

Fate and Transport of Explosives in Soil and Ground Water

Judith C. Pennington U.S. Army Engineer Research and Development Center Environmental Laboratory

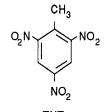
> Judy.C.Pennington@erdc.usace.army.mil 601-634-2802

Presented to U.S. EPA Technical Support Project Semi-Annual Meeting

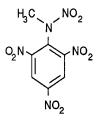
Nov 19, 2002 The Clarion Suites Resort and Convention Center Pensacola, FL

Origins of Explosives in the Environment

- Manufacturing of explosives
- "Load-and-Pack" operations/filling munitions with explosives
- Live-fire soldier training
- Weapon systems testing
- Commercial enterprises

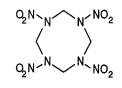

Status of Explosives Contamination

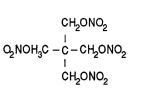
- Manufacture and load-and-pack sites
 - Focus of clean-up efforts since early 1980s
 - Most heavily contaminated soils and ground water have been or are currently under treatment
 - Incineration
 Composting
 Pump-and-treat
 In situ
- Live-fire training and weapon systems testing ranges
 - Characterization has only recently begun
 - Massachusetts Military Reservation
 - More distributed source; solid material



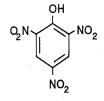
Explosive Compounds

- TNT
- RDX
- HMX
- Others


TNT (2,4,6-trinitrotoluene)


Tetryl (n-methyl-n,2,4,6tetranitroaniline)

02NNNNNN02


RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine)

HMX (octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine)

PETN (pentaerythritol tetranitrate)

picric acid (2,4,6-trinitrophenol)

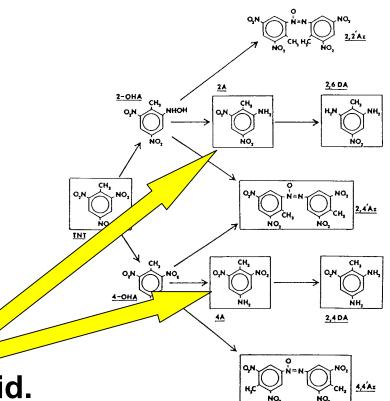
General Properties

- Character: Crystalline solids
- Solubility: <a>
 Solubility: <a><
- Dissolution rate: slow
- Environmental stability
 - TNT is unstable
 - RDX and HMX are stable
 - All degrade under anaerobic conditions
- Phytosensitivity
 - TNT degrades to complex red products
 - RDX and HMX less light sensitive

TNT from a 155-mm artillery projectile

Photodegradation of TNT

Transport Properties

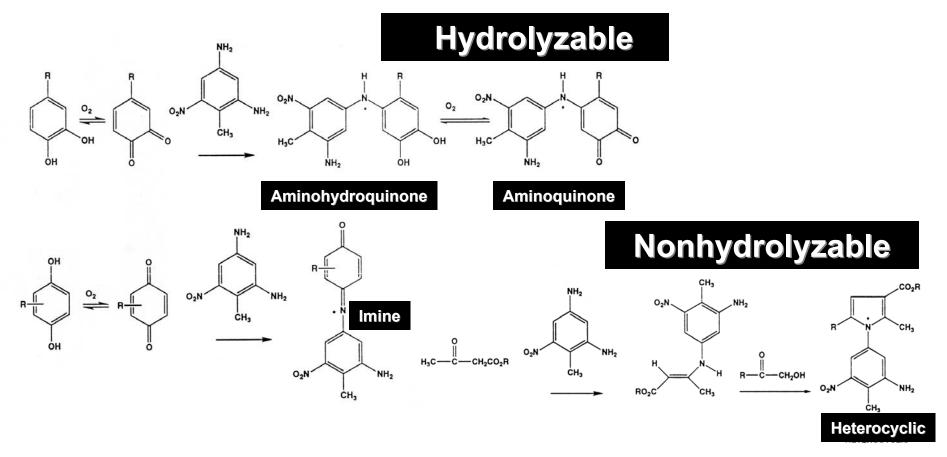

Soil partitioning
 • TNT Transformation

	K _d (L Kg ⁻¹)
TNT typic	
4ADNT	6
2ADNT	6
TNB	3
RDX	<10
HMX	<10

Brannon et al. 1998

Soil adsorption is limited.

