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The balance between primary production, decomposition, 
and lateral transfers of soil organic matter (SOM) determines 

the amount of organic C sequestered in soils. The evaluation of 
complex mechanisms and interactions, by which soil use and 
management affect the nature and concentration of SOC, is best 
approached by fi eld experimentation coupled with simulation 
models. Recent developments in SOC simulation models have led 

to an integrated understanding of SOC dynamics in the context of 
SOC sequestration and climate change (Rosenberg et al., 1999).

Soil organic matter, containing 50 to 58% C, is a complex mix-
ture of organic compounds with different turnover times (Nelson 
and Sommers, 1982). There is no simple analytical technique for 
qualifying and quantifying SOM fractions. In fact, the distinction 
between some fractions is largely conceptual, and convenient for 
modeling SOC dynamics. Soil organic C is subdivided into several 
pools with unique characteristics and decomposition rates. Carbon 
decay in a compartment is assumed to follow fi rst-order kinetics:
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where C is the quantity of C in the compartment, t is time, k 
is a fi rst-order decomposition coeffi cient, and A is the annual 
input of C. Carbon additions from crop residues or animal 
manures are transferred into different pools varying in stability. 
The multicompartmental structure of these models provides 
fl exibility as well as the ability to accommodate environmental 
variables (e.g., water content, temperature, erosion).
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Simulation models integrate our knowledge of soil organic C (SOC) dynamics and are useful 
tools for evaluating impacts of crop management on soil C sequestration; yet, they require 
local calibration. Our objectives were to calibrate the Environmental Policy Integrated 
Climate (EPIC) model, and evaluate its performance for simulating SOC fractions as 
affected by soil landscape and management. An automated parameter optimization proce-
dure was used to calibrate the model for a site-specifi c experiment in the Coastal Plain of 
central Alabama. The ability of EPIC to predict corn (Zea mays L.) and cotton (Gossypium 
hirsutum L.) yields and SOC dynamics on different soil landscape positions (summit, sides-
lope, and drainageway) during the initial period of conservation tillage adoption (5 yr) was 
evaluated using regression and mean squared deviations. Simulated yield explained 88% of 
measured yield variation, with the greatest disagreement on the sideslope position and the 
greatest agreement in the drainageway. Simulations explained approximately 1, 34, and 40% 
of the total variation in microbial biomass C (MBC), particulate organic C (POC), and total 
organic C (TOC), respectively. The lowest errors in TOC simulations (0–20 cm) were found 
on the sideslope and summit. We conclude that the automated parameterization was gener-
ally successful, although further work is needed to refi ne the MBC and POC fractions, and 
to improve EPIC predictions of SOC dynamics with depth. Overall, EPIC was sensitive to 
spatial differences in C fractions that resulted from differing soil landscape positions. The 
model needs additional refi nement for accurate simulations of fi eld-scale SOC dynamics 
affected by short-term management decisions.

Abbreviations: CT, conventional tillage; CTm, conventional tillage plus manure; EPIC, Environmental 
Policy Integrated Climate; FHP, fraction of humus in the passive pool; HI, harvest index; MBC, microbial 
biomass carbon; MSD, mean squared deviation; NT, no-till; NTm, no-till plus manure; PARM 20, 
microbial decay rate; PARM 51, microbial activity in the top layer; POC, particulate organic carbon; SOC, 
soil organic carbon; SOM, soil organic matter; TOC, total organic carbon; WA, biomass/energy ratio.
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Smith et al. (1997) reported the performance of nine SOM 
models across 12 long-term data sets. The Century model (Parton 
et al., 1987, 1994) successfully simulated SOM across a variety of 
land uses and climates, and was among the models that consistently 
produced low errors (Kelly et al., 1997; Smith et al., 1997). Century 
classifi es SOC into three pools based on the rate of mineralization 
and turnover. The labile pool represents easily mineralizable com-
pounds and the microbial and fungal biomass that generally com-
prises about 5 to 15% of the total SOC, and has a turnover rate of 
month to years. The slow pool consists of resistant plant material 
and soil-stabilized microbial products, comprising 20 to 40% of 
the total SOC with a turnover rate of several decades. The stable 
or recalcitrant pool comprises the remaining 60 to 70% of the total 
SOC, and has a turnover time of hundreds to thousands of years.

The EPIC model, developed in the early 1980s, is a pro-
cess-based model capable of describing interactions among cli-
mate, soil, and management at a subwatershed scale (1–100 
ha). The acronym initially stood for the Erosion Productivity 
Impact Calculator, as it was originally designed to estimate ero-
sion impacts on crop productivity (Williams, 1990). Evolution 
of the model, with incorporation of functions to simulate envi-
ronmental processes related to water quality and SOC seques-
tration, merited its name change to the Environmental Policy 
Integrated Climate model. The EPIC model handles a broad 
array of crop rotations, soil management systems, and envi-
ronments, and has been tested in numerous environments. A 
comprehensive description of development and application of 
EPIC was presented by Gassman et al. (2004). The original C 
cycling routine in EPIC was relatively simple and a function 
of soil N levels, but EPIC v3060 received modifi cation to its 
C routine with concepts derived from the Century model. A 
detailed description of the C and N algorithms can be found in 
Izaurralde et al. (2006).

Model parameters are best determined by experimenta-
tion, but spatial variability, measurement errors, and budget 
constraints often make it necessary to estimate some parameters 
through calibration. A common calibration approach consists 
of adjusting model parameters to minimize deviations between 
simulated and observed values. Manual calibration is subjective 
and time consuming, but automated iterative procedures have 
been developed (Eckhardt and Arnold, 2001; Zhai et al., 2004; 
Wang et al., 2005). Sensitivity analysis, which provides informa-
tion on the relative importance of each parameter on model out-
put, can be used to identify key parameters. Wang et al. (2005) 
recently performed a sensitivity analysis on EPIC v3060. They 
adjusted corn yield and SOC related parameters using an auto-
mated optimization procedure, and found parameters of major 
importance included available water holding capacity, biomass/
energy ratio, potential heat units, harvest index, fraction of 
organic C in microbial biomass, fraction of humus in the passive 
pool, and the microbial decay rate coeffi cient.

