RECOVERY PROGRAM PROJECT NUMBER: <u>CAP-6-LR</u>

I. Project Title: Levee Removal and Floodplain Connectivity Evaluation

II. Principle Investigators:

Kevin Christopherson Utah Division of WildlifeUtah 152 East 100 North Vernal, Utah 84078 435-789-3103 fax: 435-789-8343 email: nrdwr.kchristo@state.ut.us

Tim Modde Colorado River Fish Project 266 North 100 West, Suite 2 Vernal, Utah 84078 435-789-0354 fax: 435-789-4805 email: Tim Modde@fws.gov

Kevin Bestgen Larval Fish Laboratory Dep. Fish. & Wild. Bio. Colorado State University Fort Collins, CO 80523 970-491-5475 fax: 970-491-5091

email: kbestgen@picea.cnr.colostate.edu

Garn Birchell Utah Division of WildlifeUtah 152 East 100 North Vernal, Utah 84078 435-789-3103 fax: 435-789-8343 email: nrdwr.gbirchel@state.ut.us

Dr. Todd Crowl Fisheries and Wildlife Utah State University Logan, UT 84322-5210 435-797-2498 fax: 435-797-1871 email: facrowl@cc.usu.edu

III. Project Summary:

The primary purpose of this work is to restore or enhance natural floodplain functions that support recovery of endangered fishes (especially the razorback sucker) in the Upper Colorado River Basin. To improve access to floodplain wetlands for native fish species levees have been breached at eight floodplain wetland sites along the Green River in Utah. Studies were conducted to evaluate fish species and ecosystem response to levee removal.

This study has been broken into four areas. Native species response, floodplain productivity, vegetational changes and nonnative species response. No work was conducted on vegetational changes in 1999. The Utah Division of Wildlife (UDWR) and U.S. Fish and Wildlife Service (USFWS) collected native and nonnative fish data. Utah State University was responsible for collecting information on productivity and vegetational changes. A report was completed following the 1998 field season

summarizing the findings of the study up to that point. FY 1999 was the last year of field work scheduled for the study. A final report is due in July 2000.

IV. Study Schedule:

a. Initial year: 1996b. Final year: 2000

V. Relationship to RIPRAP:

General Recovery Program Support

- II. Restore habitat
- II.A. Restore flooded bottomland habitats
- II.A.1. Conduct inventory of flooded bottomland habitat for potential restoration

Green River Action Plan

- II. Restore Habitat
- II.A. Restore and manage flooded bottomland habitat
- II.A.1. Conduct site restoration
- VI. Accomplishments of FY 99 Tasks and Deliverables, Discussion of Initial Findings and Shortcomings:

Native and Nonnative Fish Component

The task of field data collection for the 1999 field season was completed as defined in the 1999 SOW. Nonnative species composition within floodplain wetland sites were similar to previous years sampling. Black bullheads, fathead minnows, green sunfish and carp were the dominant nonnative species caught from wetland sites (See attached tables).

Numbers of native fish (excluding stocked razorback suckers) caught in floodplain sites during 1999 increased for most species from numbers caught in 1998. Colorado pikeminnow were caught in 6 of the 12 sites during 1999 compared to only 3 sites in 1998. However, only 34 Colorado pikeminnow were caught in 1999 compared to 48 in 1998. During 1999, 16 razorback suckers (excluding fish stocked in wetland sites) were caught compared to none in 1998. Razorbacks were caught in 8 of the 12 sites sampled. Nine of the 16 razorback suckers caught were from razorback suckers that were stocked at Split Mountain in October 1998 by Ouray National Fish Hatchery. The remaining 7 were wild fish. Numbers of flannelmouth and bluehead suckers caught in 1999 also increased from 1998. Roundtail chub numbers were about the same in 1999 as in 1998.

