	U.S. DEPARTMENT OF ENERGY OF CIVILIAN RADIOACTIVE WASTE MANAGEMENT
	PRESENTATION TO
THE NUCLE	AR WASTE TECHNICAL REVIEW BOARD
SUBJECT:	WASTE CONTAINER
	THERMAL ANALYSES
PRESENTER:	GARY L. JOHNSON
PRESENTER'S TITLE AND ORGANIZATION:	ENGINEER, THERMAL FLUIDS GROUP
	LAWRENCE LIVERMORE NATIONAL LABORATORY LIVERMORE, CALIFORNIA
PRESENTER'S TELEPHONE NUMBER:	(415) 423-9323
	MARCH 19-20, 1990

.

OBJECTIVE

USE EXISTING THERMAL MODELING TOOLS AND TECHNIQUES TO EVALUATE THE THERMAL PERFORMANCE OF VARIOUS WASTE CONTAINER CONFIGURATIONS AND SPACINGS

THERMAL PERFORMANCE EVALUATION OF YUCCA MOUNTAIN PROJECT CONTAINER CONFIGURATIONS HAS CONTINUED SUCCESSFULLY SINCE 1982

CONTAINERS MAY BE EMPLACED VERTICALLY OR HORIZONTALLY ALONG ANY OF 300 DRIFTS

THE WASTE DISPOSAL CONTAINER AND ITS NEAR-FIELD ENVIRONMENT HAVE OPERATING TEMPERATURE CONSTRAINTS

ADDED T INFO TO BE PASSED ON: TINTERNAL CAN, O.D., TSTRUCTURE, ETC.

ALTHOUGH VARIOUS THERMAL ANALYSIS TOOLS HAVE BEEN USED FOR CONTAINER ANALYSIS OVER THE PAST 7 YEARS, ALL HAVE BEEN BENCHMARKED AND VERIFIED

[TRUMP=TACO=TOPAZ] + [2-D + 3-D MODELS]

EVALUATIONS OF

- TOOLS AND MODELING TECHNIQUES
- MRS COMMON CANISTER CONFIGURATIONS
- PRELIMINARY CONFIGURATIONS FOR SCP-CDR CONTAINER DESIGN
- ALTERNATE CONFIGURATIONS (e.g., PWR/BWR HYBRID)

OTHER

MODEL PARAMETER VARIATIONS

T HAS BEEN DETERMINED FOR A VARIETY OF CONTAINER DESIGNS, LOADS, AND **INTERNAL LAYOUTS**

ONE EARLY PWR CONTAINER CONFIGURATION WAS USED FOR SEVERAL THERMAL MODEL STUDIES

COMPARISON BETWEEN VERTICAL AND HORIZONTAL EMPLACEMENT SHOWED SIGNIFICANTLY DIFFERENT RESPONSE

INCLUDING THE EFFECTS OF AXIALLY-VARYING HEAT OUTPUT AND ORTHOTROPIC MATERIAL PROPERTIES IN A 3-D MODEL SHOWED AN INCREASE OF 15°C IN T_{MAX, CLAD} OVER 2-D MODEL

Time (years)

PARAMETERS, SUCH AS LOCAL POWER DENSITY (LPD), HAVE A VERY STRONG EFFECT ON THE CONTAINER WALL TEMPERATURE, THUS AFFECTING ITS PROPERTIES

AN ALTERNATIVE DESIGN ON 8 x 30.4 m SPACINGS WAS USED FOR VARIOUS OTHER PARAMETER STUDIES

CHECKED EFFECTS OF

FUEL CONDUCTIVITY, MATERIAL EMISSIVITY, FUEL AGE, CONTAINER MATERIAL, BOREHOLE SPACING, ANNULUS PACKING, BOREHOLE GAS FILL vs. LEAD FILL