Further calibration and validation studies with EPIC 
v3060 under a range of environmental and management con-
ditions are needed to fully evaluate model performance. With 
increasing site-specifi c management, models will need to be 
effective at the fi eld scale, where soil landscape variability often 
dictates management and productivity. A challenging aspect 
of site-specifi c modeling is to account for the transfer of rel-
evant components within and between landscapes. Most pro-

cess models consider soil losses, but do not account for gains 
or deposition (Pennock and Frick, 2001; Polyakov and Lal, 
2004). The inability of most models to account for deposi-
tion may impair them from detecting management impacts on 
SOC at cumulative landscape positions.

Since its establishment in 2000, a site-specifi c experiment 
at E.V. Smith Research Center (Shorter, AL) has provided 
information on the interactive effects of soil landscape variation 
and soil management on soil properties and crop productivity 
(Terra et al., 2004, 2006). This experiment provides a valuable 
arena for calibrating SOC simulation models in the Southern 
Coastal Plain Major Land Resource Area, which makes up a 
major portion of agricultural lands in the southeastern USA. 
The experiment also provides a unique opportunity to evaluate 
short-term changes in SOC during the transition from con-
ventional to conservation management on degraded Ultisols. 
To date, no studies have evaluated the ability of EPIC v3060 
to simulate fi eld-scale variability of SOC, and no calibration–
validation study of EPIC v3060 has been performed in the 
southeastern Coastal Plain. Thus, our objective was to evaluate 
a fully calibrated EPIC v3060 for its ability to simulate short-
term (5-yr) fi eld-scale SOC dynamics as a function of soil land-
scapes and management.

MATERIALS AND METHODS
EPIC Model Description

The EPIC model is designed to simulate fi eld-scale crop yield 
and SOC dynamics (Izaurralde et al., 2006). It operates on a daily 
time step, and can execute long-term simulations (hundreds of years) 
on watersheds up to 100 ha. Twelve plant species can be modeled 
simultaneously, allowing intercrop, cover-crop mixtures, and similar 
scenarios to be simulated. Simulated processes include tillage effects 
on surface residue, soil bulk density, and mixing of residue and nutri-
ents in the surface layer; along with wind and water erosion, hydrol-
ogy, soil temperature, C, N, and P cycling, fertilizer and irrigation 
effects on crops, pesticide fate, and economics (Williams, 1990). 
Simulations are driven by daily weather (input or simulated) includ-
ing temperature, radiation, precipitation, relative humidity, and wind 
speed. Daily crop growth is simulated using solar radiation, and modi-
fi ed by stress factors (e.g., water, temperature, nutrients, and pests).

In EPIC v3060, SOC and N are split into three pools (labile, slow, 
and recalcitrant), and also can be leached or lost in gaseous forms. Crop 
residues (including roots) and manure added to the soil are split into two 
compartments (metabolic and structural) based on lignin and N content. 
Leaching of organics is estimated by equations that use a linear partition 
coeffi cient and soil water content to calculate movement as modifi ed by 
sorption. Carbon transformation rates are based on temperature and water 
content calculated with equations originally built in EPIC. Deposition 
may be estimated by the difference in soil erosion obtained from two equa-
tions, the Universal Soil Loss Equation (USLE) and the modifi ed USLE 
(Izaurralde et al., 2007). The latter accounts for depositional processes that 
occur in the watershed.

Research Location
We used data from a site-specifi c experiment located at the 

Alabama Agricultural Experiment Station E.V. Smith Research and 
Extension Center in central Alabama (32.4° N, 85.9° W, ?68 m above 
mean sea level). Background on the experimental site is provided by 
Terra et al. (2004, 2006). Briefl y, the experiment was started in 2000 
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on a 9-ha fi eld that had approximately 30 yr of previous conventional 
row cropping, mostly cotton, and conventional soil tillage (plowing 
and disking). Soils are predominantly fi ne and fi ne-loamy, kaolin-

itic, thermic Typic, Oxyaquic, and Aquic Paleudults. 
Treatments were conventional and conservation till-
age systems with and without dairy manure applied 
annually in a corn–cotton rotation. The conservation 
system consisted of no-till (NT) with in-row subsoil-
ing and winter cover crops. Conventional tillage (CT) 
did not include cover crops, but winter weeds were 
not controlled. Treatments (CT, NT, CT + manure, 
and NT + manure) were established in 6.1- by 240-m 
strips crossing the landscape in a randomized com-
plete block design with six replications (Fig. 1).

Model Inputs
Weather, soil, and management input fi les were 

prepared to conduct 5-yr simulations (January 2001–
December 2005).

Weather
A daily weather fi le of maximum and minimum 

temperature, precipitation, radiation, relative humid-
ity, and wind speed was established from weather data 
collected at the experiment station (AWIS Weather 
Services, 2005). We used the Hargreaves method 
(Hargreaves and Samani, 1985) for estimating evapo-
transpiration. Monthly mean air temperature, solar 
radiation, and total precipitation during the study 
period are shown in Fig. 2. During the 5 yr of simula-
tion, the site averaged 1215 mm of annual precipitation 
and the mean annual air temperature was 17.7°C.

