Progress Toward High Performance Steady-State Operation in DIII-D

by C.M. Greenfield¹

for

M. Murakami,² A.M. Garofalo,³ J.R. Ferron,¹ T.C. Luce,¹ M.R. Wade,¹ E.J. Doyle,⁴ T.A. Casper,⁵ R.J. Jayakumar,⁵ C.E. Kessel,⁶ J.E. Kinsey,⁷ R.J. La Haye,¹ J. Lohr,¹ M.A. Mahdavi,¹ M.A. Makowski,⁵ M. Okabayashi,⁶ J.M. Park,⁸ C.C. Petty,¹ T.W. Petrie,¹ R.I. Pinsker,¹ R. Prater,¹ P.A. Politzer,¹ H. Reimerdes,³ J.T. Scoville,¹ H.E. St. John,¹ E.J. Strait,¹ T.S. Taylor,¹ M.A. Van Zeeland,¹ and the DIII-DTeam

¹General Atomics, San Diego, California
²Oak Ridge National Laboratory, Oak Ridge, Tennessee
³Columbia University, New York, New York
⁴University of California, Los Angeles, California
⁵Lawrence Livermore National Laboratory, Livermore, California
⁶Princeton Plasma Physics Laboratory, Princeton, New Jersey
⁷Lehigh University, Bethlehem, Pennsylvania
⁸National Fusion Research Centre, Daejon, Korea

Presented at the 21st IAEA Fusion Energy Conference Chengdu, China

October 16-21, 2006

ADVANCED TOKAMAK RESEARCH ON DIII–D Realizing the Ultimate Potential of the Tokamak

Goal: Develop the scientific basis for steady state, high performance operation of fusion reactors

This requires:

- Steady state $\Rightarrow f_{NI} \approx 100\%$
 - Large, well aligned self-generated bootstrap current \Rightarrow high $\beta_{\rm P}$
 - Current drive + profile control
- High power density and fusion gain
 - High β_{T}
 - High $au_{\rm E}$
 - \Rightarrow High normalized fusion performance G
- A growing number of DIII–D discharges have demonstrated f_{NI} ≈ 100% and exceeded G ≈ 0.3
 - Performance required for the ITER steady-state scenario has been demonstrated

Average noninductive current fraction, $\langle f_{NI} \rangle$

- Recent focus of DIII–D Advanced Tokamak (AT) research is optimization for high β operation
 - Discharges with high q_{min} and internal transport barriers (ITB) achieve very high performance using continuous ramps in I_P and B_T
 - $\beta_N \approx 6\ell_i \approx 4$ sustained for 2 seconds with $G \equiv \beta_N H_{89}/q_{95}^2 \le 0.7$
 - Experiments with weakly negative central magnetic shear (NCS) use tools compatible with steady-state
 - $\beta_{\rm N} \lesssim 3.5$ with G $\lesssim 0.3$ and $f_{\rm NI} \approx 100\%$
 - Shape optimization allows access to higher performance in weak-NCS scenario
 - Stationary operational space expanded to $\beta_{\rm N} \lesssim 4$
- Integrated modeling extrapolates to successful fully noninductive operation of ITER at $Q \ge 5$

- Recent focus of DIII–D Advanced Tokamak (AT) research is optimization for high β operation
 - Discharges with high q_{min} and internal transport barriers (ITB) achieve very high performance using continuous ramps in I_P and B_T

• $\beta_N \approx 6\ell_i \approx 4$ sustained for 2 seconds with $G \equiv \beta_N H_{89}/q_{95}^2 \le 0.7$

- Experiments with weakly negative central magnetic shear (NCS) use tools compatible with steady-state
 - $\beta_{\rm N} \leq 3.5$ with G ≤ 0.3 and $f_{\rm NI} \approx 100\%$
- Shape optimization allows access to higher performance in weak-NCS scenario
 - Stationary operational space expanded to $\beta_{\rm N} \lesssim 4$
- Integrated modeling extrapolates to successful fully noninductive operation of ITER at $Q \ge 5$