Prior to 1999 field season the decision was made to stock razorback suckers of various life stages into 3 floodplain sites. In April, prior to connection with the river the 3 sites (The Stirrup, Baeser Bend and Above Brennan) were each stocked with 1,985 juvenile razorback suckers and 10 adult razorback suckers. During connection with the river in May, 56,907 larval razorback suckers were stocked in The Stirrup wetland. The primary purposes of stocking the fish was to determine if they would leave the wetlands voluntarily. If so what cues cause them to leave? And could they survive predation and poor water quality conditions during the late summer and through the winter? During connection with the river traps were set in the breaches of the 3 wetlands to monitor movement of fish from the sites. Problems with these traps occurred at all three sites. Water flowing into The Stirrup eroded holes underneath the traps. The problem was remedied by plugging the holes with sand bags. At Baeser Bend the water current blew the traps out after about 1 week of sampling. Fyke nets were placed in the mouth of the breach to replace the traps. Above Brennan also experienced erosion problems that were fixed with sand bags. However, at Above Brennan water rose above the top of the traps during peak flows. Despite the above problems the traps did function during most of the floodplain-river connection period.

Very little movement of razorback suckers from the wetlands was detected despite a long duration and magnitude of connection with the river during 1999. Only 1 razorback sucker was caught in traps set in levee breaches at the three sites. Answers to questions regarding voluntary movement of these razorback suckers from the sites into the river will hopefully be answered in the future.

To date razorback suckers stocked in floodplain sites appear to be thriving. During an intensive fall sampling effort 797 razorback suckers were caught in Baeser Bend, 158 in Above Brennan and 126 in The Stirrup. Fish in all three sites had tripled in size averaging over 1.3 mm of growth per day since stocked. Only one fish caught in The Stirrup was a suspect YOY. This fish was frozen and will be analyzed to determine its age. There are plenty of razorback suckers in all 3 wetlands to determine if overwinter survival will occur. Water depth in all three floodplain sites should be sufficient to see the fish through the winter. Baeser Bend was the shallowest site at just over 0.50 meters. If overwinter mortality does occur it will most likely be at this site. Utah Division of Wildlife will continue monitoring the stocked fish under a new SOW approved for FY's 2000 - 2001.

River fyke netting and electrofishing data for the 1999 field season is summarized in the attached tables. Seine data is not included because preserved fish have not been counted. Except for one important difference in reaches 1 - 3 fyke netting data, river sampling data looks reasonably similar to data from previous years. In reaches 1 - 3 there is a significant increase from previous years in the number of black bullheads, green sunfish and carp caught. Most of the fish caught for all 3 species were young of year (YOY) fish. It is possible these fish were highly successful reproducing within the river channel during 1999. However, a more likely source for these fish is Stewart Lake (upstream about 10 miles). Stewart Lake was drained (unscreened) in July of 1999. Offspring from fish that

reproduced in Stewart Lake probably ended up in the river. The number of fish caught for each of these species tapers off significantly below reach 3 (further from the source) (Table 5). Also, during 1999 YOY seining conducted by UDWR, Northeastern Regional Office, no black bullhead YOY were caught above Stewart Lake drain. This potential problem will be examined closely in upcoming Levee Removal Work Group meetings.

Sample processing, data management and data analysis are currently underway. A trip summary report of fish data was written for each sampling trip in 1999 and a field season summary has just been completed. Attached tables are from the field season summary report. Levee Removal Work Group will meet early next year to begin work on the completion report for the levee removal project.

Productivity component

The task of field data collection for the 1999 field season was completed as defined in the 1999 SOW. Results for this aspect of the study are pending due to unprocessed samples. Sample processing currently under way. Data management and data analysis will follow when samples are processed.

VII. Recommendations:

- 1. Continue stocking razorback suckers into floodplain wetlands to evaluate growth, survival and movement into/out of the floodplain wetlands.
- 2. Evaluate the reconfiguration of levee removal to maximize larval transport into floodplains.
- 3. Wetlands that are operated by draining annually or periodically should be screened to minimize nonnative fish escapement into the river.