Transformation to mono amino products can be rapid.



Kaplan and Kaplan 1982

Transport Properties

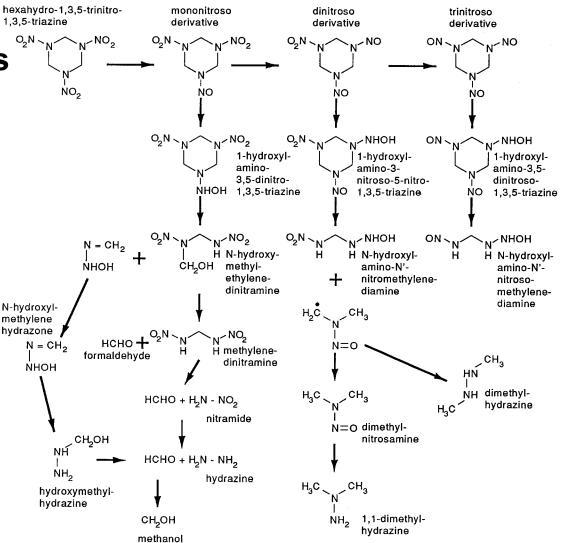
Fate of TNT in surface soils

Reactions result in immobilization

Thorn et al. 2002

Transport of TNT to Ground Water

 Occurs when volume of contamination exceed capacity of soil to attenuate, e.g., manufacturing sites, load-and-pack sites


- Transformation products are common when TNT is present
- Ground water associated with livefire training typically does not contain TNT (data are limited)
 - Sources are small points
 - Sources are widely distributed
 - Sources are initially in solid form
 - Attenuation in surface soils is significant

RDX Transport/Degradation

- Degradation requires² anaerobic conditions
- Readily transported from soil to ground water
- Transport behavior is similar to that of a conservative tracer

Monitored Natural Attenuation

- To demonstrate natural attenuation of explosives at an Army site
- To develop a protocol for selection and implementation of natural attenuation as a remedial alternative

OBJECTIVES

Sponsors:

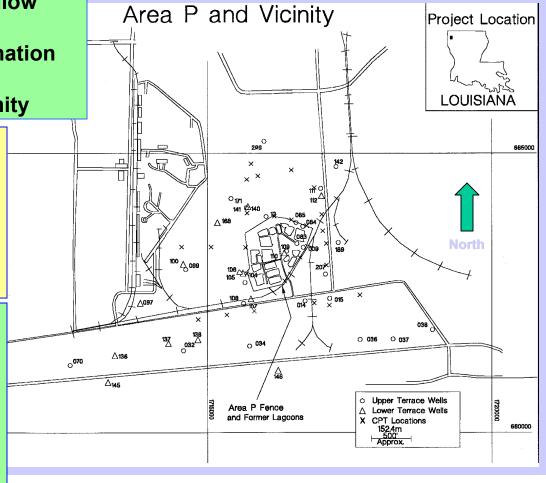
Strategic Environmental Research and Development Program

Environmental Security Technology Certification Program

U.S. Army Environmental Center

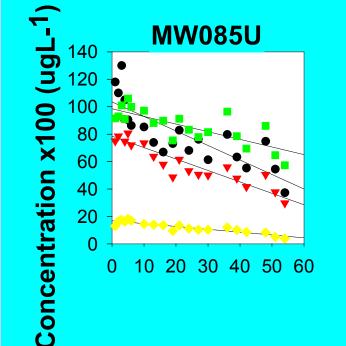
LOUISIANA ARMY AMMUNITION PLANT

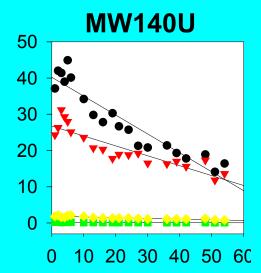
Site selection criteria

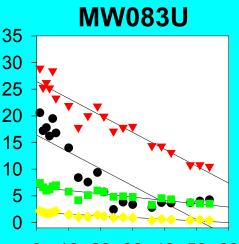

- Sufficient residence time to allow attenuation
- Limited or no risk of contamination of local receptors
- Receptive regulatory community