THE HYBRID DESIGN CLADDING REACHES A MAXIMUM TEMPERATURE OF 336°C AFTER 3.2 YEARS

NNRPD/B(3PWR4BWR) INCOLOY 825 CON/10YR-NORMAL BEST CASE 10 2/15/88 GLJ

4.75 kW ON 8 X 30.4 m SPACING

IF SPACING IS REDUCED TO 15 x 126 ft (SCP CDR), THE LOAD MUST BE REDUCED TO 4.1 kW FOR A SIMILAR THERMAL RESPONSE

NEWSEYB(3PWR4BWR) INCOLOY 825 CON/10YR-1.73:1 SCPCHK CS13A 4/8/88 GL3

USING A REVISED VALUE FOR THE FUEL BUNDLE CONDUCTIVITY LOWERS THE PEAK CLADDING TEMPERATURE BY ABOUT 15°C

PEAK CLADDING TEMPERATURE IS ESPECIALLY SENSITIVE TO THE ASSUMED PROPERTIES OF A BOREHOLE PACKING

IF 5 YEAR-OLD FUEL IS EMPLACED INSTEAD OF 10 YEAR-OLD FUEL, T_{PEAK, CLAD} INCREASES TO 65°C ABOVE THE 350°C LIMIT

3-D TUFF MODEL

HYBRIB(3PWR4BWR) INCOLOY 825 CONT./5YR-NORMAL CASE 6 1/18/88 GLJ-TACO

2-D CONTAINER MODEL

THE CHOICE OF STRUCTURAL MATERIAL FOR THE CONTAINER AND INTERNAL SUPPORTS HAS A SMALL EFFECT ON T_{PEAK, CLAD}

IN REVIEW, A 3-D TUFF MODEL WITH A 2-D CONTAINER MODEL OF A 4.75 kW LOADED HYBRID DESIGN, PREDICTS FUEL TEMPERATURES <350°C

REVIEW OF WORK-EVALUATIONS COMPLETED

- REVIEW OF MODEL TYPES AND TOOLS
- MRS COMMON CANISTER STUDY INTERNAL DESIGN, ORIENTATION, SPACING
- PRELIMINARY EVALUATION OF PWR CONTAINER AND BWR CONTAINER FOR SCP-CDR CONFIGURATION
- PWR/BWR HYBRID CONFIGURATION PARAMETRIC ANALYSES

SUMMARY OF RESULTS FROM THERMAL ANALYSES

- RADIATION = DOMINANT HEAT TRANSFER MODE AMONG COMPONENTS (~80%)
- T _{PEAK, CLAD}, FOR VAST PROPORTION OF CONTAINER/SPACING DESIGNS <350° C (ALSO MOST CASES HAVE TUFF AT 1 m <200°C AND T_{BHW} > 95°C)
- T PEAK, CLAD, OCCURS 3 TO 10 YEARS AFTER EMPLACEMENT
- MAXIMUM LOAD MUST DECREASE BY 15% WHEN REPOSITORY
 AREA PER PACKAGE REDUCED BY 30% TO GIVE SAME RESPONSE
- 3-D MODEL WITH REALISTIC AXIAL POWER DISTRIBUTION AND ORTHOTROPIC MATERIAL PROPERTIES HAS T 15°C > 2-D MODEL
- EXPECTED VARIATIONS IN FUEL "EFFECTIVE" CONDUCTIVITY, ORIENTATION, AND SURFACE EMISSIVITY EACH RESULT IN 150C T PEAK' CLAD, CHANGES
- EFFECT OF PACKING ON T_{PEAK, CLAD} HIGHLY DEPENDENT OF EXPECTED DENSITY AND THEMAL CONDUCTIVITY OF PACKING

- T_{PEAK, CLAD}, T_{MIN, BHW}, AND T_{1m, TUFF} FROM CONDUCTION-ONLY MODEL IS HIGHLY DEPENDENT ON K_{TUFF} AS WELL AS SOUCE INVENTORY AND LAYOUT (DRIFT/PANEL)
- ADDING IN EFFECTS OF WATER/STEAM REFLUX IN TUFF ADDS NO CHANGE AT EARLY TIMES AND 5-10°C CENTURIES AFTER EMPLACEMENT
- CONTAINER ANALYSIS, BASED ON INFINITE ARRAY CONDUCTION-ONLY-IN-TUFF MODEL, IS O.K. FOR T_{PEAK, CLAD} EVALUATION (EARLY TIMES)
- CONTAINER TEMPERATURES AVAILABLE FOR:
 - HANDLING EVALUATION
 - CLADDING CREEP CALCULATIONS
 - WASTE FORM DEGRADATION CALCULATIONS
 - CORROSION CALCULATIONS
 - THERMAL-STRESS CALCULATIONS