Soil
Three major soil landscapes were identifi ed 

based on previous work (Terra et al., 2004, 2006). The 
summit was an elevated area of fl at topography (0–2% 
slopes) with well-drained soils (Typic Paleudults), sandy 
surfaces, and a deep (>150 cm) seasonal high water table 

(SHWT). The sideslope (2–6% slopes) was more highly eroded and 
had an exposed argillic horizon (Typic Paleudults). A concave drain-
ageway occupied the lowest elevation in the fi eld, with more poorly 

drained soils (SHWT = 0.5–1 m; Oxyaquic and Aquic 
Paleudults). Soil organic C was greater in the drainage-
way as eroded sediments accumulated and soils were 
more poorly drained. Model simulations were con-
ducted in these three soil landscapes as they typify the 
landscape variability of the site and region.

Soil property data used for model calibration and 
validation were from samples collected in 2001, 2003, 
and 2005. In 2001 and 2003, an average of 10 soil sur-
face (0–30-cm) samples was collected per landscape 
position and treatment. In addition, composited surface 
(0–20-cm) samples for the 36 sites (four treatments × 
three soil landscapes × three repetitions) were collected 
in 2005 (Fig. 1). The model was initialized with soil 
surface inputs based on data collected in 2001 for the 
CT treatment. Other soil properties by horizon were 
obtained from soil profi les described and sampled in 
2005 (Fig. 1). Selected soil properties used for model 
initialization are shown in Table 1. Carbon fractions 
were determined for model evaluation on the 2005 soil 

Fig. 1. Experimental layout at the E.V. Smith Research unit (Shorter, AL). Black area at the 
north was not included in the simulations. East–west rectangles represent strips with 
different treatments; gray shading in the background represents the three landscape 
positions; triangles indicate 2005 soil sampling locations and circles indicate locations 
where soil pedons were described, sampled, and characterized.

Fig. 2. Monthly total precipitation, mean air temperature, and solar radiation for 2001 through 
2005. Total rainfall during crop growth is shown with white numbers on black bars.
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samples; i.e., MBC, POC, and TOC. We assumed that the POC fraction 
corresponded to the slow humus pool in EPIC.

Brief descriptions of the analytical procedures follow. Six soil 
cores were taken at each sampling location in 2005. Soil cores were cut 
at 0 to 5 and 5 to 20 cm and air dried. Bulk density was determined 
for each depth by calculating oven-dry mass per unit volume. Air-
dry samples were then gently crushed and passed through a 4.75-mm 
screen. Particulate organic C and MBC were determined with a pro-
cedure similar to Franzluebbers et al. (2000). Subsamples (40–60 g) 
were wet to 50% water-fi lled pore space and incubated at 25 ± 1°C in 
1-L glass jars containing vials with 10 mL of 1.0 M NaOH to absorb 
CO2, and small vials containing water to maintain air humidity. At 
10 d, a subsample was removed, fumigated with chloroform for 1 d, 
and then incubated for an additional 10 d under the same conditions 
to determine the fl ush of CO2 representing MBC according to the 
equation (Voroney and Paul, 1984):

1
2 fumigated cSMBC (mg CO -C kg  soil) /k−=  [2]

where kc is an effi ciency factor of 0.41.
Evolved CO2 was determined by titrating the alkali with 

1.0 M HCl. The particulate organic fraction was determined on the 
same subsample at the end of 21 d of incubation. Soil was shaken in 
100 mL of 0.1 M Na4P2O7 during 16 h; the suspension was then 
diluted to 1 L with distilled water and allowed to settle for 5 h, and clay 
content was determined with a hydrometer. The soil suspension was 
then passed through a 0.053-mm screen and the retained sand-sized 
material transferred to a drying bottle and weighed after oven drying; 
soil C was determined on this fraction. Total organic C was determined 
on 0.2 g of fi nely ground subsamples follow-
ing the dry combustion method of Nelson and 
Sommers (1982) using a LECO CN-2000 
analyzer (LECO Corp., St. Joseph, MI). The 
precision of the experiment was calculated by 
duplicate analysis on 10% of the samples.

On soil pedon samples, particle size 
distribution was determined by the pipette 
method following SOM removal with H2O2 
and dispersion with sodium hexametaphos-
phate (Kilmer and Alexander, 1949). In situ 
saturated hydraulic conductivity was mea-
sured with a compact constant-head perme-
ameter (Ksat Inc., Raleigh, NC). Water con-
tent at fi eld capacity (−33 kPa) and permanent 
wilting point (−1500 kPa) were determined 
on soil cores taken from the 0- to -5 and 5- to 
20-cm depth, with values for deeper depths 
estimated by EPIC.

Terrain attributes (e.g., watershed area, 
slope length and gradient) were obtained with 
ArcGIS (Version 9.0, ESRI, Redlands, CA).

Crop Management
Tillage, planting, fertilization, harvesting, 

and associated operation dates and quantities 
were based on experimental records. Corn in 
2001, 2003, and 2005 was fertilized at plant-
ing with 56, 45, and 30 kg ha−1 of N, P2O5, 
and K2O, respectively. At the V6 to V8 stage, a 
split application of 112 kg ha−1 of N was made. 

Cotton in 2002 and 2004 was fertilized at planting with 100, 45, and 
56 kg ha−1 of N, P2O5, and K2O, respectively. The CT and NT with 
manure treatments (i.e., CTm and NTm) received dairy manure at an 
approximate rate of 10 Mg ha−1 yr−1 (dry basis) before cover crop plant-
ing. Overall, manure composition on a dry-weight basis averaged across 
5 yr was 280 g C kg−1, 10.5 g N kg−1, 2.8 g P kg−1, and 3.3 g K kg−1, 
resulting in application of 280 kg C  ha−1, 105 kg N ha−1, 28 kg P ha−1, 
and 33 kg K ha−1 annually.

Model Calibration
The calibration process on the SOC and crop growth modules 

used data from the CT treatment on the summit landscape position 
(Fig. 1). Since the summit position is a relatively stable and level area, 
it was assumed that a steady-state condition was reached in this area 
under long-term CT. Even though evaluation of the C module was of 
primary interest, accurate modeling of crop yield and productivity is 
required for accurate quantifi cation of C additions and their subse-
quent transformations (Izaurralde et al., 2006).

