaeologists have discovered
segments of similar roads in Southeast Utah. The SE Utah roads also link Anasazi great houses
and other structures typical of the late 11th through 13th centuries, suggesting that the Anasazi of
that era were far more integrated socially and politically than heretofore realized. However, road-
connected sites also contain components from the 10th and 11th century, raising the possibility that
the roads significantly predate the great houses.

One of the major questions of SW archaeological research is how the Anasazi were able to
live and prosper for centuries in the austere climate of the Colorado Plateau.  Several hypotheses
have been advanced to address this issue, including the use of roads as distribution networks. Un-
derstanding the age and function of the roadway system may provide insight into how the Anasazi
sustained themselves for hundreds of years as they traded and transported goods across their land-
scape. Other hypothesized road functions range from communications links in alliance networks to
architectural expressions of myth and ritual on a mythico-sacred landscape.  Understanding the age
and function of the roadway system may provide insights into how Anasazi communities interacted
with one another and their surrounding landscape, enabling them to sustain themselves success-
fully for centuries.
Period:      ASTER data, twice each year, for four subsequent years.  It would be best if this data
were acquired for each year in the early spring (April) and late summer (August-September).  Pre-
vious data acquisition missions in Chaco Canyon have demonstrated the utility of these seasonal
data sets for prehistoric road detection.
Area:    Our study area is a rectangular area described by the following coordinates:
109 25Õ W to 109 45Õ W and from 37 15ÕN to 37 45ÕN.  The center point is:
 37 30ÕN/ 109 35ÕW.

4.1.4.6  New EOS-targeted coordinated field campaigns.  With the aforemen-
tioned comparison of ground-, air-, and satellite-based observations with the cloud mask, there
will still be a deficiency of validation information.  It would be beneficial to plan field campaigns in
the circumpolar regions, or join already planned field campaigns there to fill in data gaps and aug-
ment the validation process.
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4.1.4.7  Needs for other satellite data.  Landsat enhanced thematic mapper plus
(ETM+) data is needed to augment the transition of the algorithm from Landsat TM to ASTER
data. It is also needed for comparison of cloud masking products in the validation process.

4.1.4.8  Measurement needs (in situ) at calibration/validation sites: land,
buoys, etc.  Currently, the algorithm is designed to take advantage of geographic databases,
such as coastlines, ecosystems, land character, elevation, etc.; however, the coarse spatial resolu-
tion currently available from these datasets makes their use limited.  Improved higher spatial reso-
lution surface characterizations are needed.

4.1.4.9  Needs for instrument development (simulator).  Not applicable.

4.1.4.10  Geometric registration site.  Not applicable.

4.1.4.11  Intercomparisons (multi-instrument).  The cloud mask obtained from
ASTER will be intercompared with that obtained from Landsat 7 ETM+.  Other product developers
(e.g., MODIS SNOMAP and ICEMAP, CERES cloud mask) utilizing lower spatial resolution data
will be comparing their results with this ASTER derived product.

4.1.5  Implementation of validation results in data production

The confusion matrices derived from testing of the algorithm on labeled pixel samples will
be included in a product file as an annotation element.  There are currently 4 cloud classes and 6
clear classes.  The matrices will be much like those shown in Tables 3 and 4.  This will provide the
user with an indication of the relative accuracy of each class, as well as cloud/clear classification
accuracy.

4.1.5.1  Approach (including long-term calibration considerations).  Periodi-
cally (approximately every 3 months in the first two years), ASTER scenes obtained over polar
regions will be randomly selected for the extraction of new labeled pixel samples.  If algorithm
testing results indicate degraded performance, the algorithm will be retrained and tested again.  If
the results are still degraded, the data will be partitioned into the determining geographical and/or
seasonal conditions and multiple versions of the algorithm will be implemented at the DAAC.
(Note: This does not imply more than one algorithm, only multiple table lookups which the algo-
rithm will select automatically.)

Algorithm performance will continue to be checked against available surface-based, air-
based, and satellite-based data when available.