VIII . Project Status: On track

IX. FY 99 Budget:

	<u>UDWR</u>	<u>USFWS</u>	LFL	<u>USU</u>
A. Funds budgeted:	\$106,075	\$77,625	\$75,900	\$96,600
B. Funds expended/obligated:	\$106,075	\$77,625	\$75,900	\$96,600
C. Difference:	\$ -0-	\$ -0-	\$ -0-	\$ -0-

- D. Percent of FY 99 work completed: 100%
- E. Recovery Program funds spent for publication charges: \$0.00

X. Status of Data Submission: In progress

XI. Signed: Matthew Andersen, December 7, 1999

Table 1. Summary of native fish catch for sites between RM 290.0 and 272.5 during 1999 field season.

			1999	LEV	EE REI	MOVA	L SA	AMPLING	S NAT	TIVE	FISH SU	MMA	ARY		
	*F	Bonanza Bri	dge	*1	Horseshoe B	end		Baser/Chew			*The Stirrup		,	*Baeser Ber	ıd
	SP	#	%	SP	#	%	SP	#	%	SP	#	%	SP	#	%
Trip 1		NNF			NNF			NOT SAMPLED)	RZ	1			NNF	
Trip 2	FM	1	<1	FM CS SD TOT	3 1 1	<1 <1 <1	CS FM RZ RT TOT	7 5 1 1 14	4.3 3.1 <1 <1	5	PLED WITH BR FRAPS DURING CONNECTION		Т	PLED WITH B TRAPS DURIN CONNECTION	IG
Trip 3	CS FM RZ TOT	1 1 1 3	1.0 1.0 1.0	FM CS RT TOT	7 6 1 14	1.9 1.6 <1	FM CS RT TOT	4 2 1 7	6.2 3.1 1.5	5	PLED WITH BR FRAPS DURING CONNECTION		T	PLED WITH B TRAPS DURIN CONNECTION	IG
Trip 4	BH FM TOT	2 1 3		CS FM TOT	4 1 5	<1 <1	CS FM RT TOT	2 1 1 4	1.3 <1 <1	-	PLED WITH BR FRAPS DURING CONNECTION		Т	PLED WITH B TRAPS DURIN CONNECTION	IG
Trip 5	FM RT TOT	4 1 5	2.9 <1	FM RZ TOT	6 2 8	1.1	FM BH SD RT TOT	15 8 8 2 33	2.0 1.0 1.0 <1		PLED WITHBR FRAPS DURING CONNECTION	j	7	PLED WITH B TRAPS DURIN CONNECTION	IG
Trip 6	FM SD	3 1	<1 <1	FM CS BH SD RT TOT	20 4 2 1 1 28	1.6 <1 <1 <1 <1	FM BH SD CS RT TOT	21 18 13 4 2 58	1.3 1.1 <1 <1 <1	-	PLED WITH BR FRAPS DURING CONNECTION		7	PLED WITH B TRAPS DURIN CONNECTIO	IG
Trip 7		NNF		FM BH SD TOT	20 15 1 36	<1 <1 <1		NOT SAMPLED)	RZ SD TOT	4 1 5	<1 <1	RZ CS RT SD TOT	5 1 1 1 8	<1 <1 <1 <1
Trip 10		NNF		FM RZ TOT	1 1 2	<1 <1		NNF		RZ	127	<1	RZ	797	
Total =	FM BH CS RZ RT SD TOT	7 2 1 1 1 1 1 13	<1 <1 <1 <1 <1 <1	FM BH CS RZ RT SD TOT	58 17 15 3 2 3 98	<1 <1 <1 <1 <1 <1	FM BH SD CS RT RZ TOT	46 26 21 15 7 1	1.6 <1 <1 <1 <1 <1	RZ SD	131	<1 <1	RZ CS RT SD	802 1 1 1 1	<1 <1 <1

Table 2. Summary of native fish for sites between RM 268.0 and 249.0 during 1999 field season.