Sensitivity Analysis
A sensitivity analysis was performed to assess the relative importance 

of crop growth and soil parameters to model output. Based on data from 
Wang et al. (2005), the following crop growth parameters were included: 
(i) biomass/energy ratio (WA), defi ned as the potential growth rate per 
unit of intercepted photosynthetically active radiation; (ii) harvest index 
(HI) or ratio of economic yield to aboveground biomass; (iii) water stress/
harvest index (PARM 3), representing the fraction of the growing season 
when water stress affects the harvest index; and (iv) Soil Conservation 

Table 1. Selected soil properties as affected by landscape position and soil depth used in 
the 5-yr (2001–2005) EPIC simulation of crop yield and soil organic C fractions.

Soil properties Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6
Summit

Lower depth limit, m 0.05 0.20 0.30 0.46 1.04 1.42
Bulk density, Mg m−3 1.59 1.65 1.55 1.36 1.36 1.37
Wilting point, m3 m−3 0.11 0.11 0.11 0.14 0.15 0.15
Field capacity, m3 m−3 0.18 0.18 0.18 0.31 0.32 0.30
Sand, % 58.37 54.50 53.72 44.90 41.85 45.16
Silt, % 19.97 26.83 24.63 21.60 20.02 16.24
Clay, % 21.66 18.67 21.65 33.50 38.13 38.60
Soil organic C, % 0.70 0.53 0.53 0.33 0.28 0.26
Saturated conductivity, mm h−1 1.20 1.20 1.20 1.48 0.15 0.15

Sideslope
Lower depth limit, m 0.05 0.20 0.28 0.46 0.80 1.00
Bulk density, Mg m−3 1.64 1.60 1.37 1.40 1.37 1.35
Wilting point, m3 m−3 0.09 0.09 0.13 0.17 0.19 0.19
Field capacity, m3 m−3 0.20 0.20 0.32 0.33 0.34 0.35
Sand, % 59.53 50.00 41.21 37.96 35.18 32.45
Silt, % 18.20 28.00 25.87 23.45 21.55 22.38
Clay, % 22.27 22.00 32.92 38.59 43.27 45.17
Soil organic C, % 0.58 0.47 0.32 0.28 0.27 0.27
Saturated conductivity, mm h−1 6.25 6.25 1.68 0.20 0.08 0.08

Drainageway
Lower depth limit, m 0.05 0.20 0.40 0.62 0.98 1.20
Bulk density, Mg m−3 1.58 1.69 1.44 1.46 1.34 1.30
Wilting point, m3 m−3 0.05 0.05 0.08 0.14 0.18 0.20
Field capacity, m3 m−3 0.18 0.18 0.27 0.32 0.35 0.36
Sand, % 62.90 57.07 52.66 40.92 31.46 28.27
Silt, % 21.23 30.13 34.31 28.08 22.44 19.31
Clay, % 15.87 12.80 13.03 31.00 46.10 52.42
Soil organic C, % 0.76 0.55 0.38 0.29 0.31 0.31
Saturated conductivity, mm h−1 1.96 1.96 3.19 3.33 0.17 0.07
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Service curve number index (PARM 42), which regulates the effect of 
potential evapotranspiration on runoff volume. Different from Wang et 
al. (2005), we did not include the potential heat unit parameter, because 
it was estimated as the accumulation of daily mean air temperature above 
the plant’s base temperature (10°C for cotton and 8°C for corn) from 
planting to maturity.

Soil parameters included for sensitivity analysis as well as ranges 
and sources are listed in Table 2. Wang et al. (2005) included FHP 
(the fraction of humus in the passive pool), PARM 20 (microbial 
decay rate), and FBM (the fraction of organic C in the microbial bio-
mass pool) in their sensitivity analysis, and found that FBM was not 
infl uential. For that reason, and because we had analytical data to esti-
mate FBM, we did not include this parameter.

The sensitivity analysis identifi ed relevant parameters for subsequent 
optimization. We used the extended FAST method (Saltelli et al., 1999; 
Ratto et al., 2001) to ascertain how variation in EPIC output was appor-
tioned to variation in parameters. This method is model independent, and 
allows the determination of not only the individual effects of parameters, 
but also the cumulative interaction effect among parameters.

The extended FAST is based on the estimation of fractional 
contribution from each input parameter to the variance of the model 
output. The main effect or fi rst-order sensitivity index (Si) represents 
the average output variance reduction that could be achieved if the 
parameter (Xi) were fully known and fi xed (Saltelli et al., 1999):

( )| i
i

Y

V E Y X
S

V

⎡ ⎤⎣ ⎦=
 

[3]

where Si is the fi rst-order sensitivity index, V[E(Y|Xi )] is the expected 
reduction of total output variance, if the true value of Xi were known, 
and VY is the output variance.

The total sensitivity index (STi) for Xi was defi ned as the average 
output variance that would remain as long as Xi stayed unknown, and 
collected in one single term all the interactions involving Xi:

( )
T

| i
i

Y

E V Y X
S

V
−

⎡ ⎤⎣ ⎦=
 

[4]

where STi is the total sensitivity index, E[V(Y|X−i)] is the expected out-
put variance that would remain unexplained if Xi were unknown but all 
other parameters were known (X−i indicates all the parameters but Xi).

In general, the sensitivity analysis involved four steps: (i) selection of a 
range for each input parameter (Table 2); (ii) generation of 1500 parameter 
sets from the ranges specifi ed in the fi rst step (using a triangular distribution); 
(iii) evaluation of the model output for each parameter set; and (iv) calcu-
lation of sensitivity indices. The second and fourth steps were performed 
using the public domain software SIMLAB (Version 2.2, Joint Research 
Centre, European Commission). The third step was facilitated by i_EPIC 
(Version 1.1, Center for Agricultural and Rural Development, Ames, IA), 
a public domain software that manages input and output of multiple EPIC 
simulations within a single database. We fi rst conducted the sensitivity anal-
ysis for crop growth parameters and then for SOC parameters.