Characteristics of LAAP

- Source removed
- Extensive historical data
- Extensive existing monitoring wells
- Installation support


Approach

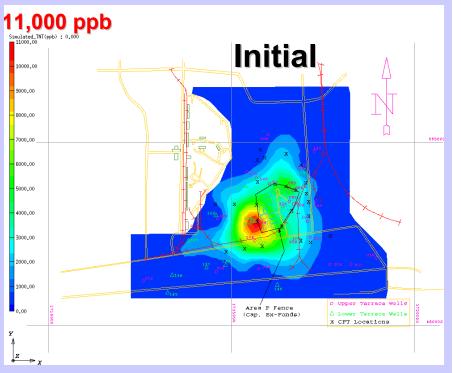

- Groundwater Monitoring
- Site Capacity Measurement
- Groundwater Modeling
- Biomarker Development
- Stable Isotopes Development
- Protocol

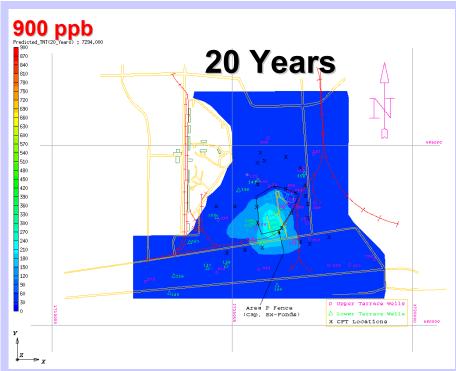


Concentrations in LAAP Ground Water Over Time

0 10 20 30 40 50 60

RDX TNT TNB HMX


Time (Months)


	RDX		TNT		TNB		HMX	
WELL #	R ²	SLOPE	R²	SLOPE	R ²	SLOPE	R ²	SLOPE
0.85U	0.669	-105.864	0.822	-83.337	0.606	-55.781	0.824	-20.597
140U	0.890	-52.185	0.805	-27.363	0.559	-0.236	0.783	-1.952
083U	0.725	-31.665	0.914	-31.710	0.767	-6.201	0.861	-3.166

Modeling Ground Water Attenuation of TNT at LAAP

TNT Concentration

Monitored Natural Attenuation

Advantages

- Significant cost savings
- Less waste
- Less risk of exposure during remediation
- Less intrusive

Limitations

- Process monitoring difficult
- Slow attenuation rate
- Requires "weight of evidence"

Implementation Considerations

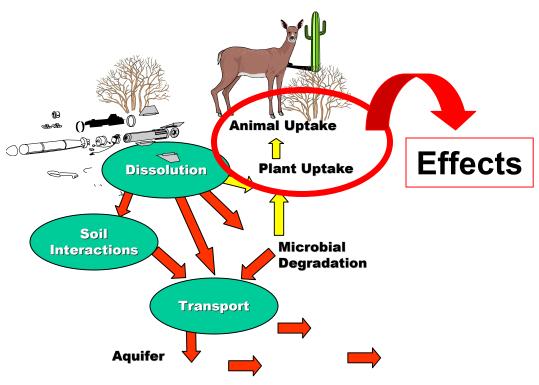
- Hydrologic, geologic, and contaminant characterization
- Risk determination
- Long-term monitoring

- Groundwater modeling
- Periodic reevaluation
- Contingency planning

Monitored Natural Attenuation

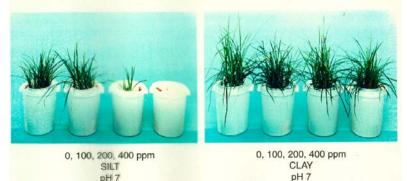
COST SAVINGS ESTIMATES

20 years


25 % less than in-situ bioremediation 50 % less than granular activated charcoal (GAC)