					1999 LE	VEE	REN	IOVAL SA	AMPI	LINC	S NATIVE	FISI	H SU	MMARY				
	*	Above Bren	nan		*Johnson/J4			*Leota/L7A			Leota/L10		*(Old Charlie Dik	ced		Old Charlie W a	sh
	SP	#	%	SP	#	%	SP	#	%	SP	#	%	SP	#	%	SP	#	%
Trip 1		NNF			NNF			NNF			NOT SAMPLED)		NOT SAMPLED			NOT SAMPLED	
Trip 2	SAMPLED WITH BREECH TRAPS DURING CONNECTION SAMPLED WITH BREECH TRAPS DURING CONNECTION		NG		NNF		RZ	1	<1		NNF		CS FM TOT	1 3 4	<1 <1	FM	2	<1
Trip 3	SAMPLED WITH BREECH		NG		NNF			NNF		FM CS TOT	1 1 2	<1 <1	FR FM RZ TOT	3 1 1 5	4.2 1.4 1.4	FM	2	2.5
Trip 4	,	TRAPS DURI	NG	FM 1 <1 TOT 2		ВН	1	<1	SD	1	<1	RZ FR FM TOT	5 1 1 7	17.9 3.6 3.6	FM	1	<1	
Trip 5	7	PLED WITHE FRAPS DURII CONNECTIO	NG		NNF		FM	1	<1		NNF		RZ FR TOT	1 1 2	<1 <1		NNF	
Trip 6	,	PLED WITH E FRAPS DURII CONNECTIO	NG	SD RZ TOT	2 1 3	<1 <1		NNF			NNF		FM FR BH TOT	2 2 1 5	<1 <1 <1		NNF	
Trip 7	RZ SD TOT	2 1 3	<1 <1		NNF			NNF			NOT SAMPLED)		NNF			NOT SAMPLED	
Trip 10	RZ	158			NOT SAMPLED)		NOT SAMPLED)		NOT SAMPLED)		NOT SAMPLED			NOT SAMPLED	
Total =	RZ SD	160 1	<1 <1	SD RZ BH FM	2 1 1 1	<1 <1 <1 <1	FM RZ BH	1 1 1	<1 <1 <1	FM CS SD	1 1 1	<1 <1 <1	RZ FM FR BH CS	7 7 7 1 1	2.6 2.2 1.7 <1	FM	5	<1
	TOT	161		TOT	5		TOT	3		TOT	3		TOT	23				

Table 3. Summary of nonnative fish catch for sites between RM 290.0 and 272.5 during 1999 field season.

		1	999 I	LEVE	E REMO)VAL	SAN	APLING N	IONN	ATI	E FISH	SUM	MARY	Y	
	*B	onanza Brid	lge	*]	Horseshoe Be	end		Baser/Chew			*The Stirru	ıp	*	Baeser Ben	d
	SP	#	%	SP	#	%	SP	#	%	SP	#	%	SP	#	%
Trip 1	FH BB RS CP SS WS	414 167 24 10 4 2	66.7 26.9 3.9 1.6 <1 <1	BB FH RS GS BC WS	346 127 28 25 2	65.4 24.0 5.3 4.7 <1 <1		NOT SAMPLEI)	FH BB GS RS WS CP	3,571 2,860 111 91 24 4	53.6 42.9 1.7 1.4 <1	FH BB RS GS SS CC CP WS	3,875 729 75 13 8 5 3 2	82.3 15.5 1.6 <1 <1 <1 <1 <1
Trip 2	BB FH CP SS GS WS RS	621 417 113 49 38 12 2 1	65.9 17.9 7.7 6.0 1.9 <1	BB RS FH SS GS CP WS CC NP RD	792 310 76 25 18 15 10 9 1 1 1,257	62.8 24.6 6.0 2.0 1.4 1.2 <1 <1 <1	BB SS RS FH GS CC WS CP RD NP TOT	38 37 29 28 5 4 3 3 1 1	23.3 22.7 17.8 18.8 3.1 2.5 1.8 <1 <1	A T BRE MOVE AND (6,661 NOT SAMPLE ITH FYKE NI FRAP WAS SI ECH TO MOR EMENT OF FI DUT OF SITE CONNECTIO	ETS ET IN NITOR SH INTO DURING	W A T BRE MOVE AND C	4,710 NOT SAMPLEI ITH FYKE NE TRAP WAS SE ECH TO MONI MENT OF FIS OUT OF SITE D CONNECTION	TS I IN ITOR H INTO URING
Trip 3	BB CP GS SS WS FH RS	42 31 6 5 5 4 4	42.0 31.0 6.0 5.0 5.0 4.0 4.0	RS BB SS FH CP GS CC NP BC RD TOT	157 96 41 32 23 2 2 1 1 1 356	42.4 25.9 11.1 8.6 6.2 <1 <1 <1 <1	CP BB SS FH RS CC	27 15 9 4 2 1	41.5 23.0 13.8 6.2 3.1 1.5	A T BRE Move And (NOT SAMPLE TITH FYKE N TRAP WAS SI ECH TO MOI EMENT OF FI DUT OF SITE CONNECTIO	ETS ET IN NITOR SH INTO DURING	W A T BRE MOVE AND C	NOT SAMPLEI ITH FYKE NE TRAP WAS SE' ECH TO MON MENT OF FIS DUT OF SITE D CONNECTION	TS I IN ITOR H INTO URING
Trip 4	BB 894 70.9 SS 149 11.3 RS 80 6.5 FH 73 5.3 GS 29 2.7 VS 12 < CC 3 < RD 1 < TOT 1,258			SS RS BB FH CP GS RD CC RB TOT	329 205 69 25 15 4 4 2 1 654	49.9 31.1 10.5 3.8 2.3 <1 <1 <1	RS SS FH BB WS GS CC	66 53 20 6 6 4 1	41.3 33.1 12.5 3.8 3.8 2.5 <1	A Z BRI Movi And (NOT SAMPLE ITH FYKE N FRAP WAS SI EECH TO MOI EMENT OF FI DUT OF SITE CONNECTIO	ETS ET IN NITOR SH INTO DURING	W A 1 BRE MOVE AND 0	NOT SAMPLEI ITH FYKE NE FRAP WAS SE' ECH TO MON EMENT OF FIS DUT OF SITE E CONNECTION	TS I IN ITOR H INTO OURING