Uncertainty Analysis
After parameters were identifi ed by the sensitivity analysis, an 

array of 1500 parameter sets was generated, and their respective simu-
lations were conducted. The uncertainties associated with EPIC out-
puts were estimated with the GLUE technique of Beven and Binley 
(1992). On the basis of comparing predicted with observed values, 
each parameter set was assigned a likelihood of being an accurate sim-
ulator of the system. For our purposes, likelihood was defi ned as

MSD( | ) exp , ( 1, 2, 3, ..., )
min (MSD)

i
iL X i N

⎛ ⎞⎟⎜ ⎟θ = − =⎜ ⎟⎜ ⎟⎜⎝ ⎠  

[5]

where X is the observation vector, N is the total number of simula-
tions, MSDi is the mean squared deviation for the ith model run, and 
min(MSD) is the minimum MSD. The MSD was calculated as

2

1

1MSD ( )
n

i i
i

Y X
n =

= −∑
 

[6]

where Yi and Xi are predicted and observed values, respec-
tively. The likelihood measures were weighted [Lw(θ)] using

( )

( )
w

|
( )

|

i
N

i
i

L X
L

L X

θ
θ =

θ∑
 [7]

Weighted likelihood measures had a sum of 1 and 
yielded a relative probability of acceptability for the parameter 
sets (Beven, 1993). The uncertainty estimation was performed 
by computing the model output cumulative distribution and 
the prediction quantiles. Weighted likelihood measures were 
calculated using the public domain software GLUEWIN 
(Version 1.0, Joint Research Centre, European Commission). 

Determination of Parameter Values
At the conclusion of the uncertainty analyses, mul-

tiobjective functions were defi ned for crop yields and C 
pools (Wang et al., 2005), respectively, as

2 2
yields cotton corn

1 1( | ) ( | )
2 2i iF L Y L Y= θ + θ

 
[8]

Table 2. The EPIC parameters included in the sensitivity analyses of the 5-yr 
(2001–2005) EPIC simulations of crop yield and soil organic C fractions.

Parameter Description Range
Yield related

 WA Biomass-energy ratio, kg ha−1 MJ-1
30–45 (corn)†
11–20 (cotton)‡

 HI Harvest index
0.45–0.60 (corn)†
0.30–0.60 (cotton)§

 PARM 3 Water stress–harvest index 0.3–0.7†
 PARM 42 SCS curve number index 0.5–2.0†
Soil organic C related
 FHP Fraction of humus in passive pool 0.3–0.9†
 PARM 20 Microbial decay coeffi cient 0.05–1.50†
 PARM 45 Humus transformation ratio 0.001–0.05§
 PARM 47 Slow humus transformation rate, d−1 0.00041–0.00068§
 PARM 48 Passive humus transformation rate, d−1 0.0000082–0.000015§
 PARM 51 Microbial activity in top layer 0.1–1.0§
 PARM 52 Residue decay tillage coeffi cient 5–15§
 PARM 53 Microbial activity at depth 0.8–0.95§
 PARM 54 Root growth water use coeffi cient 2.5–7.5§
 PARM 55 Root growth water use/depth ratio 0–1§
 PARM 56 Root growth depth coeffi cient 5–10§

†Wang et al. (2005).

‡Rosenthal and Gerik (1991).

§EPIC default range.
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2 2 2
carbon

1 1 1( |TOC) ( |POC) ( |MBC)
3 3 3i i iF L L L= θ + θ + θ

 
[9]

where cotton( | )iL Yθ  and corn( | )iL Yθ  are the average cotton (2002 and 2004) 
and corn (2001, 2003, and 2005) yield likelihood weights, respectively; 
and ( | TOC)iL θ , ( | POC)iL θ , and ( | MBC)iL θ  are the TOC, POC, and 
MBC likelihood weights, respectively (calculated using Eq. [7]).

The largest Fyields and Fcarbon among the 1500 measurements 
were identifi ed and the corresponding set of parameter values were 
used as the calibrated parameters for the site.

Model Validation
The validation process focused on the crop growth and C modules 

using data corresponding to the three landscape positions (summit, sides-
lope, and drainageway) and four treatments (CT, NT, CTm, and NTm).

Statistical Evaluation of Model Performance
The agreement between simulated (Y) and observed (X) values 

after model calibration was assessed with a combination of the follow-
ing criteria: (i) linear regression relating simulated to observed values 
with intercept not signifi cantly different from zero and slope not signifi -
cantly different from unity, and (ii) the MSD and its components.

The MSD is the sum of squared deviations between X and Y, 
divided by the number of observations (Eq. [6]). On perfect equality 
with Y = X, MSD = 0. The MSD statistic was partitioned into three 
components (Gauch et al., 2003): (i) inequality of means,

2IM ( )X Y= −  [10]

(ii) non-unity mean square, defi ned as

( ) ( )2 2NU 1 /nb x N= − ∑  
[11]

where b is the slope of the least-squares regression of Y on X, and 

n nx X X= −  measures the degree of rotation of the regression 
line, and (iii) lack of correlation mean square,

( )( )2 2LC 1 /nr y N= − ∑  
[12]

where r2 is the square of the correlation and n ny Y Y= − .

RESULTS AND DISCUSSION
Model Calibration
Sensitivity Analysis

The extended FAST sensitivity indices for crop yield and 
SOC parameters are shown in Tables 3 and 4, respectively. 
The fi rst-order index for a particular parameter indicates the 
amount of variance that would be removed from the total out-
put variance if the true value of that parameter were known. 
Therefore, it shows the relative importance of an individual 

parameter. For cotton and corn, WA and HI explained >99% 
of the output variance. For the C module, FHP and PARM 20 
explained most of the variance; FHP was the most infl uential 
parameter for MBC and POC, while PARM 20 was for TOC. 
In addition, PARM 51 (microbial activity in the top layer) was 
relatively important for MBC.