4.1.5.2  Role of EOSDIS.  The product resident within EOSDIS will have a pointer
to the developer of the data product.  This will provide a feedback mechanism in which users can
alert the developer of possible errors or discrepancies.  User feedback will provide an additional
independent validation of the product that could potentially stimulate investigations into methods
for product improvement.

4.1.5.3  Plans for archival of validation data.  The validation results will be ar-
chived by the developer at his site.  Subsampled versions of the classification masks generated for
most of the scenes in the validation process will be maintained at an ftp site.  Users will be able to
request the full resolution product through the same site.  The results from the validation efforts
will be published in the peer-reviewed literature.

4.1.6  Summary
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The fundamental basis for development of the ASTER Polar Cloud Mask algorithm is the
extraction of labeled pixel samples primarily from Landsat TM and MAS data.  These labeled sam-
ples are used to train the algorithm and define the distribution of the feature space for each class.
They also provide the basis for validation of the algorithm.  As long as the classification accuracy
of the algorithm on the labeled samples is > 95%, the algorithm provides adequate cloud masking
results (on the average).  Appropriate data sets continue to be acquired and tested during the
prelaunch phase and will continue to be acquired during the post-launch phase to ensure the classi-
fication accuracy does not drop below 95%.  This does not imply that the algorithm always classi-
fies at least 95% of the pixels in each scene correctly for cloud and clear, but that it will do so at an
accuracy of approximately 95% on the average.  This strategy for validating cloud masking accu-
racy is augmented by two other methodologies described in 4.2.1.  This product will be derived
from the ASTER products for radiance/temperature at the sensor.  The assumption is that  these
inputs are valid (unless otherwise indicated, in which case the pixel will remain unclassified and
passed through as bad/marginal/etc.).

4.2  Exception Handling and Missing Band

The algorithm will be applied only to ÒgoodÓ data.  It is assumed that the data will be
screened at the EDC DAAC before standard products are produced.  If there are missing channels,
then the following channels will be substituted:

ASTER Channels  
If Not Available

Then We Use  
(1) 0.56 mm (2) 0.66 mm
(3n) 0.81 mm (2) 0.66 mm
(4) 1.65 mm
(5) 2.16 mm (6) 2.20 mm
(10) 8.3 mm (11) 8.65 mm
(13) 10.6 mm (12) 9.1 mm
(14) 11.3 mm

4.3  Limitations

For the present algorithm development, the Landsat TM calibration is adequate for channels
1-5 and 7.  However, the infrared channel 6 is essentially uncalibrated.  This has caused difficul-
ties in our algorithm development.  For example, ocean surfaces often are retrieved with surface
temperatures on the order  of Ð 12°C.  However, unless they are covered with ice, the ocean tem-
peratures cannot be below Ð1.8°C.  Another problem is that most of the present 82 Landsat scenes
do not have water in the scene.  We are forced to take the average of these rescaling values found
in the water scenes and apply it to the non-water scenes.  On the other hand, MAS data sets do not
suffer from these LANDSAT problems, but they do seem to be somewhat inconsistent in their
calibration from one flight series to the next; i.e., ALASKA and ARMCAS.

4.4  Quality Assurance (QA)
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This plan describes all the information that is to be included in the ASTER Polar Cloud
Mask product that a user will have available to assess the overall quality of the cloud mask and/or
the specific quality of the classification of each pixel.

4.4.1  Carry-Through QA Information.

Carry-through refers to QA information available from the header records of input depend-
encies.  For this product input dependencies include ASTER registered radiance (AST03) and tem-
perature (AST04) at the sensor (see Figure 5).

a.  Level 1B input depen      d     encies

All QA information present in the headers of the ASTER level 1B input dependencies are
"carried- through" to (duplicated in) the Level 2 ASTER Polar Cloud Mask product header.  This
information includes:

1) Percent of bad pixels in the full scene and each data plane
2) Bad pixel list indicating

a)  Data plane/band
b)  Line and sample or range/region of line/sample
c)  Reason the pixel or range/region of pixels is bad

3) Cloud coverage (percent full scene and per quad)  (Note: This is fractional
cloud coverage as determined by the Level 1B input dependency.  A frac-
tional cloud cover value generated by this product is provided as a separate
estimate in the content for this product.)