1999 LEVEE REMOVAL SAMPLING NONNATIVE FISH SUMMARY *Bonanza Bridge *Horseshoe Bend Baser/Chew *The Stirrup *Baeser Bend SP SP # % SP # % SP # % SP % % RS 378 66.9 RS 419 54.7 Trip 5 46 33.8 SS FΗ 96 17.0 SS 225 29.4 NOT SAMPLED NOT SAMPLED BB29 21.3 SS 57 10.1 FΗ 66 8.6 WITH FYKE NETS WITH FYKE NETS RS 26 19.1 WS 16 2.1 FH 13 9.6 BB10 1.8 5 <1 A TRAP WAS SET IN 7 1.2 BBA TRAP WAS SET IN CP 7 5.1 GS GS 2 <1 BREECH TO MONITOR BREECH TO MONITOR 5 3.7 CP 4 <1 WS 2 MOVEMENT OF FISH INTO GS 3 2.2 WS <1 MOVEMENT OF FISH INTO 2 AND OUT OF SITE DURING AND OUT OF SITE DURING CC2 1.5 RD <1 CONNECTION. CONNECTION. RB1 TOT 733 TOT 557 TOT 131 943 56.6 65.0 SS SS 501 49.3 SS 810 Trip 6 21.0 RS 443 26.6 NOT SAMPLED NOT SAMPLED BB360 35.4 RS 256 72 5.9 FH 158 9.5 WITH FYKE NETS WITH FYKE NETS 9.5 BBRS 97 2.2 2.6 FΗ 60 4.8 WS 37 FH 26 13 <1 A TRAP WAS SET IN A TRAP WAS SET IN 1.5 GS 14 1.1 BB15 GS 12 <1 BREECH TO MONITOR BREECH TO MONITOR CP 9 <1 CC2 <1 GS 2 <1 CP2 <1 MOVEMENT OF FISH INTO MOVEMENT OF FISH INTO <1 RD WS 6 AND OUT OF SITE DURING <1 AND OUT OF SITE DURING RD 3 <1 WS 1 <1 RD CONNECTION. CONNECTION. WE 1 <1 KS 1 TOT 1,609 TOT 1.219 TOT 1,017 RS 1,552 45.3 2,172 44.7 FH 2,650 56.0 BB253 62.0 BBTrip 7 23.4 CP 630 13.3 BB788 23.0 RS 85 20.8 RS 1.138 BB13.2 FΗ 347 10.1 FH 680 14.0 626 CP 34 8.3 GS 17 4.2 GS 588 12.1 GS 474 10.0 SS 319 9.3 9.2 GS 316 2.2 SS 115 2.4 NOT SAMPLED RS 343 7.3 FH 9 2.7 94 WS 6 1.5 WS 104 2.1 WS 7 <1 CP CC2 <1 SS 4 CP 25 <1 CC1 TOT TOT 408 TOT 4,823 TOT 4,730 3,418 23,285 48.4 BB 4,053 66.8 Trip 10 BB884 72.6 BB5,319 60.9 FΗ 19,252 40.1 FΗ 1,585 26.1 BBFH 268 22.0 FH 2,906 33.3 RS 3.7 3.9 GS 3,238 6.7 225 GS 47 RS 312 3.6 83 1,684 3.5 CP 127 2.1 RS 9 <1 GS <1 RS 73 1.2 CP 8 <1 SS 82 <1 NOT SAMPLED CP 600 1.2 GS 2 WS 15 <1 WS 5 <1 WS <1 <1 WS 10 12 CCSS <1 CP <1 1 <1 <1 BC 6 CC3 <1 TOT TOT 1.218 TOT 8,738 TOT 48.070 6,069