The total-order index for a particular parameter (Xi) repre-
sents the sum of all sensitivity indices, including all interaction 
effects. This index indicates those parameters that are relatively 
unimportant, either alone or in combination with others; there-
fore, all parameters having low total index can be fi xed to any value 
within their range of uncertainty. Total-order indices for parame-
ters of the crop growth module and for the C module were similar 
to fi rst-order indices, suggesting minimal interaction.

According to the sensitivity analysis, parameters WA and 
HI for corn, WA and HI for cotton, and three parameters for 
the C module (FHP, PARM 20, and PARM 51) were chosen 
as the most infl uential on model outputs. Except for PARM 
51, parameter selection for the crop growth and SOC modules 
agreed with Wang et al. (2005).

Uncertainty Analysis
Distribution of predicted average crop yields (corn and 

cotton) and SOC fractions (MBC, POC, and TOC) are shown 
in Fig. 3. The height of the bars is the sum of likelihood weights 
of the simulations. Distributions were approximately normal. 
Observed crop yields, except corn in 2005, were within the 
90% confi dence interval of simulated values. Overall, EPIC 
accurately simulated cotton yields, with differences between 
observed and average predicted yields of 53 (1325 – 1272) and 
−29 kg ha−1 (1526 – 1555) in 2002 and 2004, respectively. 
Simulation of corn yield was not as accurate as cotton, with 
differences between observed and predicted yields of −552 
(9728 – 10 280), 120 (12 890 – 12 770) and −1941 (6085 
– 8026) kg ha−1 in 2001, 2003, and 2005, respectively. There 
was a dry period at the time of corn silking and pollination 
in 2005 that reduced actual corn yield and was largely not 
simulated well by EPIC. Guerra et al. (2004) pointed out that 
EPIC tends to overestimate low yields, especially under condi-
tions of pronounced water stress. In spite of the poor agree-
ment between observed and predicted average yield in 2005, 

Table 3. First and total sensitivity indices for crop yield related 
parameters (from Table 2) of the 5-yr (2001–2005) EPIC 
simulations of crop yield and soil organic C fractions.

Parameter First-order indices Total-order indices
Cotton Corn Cotton Corn

WA for corn 0.00 0.51 0.01 0.50
HI for corn 0.00 0.49 0.01 0.47
WA for cotton 0.37 0.00 0.36 0.01
HI for cotton 0.62 0.00 0.60 0.01
PARM 3 0.00 0.00 0.01 0.01
PARM 42 0.00 0.00 0.01 0.01

Table 4. First and total sensitivity indices for soil organic C re-
lated parameters (from Table 2) of the 5-yr (2001–2005) 
EPIC simulations of crop yield and soil organic C fractions 
microbial biomass C (MBC), particulate organic C (POC), 
and total organic C (TOC).

Parameter
First-order indices Total-order indices

MBC POC TOC MBC POC TOC
FHP 0.396 0.538 0.394 0.575 0.584 0.416
PARM 20 0.316 0.260 0.415 0.492 0.284 0.451
PARM 45 0.001 0.000 0.000 0.022 0.024 0.015
PARM 47 0.016 0.049 0.051 0.056 0.069 0.070
PARM 48 0.001 0.000 0.001 0.029 0.017 0.016
PARM 51 0.182 0.021 0.035 0.207 0.042 0.064
PARM 53 0.002 0.000 0.000 0.024 0.016 0.015
PARM 52 0.001 0.001 0.002 0.025 0.017 0.018
PARM 54 0.005 0.005 0.004 0.022 0.027 0.023
PARM 55 0.065 0.006 0.008 0.089 0.019 0.024
PARM 56 0.005 0.001 0.002 0.027 0.016 0.020
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all simulated crop yields fell within the range of observed yields 
(minimum and maximum observed yields are not shown).

In 2005, measured MBC, POC, and TOC were within 
the 90% confi dence interval of the simulated values. The EPIC 
model accurately simulated SOC fractions at the 0- to 20-cm 
depth, with differences between measured and predicted values 
of −52 kg C ha−1 (855 – 907) for MBC, 80 kg ha−1 (6624 – 
6544) for POC, and −313 kg ha−1 (19 277 – 19 590) for TOC. 
The relatively close agreement between measured and simulated 
SOC fractions indicates that the analytical methods used to 
characterize these fractions were adequate.

Parameter Estimation
From the uncertainty analysis and the use of aggregated like-

lihood functions for crop yields and SOC fractions (Eq. [8–9]), 
the parameter values were set at 32.42 kg ha−1 MJ−1 for WA and 
0.50 for HI in corn, and 13.00 kg ha−1 MJ−1 for WA and 0.54 
for HI in cotton. Parameter values for the C module were set at 
0.70 for FHP, 0.55 for PARM 20, and 0.80 for PARM 51.

The value for WA was consistent with reports in the lit-
erature. Sinclair and Muchow (1999) summarized 11 stud-
ies on radiation use effi ciency in corn at different locations 
and calculated WA values of 32 to 34 kg ha−1 MJ−1. Wang 
et al. (2005), using a similar EPIC calibration procedure as 

this in a corn fi eld in south-central Wisconsin, reported WA 
as 35.4 kg ha−1 MJ−1. Our value for HI of corn was close to 
values reported in agronomic studies across nine states in the 
USA (Kiniry et al., 1997), and the value of 0.48 reported by 
Wang et al. (2005). The value for WA in cotton was similar 
to the average of three cotton cultivars (14.43 kg ha−1 MJ−1) 
reported by Rosenthal and Gerik (1991).