4) Inter-telescope registration information
5) SWIR parallax correction information
6) Calibration degradation metric

b.  Other input dependencies  .

Currently the only other input dependencies intrinsic to the derived pixel classification in
the Polar Cloud Mask product are the World Data Bank II coastline system, a digital elevation
model, and the EPA Global Ecosystems database.  These inputs are relatively static and will be
complete when incorporated into the Product Generation System.  That is, these inputs are not
comprised of bad/missing/erroneous values; therefore, there is no QA information to pass through.

Other input dependencies such as sea ice and snow coverage from MODIS (MOD 29 and
MOD10, respectively) and surface temperature analysis from DAO are not applied directly in the
Polar Cloud Mask Algorithm in the derivation of the pixel classification.  They are only used to
augment the certainty measure of the pixel classification which is described in more detail in section
4.5a.  Bad data from these input dependencies will be ignored in the determination of the certainty
measure.
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Figure 5.  Diagram of ASTER product inter-dependencies.
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4.4.2  Bad Data

This section addresses the encoding of pixels corresponding to bad data present in the AS-
TER input dependencies (i.e., registered radiance and/or temperature at the sensor).  These pixels
are encoded with a 255 with the following exception.  In the Polar Cloud Mask algorithm, during a
final process, a spatial consistency test is performed to locate isolated pixels.  Isolated pixels are
defined as those which are classified differently than 6 or more of their nearest neighbors if those 6
nearest neighbors are classified the same.  Isolated pixels are classified and/or reclassified the same
as (or spatially consistent with) their like nearest neighbors.  The QA data plane incorporates a cer-
tainty of correct classification for each pixel (see section 4.5a).  The certainty of the classification
of the isolated pixel is derived from the certainty values of its like nearest neighbors  The encoding
of the isolated pixels will not indicate whether the pixel was derived from a bad pixel, was the re-
sult of an unknown classification from the algorithm, or was classified but was inconsistent spa-
tially with its nearest neighbors.

4.4.3 Suspect/Unknown Data

The algorithm derives a crude measure of the certainty of the classification for each pixel
and outputs an unknown classification if necessary.  This measure is incorporated into the encod-
ing scheme and is briefly described in section 4.5.a. The algorithm does not provide any other
mechanism for identifying suspect/unknown data.

4.4.4  Cloudy Pixels

The purpose of the Polar Cloud Mask Algorithm is to classify each (good) pixel into one of
10 classes whether they be cloud or not.  There is no special handling for cloudy pixels beyond
classifying a pixel as cloudy if the algorithm so determines.

4.4.5  Product-Unique Information.

a.  Encoding of classification certainty

The Polar Cloud Mask algorithm classifies each good pixel into one of ten
classes or as unknown, if necessary.  During the classification process it
also derives an approximate measure of certainty or confidence in the pixel classification.  This
certainty is coded into the QA data plane and classification mask as follows:
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4 most significant bits of QA data plane
Dec Binary Meaning
8-14 1001 This pixel has been discovered to be bad during the production of this product

due to out-of-range feature value/s (e.g., VNIR or SWIR band reflectance
values less than 0 or greater than 2.0)
Note: Other six codes not used.

1-6 0001 After processing, this pixel is now deemed suspect due to marginally out-of-
range feature value/s (e.g., Band 14 brightness temperature greater than 310
K for a particular geographic region and season)
Note: Other five codes not used.

bits 7 and 8 of the classification mask
Dec Binary Meaning
0 00 Certainty measures derived from the classification algorithm indicate a high

confidence in the result (>90%)
1 01 Certainty measures derived from the classification algorithm indicate moderate

confidence in the result (50%>90%)
2 10 Certainty measures derived from classification algorithm indicate low to mod-

erate confidence in the result (10%>50%)
3 11 Certainty measures derived from the classification algorithm indicate a rela-

tively low confidence in the result (i.e., the feature vector is highly ambigu-
ous between 2 or more classes); however, the result is possibly correct.
(<10%)

b.  Composite certainty values

Mean certainty values for each class, for cloud/no cloud, and for all classified pixels is also in-
cluded in the product header.  These measures provide an overall indication of the degree of confi-
dence in the classification.  For example, a scene comprised of a large fraction of transparent cloud
might result in a low overall scene/class classification confidence values since the feature vectors of
transparent clouds are highly ambiguous with those of the underlying features.  On the other hand
a cloud free scene with low atmospheric turbidity and water vapor loading might result in a high
overall scene/class certainty values if the feature vectors for the scene were unambiguous with
other classes.
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THE ASTER POLAR CLOUD MASK