1999 LEVEE REMOVAL SAMPLING NONNATIVE FISH SUMMARY *Bonanza Bridge *The Stirrup *Baeser Bend *Horseshoe Bend Baser/Chew SP # % SP# % SP # % SP # % SP % FH 5,807 40.9 FΗ 29,506 49.6 SS 1,267 44.9 Total = BB3,046 56.6 BB8,876 48.9 RS 959 34.0 BB22,738 38.2 BB5,570 39.2 22.1 FΗ 920 17.1 FH 4,002 3,823 RS 1,852 13.0 6.4 FΗ 276 9.8 GS SS 747 13.9 RS 2,784 15.4 77 2.7 RS 2,118 3.7 GS 402 2.8 BBSS1,459 8.0 RS 326 6.1 SS 2.3 1,234 328 2.1 GS WS 62 2.2 CP CP165 741 4.1 32 1.1 WS 41 CP 224 1.6 129 WS 133 <1 CPGS 2.4 CC 7 7 <1 23 <1 CCCP 94 <1 GS WS 40 WS <1 19 CC<1 <1 CC<1 CC 10 <1 RD 2 <1 RD RD <1 BC9 <1 NP 2 NP RB 2 <1 <1 WE 1 KS 1 <1 TOT 59,461 TOT 14,197 TOT 2,705 18,133 TOT 5,382 TOT

Table 4. Summary of nonnative fish catch for sites between RM 268.0 and 249.0 during 1999 field season.