Nonhydrolyzable C has been considered the extractable 
fraction most closely related to the passive SOC pool (Wang et 
al., 2005). The FHP value we identifi ed was higher than the 
value (0.51) reported by Paul et al. (1997) for nonhydrolyzable 
C in a cultivated soil profi le of the central USA. Our value for 
PARM 20, which can be related to the potential transforma-
tion of the various C pools, was higher than the value of 0.13 
identifi ed by Wang et al. (2005). This could be related to a cli-
mate effect, since the warmer and more humid conditions in 
our study favor an increase in C transformation rates. Overall, 
the automatic calibration procedure was useful for identifying 
infl uential parameters and their values for our experimental site.

Model Validation
Crop Yields

Measured and simulated yields are compared in Fig. 4. In 
2001, treatments were in their fi rst year and neither tillage system 

nor manure application affected measured 
crop yields. In addition, it was a dry year 
with corn receiving only 441 mm of rain 
during the growing period (Fig. 2). The 
EPIC model simulated yield variation trends 
among landscape positions, but mostly over-
estimated measured yields on summit posi-
tions and underestimated measured yields on 
sideslope and drainageway positions.

Tillage system effects on measured 
cotton yields were apparent in 2002. 
This was the driest year for cotton, with 
rainfall amounts of 354 mm during the 
growing season. Water use effi ciency was 
maximized under NT, resulting in higher 
relative yields than the CT systems, espe-
cially on summit positions with sandy, 
well-drained soils, and on the sideslopes 
with higher runoff. Overall for 2002, 
EPIC underestimated yield but adequately 
showed the difference between tillage sys-
tems and landscape positions. Manure 
application did not have a clear effect on 
either measured or simulated yields.

Corn received 774 mm of rain during 
the 2003 growing season (wettest year). 
There were only small differences in mea-
sured corn yields among management sys-
tems and landscape positions. The greatest 
difference between tillage systems occurred 
in the drainageway. The best fi t between 
measured and simulated yields occurred in 
2003; overall, EPIC underestimated corn 
yields, especially on the summit and side-
slope positions, but accurately simulated 

Fig. 3. Probability distribution of predicted crop yields and soil organic C fractions. The 5 and 
95% quantiles are shown as vertical dotted lines; the mean of predictions across the 1500 
simulations is represented by a vertical solid line, and the corresponding measured value is 
shown as a vertical dashed line.
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the positive NT effect. There was no clear effect of manure appli-
cation on measured or simulated corn yields in 2003.

In 2004, EPIC underestimated yields but the effect of 
landscape position on cotton yield was well simulated. In 2005, 
EPIC overestimated corn yield on the summit and sideslope 
positions, but more adequately simulated yield in the drain-
ageway. Although the amount of rainfall received by the crop 
(435 mm) was similar to that in 2001, the driest period hap-
pened when corn was silking and pollinating—critical stages 
for corn grain development. This dry period had greater effects 
on the crop on summit and sideslope positions, as these soils 
have less available water than within the drainageway.

Overall, 58% of the simulated yields were within 20% of 
measured yields (60 simulations were run: 5 yr × four treatments × 
three soil landscapes). Simulated yield explained 88% of the varia-
tion in measured yield (Fig. 5). The regression relating simulated 
to measured values had a slope of 0.78 and an intercept of 0.81, 
however, which were signifi cantly different from 1 and 0, respec-
tively. The EPIC model has been shown to accurately simulate 
long-term mean yields, but may be less accurate for refl ecting 
year-to-year variability (Kiniry et al., 1995). Greater disagreement 
between simulated and measured yields occurred in dry years, sug-
gesting that the model needs further adjustments on parameters 
controlling soil hydrology and water use by plants.

Mean Squared Deviations of Crop Yields

Gauch et al. (2003) proposed the MSD approach to evaluate 
the source of error in simulation models. They claimed that MSD 
and its components were better suited to the X–Y comparison and 
easier to interpret than regression. The main objective in evaluat-
ing model performance is to compare predicted with measured 
values, rather than fi tting the model output to measurements. The 
three MSD components are additive (their sum equals MSD) and 
provide further insight into model performance.

Mean squared deviations of crop yield and its components as 
affected by management and landscape position are shown in Fig. 6. 
Lowest MSDs were found in the drainageway, followed by the sum-
mit and sideslope positions. Within a particular landscape position, 
the greatest MSD occurred with manure treatments. The highest 
contributing component of MSD differed among soil landscapes. At 
the summit position, lack of correlation between measured and pre-

Fig. 4. Measured and simulated yields affected by landscape position 
and treatment. CT = conventional tillage; NT = no tillage; CTm 
= conventional tillage + manure; NTm = no tillage + manure. 
Standard error bars are shown.

Fig. 5. Comparison of simulated and measured yields of corn and cotton 
during the period 2001 trough 2005. The slope and intercept of the 
regression line were signifi cantly different from 1 and 0, respectively.

Fig. 6. Mean squared deviations among 12 simulations of crop yields 
during a 5-yr period on three landscape positions. LC = lack of 
correlation; NU = non-unity; IM = inequality of means; CT = 
conventional tillage; NT = no tillage; CTm = conventional till-
age + manure; NTm = no tillage + manure.
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dicted yield was the major component of MSD. Equality between 
measured and predicted means was greatest on the summit position. 
At the sideslope position, the major component of MSD was lack of 
correlation, although the difference in unity of the regression slope 
between measured and predicted yield was also important. The low-
est MSD was in the drainageway, where the major component of 
MSD was inequality of means in treatments without manure, and 
lack of correlation in treatments that received manure.

Soil Organic Carbon Fractions
Measured and simulated fractions of SOC are presented in Fig. 