RESPONSE TO REVIEWER COMMENTS
TO THE ALGORITHM THEORETICAL BASIS DOCUMENT

DECEMBER 1998

Overall Evaluation was ÒC;Ó  This algorithm is scientifically important; however, it contains mi-
nor deficiencies that must be rectified prior to development as an operational data product and
early post-launch availability.

1. Will the products addressed in this ATBD help meet the objectives of the NASA MTPE pro-
gram and the global change research agenda?

REVIEWER: I think it may be difficult at this point in time to monitor climate change in the polar
regions since we currently have a pretty poor idea of what the current climate is or has been.
However, the polar cloud and surface observations can be useful in understanding the relevant cli-
mate    processes.  
RESPONSE: The polar regions are receiving a great deal of attention.  This includes the recent
SHEBA program, the new ARM site, and MAS flights, to name a few.  Extensive observations of
the polar regions coupled with new surface measurements will help us understand the processes
taking place in these regions.  Long-term reliable monitoring of these regions is a first step.

2. Is the theoretical basis of the algorithm described in this document sound?  Please list
strengths, weaknesses, and recommendations for improvement below.

REVIEWER:  The proposed approach seems fairly complex to me.  There may be no way around
this, since the simpler classification techniques have difficulty in polar regions.
RESPONSE:  We have made progress in recent years in simplifying the algorithm.

2a.  Major strengths of the approach.
REVIEWER:  The algorithm uses practically every know trick to try to identify cloud and surface
types in polar regions.  Where one approach fails, hopefully another approach can succeed.  Use
of ancillary information (navigation, elevation, ecosystem, USN sea ice, etc) is good.  (However,
I wasnÕt clear on whether these would be used inside the classification procedure, or just as checks
on sensible analyses).
RESPONSE:  We have studied a wide range of different approaches for classification in polar re-
gions, intercomparing both accuracy and cpu requirements.  This has been accomplished using
AVHRR, LANDSAT TM and MAS data sets.  We now feel that we can achieve approximately
95% accuracy in the polar regions during daylight hours for solar zenith angles less than 80 de-
grees, and about 90% accuracy for solar zenith angles between 80 to 85 degrees.  The nighttime
accuracy is 80% to 85% accurate.  These values are based on our most recent MAS data set analy-
ses.  Furthermore, the neural network approach has been shown to have the best overall perform-
ance in terms of accuracy and cpu (speed).
2b.  Major problems with the approach.
REVIEWER:  While the algorithm should work well during daytime, I would have liked to see
more information and preliminary results for a nighttime algorithm, which will be needed full-time
for 6 months at a time.  Perhaps even tougher are the very low sun angle swaths, where albedo
may be unreliable, and NIR (2.4 um for example) is sun-contaminated, making it difficult to use as
IR temperatures.  Another serious problem will be the training of the algorithm.
RESPONSE:  It was impossible to develop a useable nighttime algorithm using the LANDSAT TM
data; only one IR channel was available.  However, the MAS ARMCAS and Alaska data sets have
been used to create a new algorithm for both day and night.  The results suggest that 80% to 85%
accuracy can be achieved at night.  However, this is based solely on the MAS results, and the data
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probably are not representative for the broader range of conditions that will be encountered.  A
separate high zenith angle set of results have been developed for angles above 80 degrees and less
than 85 degrees.  We do not have a solution for solar zenith angles greater than 85 degrees.