High fusion performance obtained with early beam heating and I_P and B_T ramps

- $\beta_N \approx 4$ obtained and sustained for 2 s with:
 - Early heating \Rightarrow Elevated q
 - Off-axis ECCD and B_T ramp \Rightarrow Broad current profiles
 - Internal transport barriers

• Transient tools \Rightarrow transient performance

 May suggest new approaches to steadystate

These discharges exhibit an ion thermal internal transport barrier (ITB)

- Existence proof: ITB does not preclude high β operation
 - Contrasts with previous experience: Low β
 limits with peaked profiles in ITB discharges
- No barrier in electron channel

$\beta_{\rm N}$ is significantly above the no-wall limit to the n=1 kink mode

- Large separation between nowall and ideal-wall limits enabled by broad current profile and wall stabilization
 - Access to this region requires active control of error fields and Resistive Wall Modes [Garofalo EX/7–1Ra, Friday morning]
- Relatively insensitive to pressure peaking
 - Explains compatibility with ITB

B_T ramp broadens the current profile

- Continuous B_T ramp drives large off-axis current
 - Negative inductive current near axis, driven by back-EMF, amplifies effect
- Stability calculations indicate increasing j_{BT-ramp} results in increasingly large separation between no-wall and ideal-wall limits
 - Similar effect should be seen using other off-axis current drive tools

- Recent focus of DIII–D Advanced Tokamak (AT) research is optimization for high β operation
 - Discharges with high q_{min} and internal transport barriers (ITB) achieve very high performance using continuous ramps in I_P and B_T
 - $\beta_N \approx 6\ell_i \approx 4$ sustained for 2 seconds with $G \equiv \beta_N H_{89}/q_{95}^2 \le 0.7$
 - Experiments with weakly negative central magnetic shear (NCS) use tools compatible with steady-state
 - $\beta_{\rm N} \lesssim 3.5$ with G $\lesssim 0.3$ and $f_{\rm NI} \approx 100\%$
 - Shape optimization allows access to higher performance in weak-NCS scenario
 - Stationary operational space expanded to $\beta_{\rm N} \lesssim 4$
- Integrated modeling extrapolates to successful fully noninductive operation of ITER at $Q \ge 5$

DIII–D AT discharges demonstrate the performance needed for the ITER Q = 5 steady-state scenario

- Target condition: Broad, weakly reversed shear q profile with q_{min} ≈ 2 and q₀ - q_{min} ≤ 0.5
 - Early H–mode
 - Feedback control during current ramp (β or q) [Ferron EX/P1-4, Tuesday afternoon]

100% noninductive condition achieved both globally and locally across the plasma

• Achieved at $\beta_{\rm N} \approx 3.5$:

 $f_{\rm NI} \approx 100\%$ for up to $0.5\tau_{\rm R}$

 $f_{\rm NI} \lesssim \! 95\%$ for up to $\tau_{\rm R}$

• Typical current sources:

 $f_{\rm BS} \approx 50{\text{-}}65\%, f_{\rm NB} \approx 20{\text{-}}35\%, f_{\rm EC} \approx 5{\text{-}}10\%)$

- Recent focus of DIII–D Advanced Tokamak (AT) research is optimization for high β operation
 - Discharges with high q_{min} and internal transport barriers (ITB) achieve very high performance using continuous ramps in I_P and B_T
 - $\beta_N \approx 6\ell_i \approx 4$ sustained for 2 seconds with $G \equiv \beta_N H_{89}/q_{95}^2 \le 0.7$
 - Experiments with weakly negative central magnetic shear (NCS) use tools compatible with steady-state
 - $\beta_{\rm N} \lesssim 3.5$ with G $\lesssim 0.3$ and $f_{\rm NI} \approx 100\%$
 - Shape optimization allows access to higher performance in weak-NCS scenario
 - Stationary operational space expanded to $\beta_{\rm N} \lesssim 4$
- Integrated modeling extrapolates to successful fully noninductive operation of ITER at $Q \ge 5$