7, 8, and 9. The EPIC model overpredicted MBC (Fig. 7). Tillage 
and manure effects were not adequately simulated, especially at the 
5- to 20-cm depth, where the substrate for microbial activity was 
lower in NT and NTm than in CT and CTm (residues remained 
on the surface). Our results suggest there is need for improved simu-
lation of the vertical distribution of MBC. The analytical method 
used to characterize MBC was similar to the method of Jenkinson 
and Powlson (1976), which was suggested by Izaurralde et al. (2006) 
as an appropriate method to initialize the MBC fraction in EPIC. 
Possibly adjustment of other model parameters would be benefi cial, 
rather than altering MBC methods.

Simulated POC was mostly lower than measured POC 
(Fig. 8). At the 5- to 20-cm depth, differences between measured 
and simulated values were small, but EPIC did not adequately 
estimate variations due to tillage. Higher POC at lower depths 

of CT and CTm soils was expected, because tillage operations 
mix residues to lower depths. Cambardella and Elliott, (1992) 
suggested that POC closely matches the slow humus pool con-
ceptualized in the Century model. We obtained a relatively close 
agreement between measured and simulated POC during the 
calibration process. Therefore, adjustment of other EPIC param-
eters is suggested, rather than altering POC determination.

The best agreement between measured and simulated 
SOC fractions was obtained for TOC (Fig. 9). The EPIC 
model adequately simulated SOC at the 0- to 5-cm depth and 
satisfactorily simulated other depths. Accuracy in estimation 
of TOC at the 0- to 20-cm depth has been the strength of 
Century (Kelly et al., 1997; Pennock and Frick, 2001).

Mean Squared Deviations of Soil Organic
  Fractions at the Zero- to Twenty-Centimeter Depth

The MSD for each landscape position was calculated to 
evaluate how well EPIC had captured the spatial–temporal 
dynamics of SOC fractions (i.e., MBC, POC, and TOC; Fig. 
10). Most of the error associated with the prediction of MBC 
was related to the inequality of means, while the second signifi -
cant source of error was lack of correlation.

The largest discrepancy between measured and simulated 
POC was found on the sideslope and in the drainageway. There 
was also poor agreement between measured and simulated POC 

Fig. 7. Measured and simulated soil microbial biomass C as affected 
by landscape position and treatment (2005 data) at 0- to 5-, 5- to 
20-, and 0- to 20-cm depths. CT = conventional tillage; NT = no 
tillage; CTm = conventional tillage + manure; NTm = no tillage + 
manure. Standard error bars are shown.

Fig. 8. Measured and simulated particulate organic C as affected by 
landscape position and treatment (2005 data) at 0- to 5-, 5- to 
20-, and 0- to 20-cm depths. CT = conventional tillage; NT = 
no tillage; CTm = conventional tillage + manure; NTm = no 
tillage + manure. Standard error bars are shown.
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means in the drainageway (large inequality of means), while the 
opposite was true for the sideslope and summit positions.

The largest MSD for TOC was in the drainageway and 
the smallest was on the sideslope. Most error associated with 
the prediction of TOC was related to the inequality of means 
and lack of correlation between measured and simulated values. 
The slope of the regression between measured and simulated 
values was closer to unity in the three landscape positions.

Across landscape positions, EPIC explained about 1, 34, 
and 40% of the total variation (0–20-cm depth) in MBC, 
POC, and TOC, respectively. Thus, the simulations in this 
study were relatively less accurate than Izaurralde et al. (2006), 
where EPIC simulated up to 91% of total variation in soil C 
for uniform landscapes and management.

Temporal Changes in Total Organic Carbon
Comparison between simulated and measured temporal 

changes in TOC is shown in Fig. 11. Dairy manure additions 
and conservation tillage practices increased TOC, but mea-
sured C stocks at the 0- to 30-cm depth of these degraded soils 
were still low. The EPIC model tended to overestimate TOC, 
but mimicked variations with time. Izaurralde et al. (2006) 
reported that EPIC overpredicted at low TOC, and suggested 
that continued development of the model is needed. Sixteen of 
the 36 simulations were within the standard error of measured 

means. Irrespective of landscape position, the best agreement 
between simulation and measurements was obtained with the 
CT treatments. Model overestimation on the NT treatments 
suggests that parameters controlling residue transformation 
rates warrant further investigation.

CONCLUSIONS
Automated parameter optimization procedures can be 

applied to EPIC. Our results generally suggest that the inte-
gration of meaningful ranges of parameters with a numerical 
optimization routine has the potential to estimate valid crop 
and SOC parameter values.

Simulated crop yields were lower than measured crop yields 
in most years; however, management effects on crop yields were 
adequately simulated. Greater disagreement between simulated 
and measured yields occurred in dry years, suggesting that EPIC 

Fig. 9. Measured and simulated total organic C as affected by land-
scape position and treatment (2005 data) at 0- to 5-, 5- to 20-, 
and 0- to 20-cm depths. CT = conventional tillage; NT = no 
tillage; CTm = conventional tillage + manure; NTm = no tillage 
+ manure. Standard error bars are shown.

Fig. 10. Mean squared deviations among four simulations of mi-
crobial biomass C, particulate organic C, and total organic C 
(0–20 cm) at the end of 5 yr. LC = lack of correlation; NU = 
non-unity; IM = inequality of means.
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needs further refi nement on parameters controlling soil hydrol-
ogy and water use by plants.

The EPIC model adequately explained the variability of 
total organic C (0–20 cm) as affected by management during a 
5-yr simulation. Agreement between measured and simulated 
active (MBC) and slow pools (POC) was poor, however. We 
suggest that adjustment of other model parameters is needed. 
Further studies are needed to improve EPIC predictions of 
SOC dynamics with depth. Parameters regulating root distri-
bution and residue decomposition with depth should be con-
sidered during the calibration process.

Overall, EPIC was sensitive to spatial differences that resulted 
from differing soil landscapes. The model still needs additional 
work for accurate simulations of fi eld-scale SOC dynamics affected 
by short-term management decisions.
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