2c.  Recommendations to improve the approach.
REVIEWER:  First, without having actual ASTER data, the imagery from other instruments
(LANDSAT, AVHRR, etc) will only approximate what ASTER will see.  Perhaps it would be
worthwhile to synthesize some ASTER data using other instrumentsÕ data.  It may be necessary to
do quite a lot of retraining once ASTER is making measurements.
The other training problem I foresee is knowing the correct identification of a scene.  Again this is
more of a problem during polar night.  It is not always clear, even to an expert using the most so-
phisticated image processing/display systems.  Some coincident satellite and surface observations
are needed during polar night  (perhaps during the SHEBA experiment).
RESPONSE:  It is indeed difficult to develop the algorithm using only LANDSAT and AVHRR
data.  However, the MAS data with the 50 channels have been very useful.  While exact matches to
ASTER channels are not possible, they are reasonably close.  Adjustments and retraining will have
to be made after launch to create the final version. We have used the daytime algorithm first.  Then
we have used the nighttime channels to create the nighttime algorithm.  In this way we can make a
positive identification of the clouds, sea ice, land, water, etc.  A set of validations is planned using
the STAR sites.

3. Is it feasible to generate an operational product using this algorithm?  If not, please explain why
not.

REVIEWER: Yes.  The proposed product is a classification image, with the value of each pixel
containing information on each of the 8 classes (limited by the # of bits).  The algorithm uses some
ancillary information, namely the NAVY/NOAA sea ice product and NOAA snow data product,
which are available on a weekly basis.  How close to Òreal timeÓ do you need to be in order to be
operational?
RESPONSE:  The newer version of the algorithm does not use the sea ice and snow data products.
It is unlikely  that the product needs to be used in a real-time basis.  It will be produced as the data
arrives from Japan.

4. What are the critical areas needing further research and development prior to development as an
operational data product?

REVIEWER:  More theoretical work on the expected signal at 8.5 um from various polar surfaces
and clouds.  This of channels will probably be critical for the nighttime algorithm.
More testing of the sensitivity of the results to solar irradiance, geometry of sun and viewing.
How many sets of weights will the neural network require?  What percent of the data will be unus-
able due to calibration and/or viewing limitations?  The fuzzy expert may need more refining.
RESPONSE:  We are using the MAS data which contains the 8.5 um channel.  This is the only
data set that we have found with this channel for application to the polar regions.  The 8.5 um
channel is used in the nighttime algorithm.
The neural network has been refined considerably.  It is being optimized for polar data.  An inter-
comparison of methods showed that the fuzzy expert system was not competitive in terms of cpu
requirements, and it was slightly less accurate.  High solar zenith angle test cases have been made,
at angles greater  than 80 degrees.

5. What are the strengths and weaknesses or the approach adopted for product validation?
REVIEWER:  Data from the polar FIRE III IFO will be useful for algorithm testing and validation,
but it certainly will be limited to those situations which occurred during the IFO, which may not be
representative of the wide variety of cloud and surface types.  Otherwise, only human experts
looking at satellite imagery will be used to validate the algorithmÕs analyses.  As previously men-
tioned, the human expert may have trouble identifying nighttime scenes from IR data alone.  Sur-
face observations arenÕt terribly reliable in the polar regions in winter, so there may be no solution.
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RESPONSE:  The FIRE III IFO has passed.  We plan to use an extensive set of surface sites for
the validation effort, as listed in our STAR requests.  Some of these sites have lidar and cloud ra-
dar instruments, which should be far more reliable.

6. Is the planned schedule for generating the product (i.e., at launch/post-launch) appropriate?
REVIEWER:  No schedule was given.  I think Welch, Penaloza and Feind has a lot of work to do
before the algorithm is ready to be used, but there should be plenty of time to get the most impor-
tant things done.
RESPONSE:  The algorithm has been extensively tested for the last three years with different data
sets.  It has matured and become much more robust.  However, no exact matches in channels is
possible, so that the algorithm will have to be adjusted after launch to obtain the most accurate re-
sults.  Nevertheless, accuracy of 85% to 90% should be obtained during the daytime and 75% to
80% at night with the newer algorithm using MAS data.  Accuracy of about 95% should be ob-
tained during the daytime using the actual ASTER data, and 85% at night.