		199	9 LEVEE	RE	MOV	AL SAM	IPLIN	IG N	ONNATIVI	E FI	SH S	UMMAF	RY.			
	*Above Brennan	k	Johnson/J4			*Leota/L7A			Leota/L10		*0	old Charlie D	iked	Ol	d Charlie W a	sh
	SP # %	SP	#	%	SP	#	%	SP	#	%	SP	#	%	SP	#	%
Trip 1	BB 428 51.4 FH 269 32.3 RS 81 9.7 WS 41 4.9 CC 10 1.2 SS 2 <1 CP 1 <1 TOT 832	FH BB RS GS CP WS	5,669 369 125 37 7 2	91.3 5.9 2.0 <1 <1 <1	FH RS GS BB	188 71 56 2	59.3 22.4 17.7 <1		NOT SAMPLED			NOT SAMPLE	D	1	NOT SAMPLED	
Trip 2	NOT SAMPLED WITH FYKE NETS A TRAP WAS SET IN BREECH TO MONITOR MOVEMENT OF FISH INTO AND OUT OF SITE DURING CONNECTION.	FH CP CC BB RS	38 23 7 6 1	50.6 30.6 9.3 8.0 1.3	BB GS RS CP FH CC	1,381 254 223 95 51 1	68.9 12.7 11.1 4.7 2.5 <1	RS SS FH CP BB GS CC TOT	36 24 12 11 6 6 2 97	37.1 24.7 12.4 11.3 6.2 6.2 2.1	CP BB GS CC RS FH SS TOT	74 17 14 8 8 4 1 126	58.7 13.5 11.1 6.3 6.3 3.2 <1	RS FH CP SS CC BB GS TOT	251 29 29 22 15 11 6 363	69.1 8.0 8.0 6.1 4.1 3.0 1.7
Trip 3	NOT SAMPLED WITH FYKE NETS A TRAP WAS SET IN BREECH TO MONITOR MOVEMENT OF FISH INTO AND OUT OF SITE DURING CONNECTION.	BB FH RS CP SS CC GS WS TOT	117 111 43 17 10 8 6 1 313	37.4 35.5 13.7 5.4 3.2 2.6 1.9 <1	FH BB RS GS CP CC SS TOT	56 55 27 26 13 5 4	30.1 29.6 14.5 14.0 7.0 2.7 2.2	RS BB CC FH SS CP GS	88 24 16 13 13 12 9	49.7 13.6 9.0 7.3 7.3 6.8 5.1	FH BB RS SS CP GS CC	20 19 11 6 4 4 2	28.2 28.8 15.5 8.5 5.6 5.6 2.8	CP BB RS CCC SS FH GS	47 10 8 4 4 4 2	58.0 12.3 9.9 4.9 4.9 1.2
Trip 4	NOT SAMPLED WITH FYKE NETS A TRAP WAS SET IN BREECH TO MONITOR MOVEMENT OF FISH INTO AND OUT OF SITE DURING CONNECTION.	RS FH BB SS GS CC CP	328 309 259 148 28 11 7	30.0 28.3 23.7 13.6 2.6 1.0 <1	BB GS FH RS SS CC CP NP TOT	208 131 26 17 15 5 3 1 406	51.1 32.3 6.4 4.2 3.9 1.2 <1	RS FH GS CP BB SS CC WS TOT	118 66 65 10 9 5 2 1 276	42.6 23.8 23.5 3.6 3.2 1.8 <1	CP CC GS BB RS	12 3 3 2 1	42.8 10.7 10.7 7.1 3.6	CP BB GS CC NP	117 4 4 2 2 2	90.7 3.1 3.1 1.6 1.6
Trip 5	NOT SAMPLED WITH FYKE NETS A TRAP WAS SET IN BREECH TO MONITOR MOVEMENT OF FISH INTO AND OUT OF SITE DURING CONNECTION.	BB RS SS FH GS CP CC TOT	191 85 54 47 43 9 3 432	44.2 19.7 12.5 10.9 10.0 2.1 <1	BB FH GS RS SS CC CP TOT	1,214 402 95 43 33 14 8 1,809	67.1 22.2 5.3 2.4 1.8 <1	RS GS CP FH BB CC SS TOT	284 88 44 30 20 7 6 479	59.3 18.4 9.2 6.3 4.2 1.5 1.3	CP RS CC	369 5 1	97.8 1.3 <1	GS RS SS	3 2 1	92.8 3.6 2.4 1.2