AT optimization focuses on increasing β_N at moderate q_{95}

274-06/CMG #13

New lower divertor cryopump allows operation at higher beta with density control

- Double-null geometry known to increase $\boldsymbol{\beta}$ limit
 - However: AT operation requires effective density control
- New cryopump allows density control in single- and double-null [Petrie EX/P1-16, Tuesday afternoon]
 - Built in collaboration with ASIPP
- Research goals:
 - Quantify benefits of double-null operation
 - Exploit higher β limits to optimize AT performance

Density control demonstrated in high β double-null plasmas

 Further improvements to density control anticipated with continued optimization

Initial experiments with double-null configurations demonstrate increased performance

- Double-null divertor experiments achieve:
 - $\beta_N \leq 4$ - G ≤ 0.4 (ITER Q = 5 steady-state scenario requires G = 0.3)
- Current profile analysis indicates additional off-axis current drive required to reach fully noninductive conditions
 - Additional ECCD available in upcoming campaign

AT optimization focuses on increasing β_N at moderate q_{95}

Optimum squareness for access to high β_N

 $\zeta \equiv BC/AC$

= 0.43

- β limits and confinement known to be sensitive to shape
 - Elongation κ and triangularity δ constrained by vessel geometry
- Squareness ζ also calculated to have significant impact on β limits
 - $-\zeta$ can be varied without impacting coupling to divertors
 - Difficult to predict exact dependence due to sensitivities to profile details... need to do experiment
- Maximum β found at $\zeta \approx 0.33$
 - Indicates importance of shaping flexibility

- Recent focus of DIII–D Advanced Tokamak (AT) research is optimization for high β operation
 - Discharges with high q_{min} and internal transport barriers (ITB) achieve very high performance using continuous ramps in I_P and B_T
 - $\beta_N \approx 6\ell_i \approx 4$ sustained for 2 seconds with $G \equiv \beta_N H_{89}/q_{95}^2 \le 0.7$
 - Experiments with weakly negative central magnetic shear (NCS) use tools compatible with steady-state
 - $\beta_{\rm N} \lesssim 3.5$ with G $\lesssim 0.3$ and $f_{\rm NI} \approx 100\%$
 - Shape optimization allows access to higher performance in weak-NCS scenario
 - Stationary operational space expanded to $\beta_{\rm N} \lesssim 4$
- Integrated modeling extrapolates to successful fully noninductive operation of ITER at $Q \ge 5$

DIII–D results extrapolate to successful achievement of steady-state scenarios with $Q \ge 5$ in ITER

Simulation parameters		
	DIII–D	ITER
$B_{\rm T}({\rm T})$	1.86	5.3
$I_{\rm P}({\rm MA})$	1.19	9
q_{95}	5	5
$P_{\rm NB}$ (MW)	6.8	33
$P_{\rm EC}({\rm MW})$	4.5	20
$P_{\rm IC}$ (MW)	3.5	20
β	4.1%	2.5%
$\beta_{\rm N}$	3.8	2.7

- Integrated modeling predicts continued progress in future DIII–D AT experiments with improved heating and current drive capabilities
 - ONETWO/GLF23
- Same models and techniques used to predict behavior in ITER
 - Q increases with density while f_{NI} decreases slowly

Performance in DIII–D AT experiments meets or exceeds requirements for ITER Q=5 steady-state scenario

- $\beta_N \approx 6\ell_i \approx 4$ for 2 seconds with G ≤ 0.7 in discharges with B_T ramp
 - Broad current profile $\Rightarrow \beta_N^{\text{ideal-wall}} >> \beta_N^{\text{no-wall}}$
 - Active instability control allows us to operate in this range
- $\beta_{\rm N} \approx 3.5$ and G ≈ 0.3 with $f_{\rm NI} \approx 100\%$ using tools compatible with steady-state operation
 - Shaping flexibility important for optimization
 - Plasmas with optimized double-null geometry reach $\beta_N \approx 4$ and $G \approx 0.4$
- Integrated modeling extrapolates results to successful achievement of ITER Q=5 steady-state scenario
- Future work in DIII–D: Apply current drive tools to operate at $\beta_N \gtrsim 4$ and $f_{NI} \approx 100\%$
 - 6 MW (source) of ECCD and 4 MW (source) FWCD will allow increased flexibility in scenario exploration and support fully noninductive operation at high $\beta_{\rm N}$