60 years

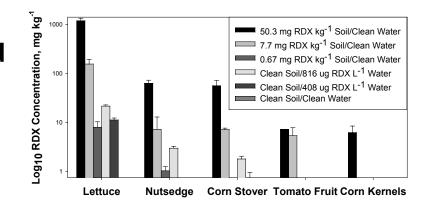
82 % less than in-situ bioremediation 88 % less than granular activated charcoal (GAC)


Effects of Explosives on Plants and Animals

Effects of explosives on vegetation

Effect of Soil Type on Plant Yields in TNT-Amended Soils

Folsorn, B. L., Jr., Pennington, J. C., Teeter, C. L., Barton, M. R. and Bright, J. A., 1988. "Effects of Soil pH and Treatment Level on Persistance and Plant Uptake of 2,4,6-Timitrotoluenc", Technical Report EL-88-22, US Army Engineer


<u>RDX</u>

Waterways Experiment Station, Vicksburg, MS

- RDX is readily taken into leave and fruits
- RDX bioaccumulates in plants
- HMX is not readily taken up (data are limited)

<u>TNT</u>

- TNT is rarely translocated beyond plant roots
- TNT toxicity to vegetation is species-specific
- Bioavailability of TNT is governed by soil properties, esp. organic carbon content

Effects of explosives on animals

- Toxicity varies with species (data are limited)
- Mammals seem more sensitive than birds or amphibians
- TNT is typically more toxic than RDX and HMX
- Mono amino transformation products of TNT are typically more toxic than TNT

Insect larva Chironomus tentans

Amphipod *Hyalella azteca*

Fathead minnow Pimephales promelas

Screening Level Values

Table 2. Screening Benchmarks for Nitroaromatic Munitions¹

Receptor	TNT	RDX	HMX	Tetryl
Wildlife Species (diet, mg/kg food)	5.6-23	15-58	5.6-22	4.4-18
Terrestrial Plants (mg/kg)	30	100	ID ²	25
Terrestrial Invertebrates (mg/kg)	140-200	ID	ID	ID

 Adapted from Talmage et al. 1999. "Environmental Screening Values for Nitroaromatic Munition Compounds," *Review of Environmental Contamination and Toxicology*.
 Insufficient data.

Examples of Soil PRGs

Table 1. Preliminary Remedial Goals for Soils (mg/kg soil and/or sediment)			
Explosive	Site 1	Site 2	Site 3
TNT	290	22	200
RDX	78	6.1	ND^1
НМХ	10,000	14,000	ND
Tetryl	7,400	2,800	ND
NC	ND	ND	ND
NG	ND	ND	ND
Nitrate	1,000,000	ND	ND
Nitrite	370,000	ND	ND
¹ Not done.			

Terrestrial Screening Benchmarks

Table 3. Terrestrial Screening Benchmarks ¹				
Munition	Chronic NOAELs2Plant LOECs3(mg/kg/day)(mg/kg soil)		Invertebrate LOECs (mg/kg soil)	
TNT	1.6	30	140 ⁴ , 200 ⁵	
RDX	7.0	100	ID ⁶	
НМХ	3.0	ID	ID	
Tetryl	1.3	25	ID	

¹ Adapted from Talmage et al. 1999. "Environmental Screening Values for Nitroaromatic Munition Compounds," *Review of Environmental Contamination and Toxicology*.

² No-observed-adverse-effect level.

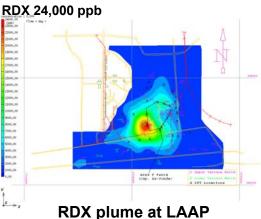
³ Lowest-observed-effect concentration.

⁴ Value is for earthworms.

⁵ Value is for soil invertebrates.

⁶ Insufficient data.

Conclusions



- Dissolution from solid sources is slow
- TNT tends to be attenuated by soils
- RDX is readily transported
- Toxicity: TNT products>TNT>RDX>HMX

Manufacture and load-and-pack sites

- Historical activities produced significant contamination of soils and ground water
- These sites have been or are currently being addressed by the Army
- Live-fire training and weapon systems testing
 - Contamination typically much less than at manufacture and load-and-pack sites
 - Contamination is widely distributed point sources that are specific to range activities
 - Range management practices and periodic remedial actions are under development to control contamination

Training range artillery targets