1999 LEVEE REMOVAL SAMPLING NONNATIVE FISH SUMMARY. *Above Brennan *Johnson/J4 *Leota/L7A Leota/L10 *Old Charlie Diked Old Charlie Wash SP % SP % SP % SP % SP % SP % 96.1 85.7 CP 730 1,272 GS 50 50.5 CP 3,538 562 49.2 60.4 Trip 6 NOT SAMPLED RS BB FH 265 23.2 GS 548 26.0 FΗ 14 14.1 RS 456 11.1 RS 11 1.4 WITH FYKE NETS 13 CC50 1.2 GS 9 1.2 FΗ 95 CP 13.1 SS 194 17.0 4.5 5 69 RS 84 4.0 BB12 12.1 SS 37 <1 BB<1 A TRAP WAS SET IN BB6.1 2 <1 3.3 RS 6.1 FΗ 18 <1 CCSS 69 6 BREECH TO MONITOR GS 27 2.4 <1 MOVEMENT OF FISH INTO CP 11 <1 CP 24 1.1 SS 4 BB11 <1 FΗ 1 SS <1 11 <1 1 AND OUT OF SITE DURING CC 10 <1 CC14 <1 GS <1 NP CONNECTION. WS 1 <1 NP <1 TOT 99 TOT 4,121 TOT 760 2,107 TOT 1,139 TOT 176 37.2 CP 306 81.4 BB41.2 BB1,490 59.2 483 Trip 7 RS 21.1 CP407 34.8 RS122 25.8 GS 54 14.4 BB531 7 1.9 85 18.0 FΗ RS 145 12.4 FH GS 199 7.9 47 FH 192 FΗ 89 7.6 CP 9.9 RS 6 1.6 7.6 32 6.8 NOT SAMPLED BB3 <1 NOT SAMPLED GS SS 59 2.3 GS 25 2.1 SS 11 2.3 BC 19 <1 CC17 1.5 CP 17 <1 SS 4 <1 CC 8 <1 BC1 <1 3 <1 WS TOT 473 TOT 376 TOT 1,171 TOT 2.518 1,857 61.8 Trip 10 FH BB837 27.8 171 5.7 BCRS 82 2.7 GS 31 1.0 NOT SAMPLED NOT SAMPLED NOT SAMPLED NOT SAMPLED NOT SAMPLED WS 14 <1 CP 10 <1 CC5 <1 TOT 3,007 532 47.1 CP 4,303 84.5 CP 1.000 70.5 6,528 62.6 BB4,308 59.0 RS 2,318 36.5 FΗ FΗ Total = 19.2 RS 487 10.2 RS 272 GS 218 19.3 BB1,494 14.3 GS 1,142 15.6 BB1,796 28.3 2.4 12.0 GS 86 1.4 FH 34 903 FΗ 135 26.0 RS 1,289 12.4 FH 12.4 RS 1,653 30 2.1 CC 1.0 BBRS 587 8.0 CP 90 8.0 64 GS 230 3.6 CP 481 4.6 52 SS 28 2.0 CP 190 2.6 BB 71 6.3 BB<1 410 3.9 BC 190 3.0 SS 24 49 <1 GS 1.7 SS52 FΗ SS 132 1.8 4.6 SS 61 <1 GS 166 1.6 23 1.6 CC27 2.4 SS 44 <1 CC WS 58 <1 CC<1 CC 39 <1 56 <1 NP 3 <1 2 <1 WS 1 CP 28 <1 WS 4 <1 NP 23 BCCC5,085 TOT 1,414 TOT TOT TOT 1,126 TOT 10,429 7,303 TOT 6,357

Table 5. Summary of total fish catch for fyke netting in 6 river reaches during the 1999 field season.

				19	99 LEVE	E RI	EMOV	AL RIV	ER F	REAC	CH SAMP	LIN	G (FY	KE NETS	S)			
	REAC	CH 1 (290.0 - 28	3.0)	REA	CH 2 (283.0 - 27	6.0)	REAC	CH 3 (276.0 - 20	9.0)	REA	CH 4 (269.0 - 26	2.00	REA	ACH 5 (262.0 - 25	5.0)	REAG	CH 6 (255.0 - 24	18.0)
	SP	#	%	SP	#	%	SP	#	%	SP	#	%	SP	#	%	SP	#	%
Trip 1	RS SS FH GS WS NP CS FM	40 16 9 2 1 1 1	56.3 22.5 12.7 2.8 1.4 1.4 1.4	RS FH SS GS BB CS SD FM CC WS BN	146 124 50 8 4 2 2 1 1 1	42.9 36.5 14.7 2.4 1.2 <1 <1 <1 <1 <1	RS SS FH GS CS FM CP BB WS	137 112 92 50 5 3 2 1	34.0 27.8 22.8 12.4 1.2 <1 <1 <1	RS FH SS FM BB GS BH CP WS RD RT NP CC	173 69 53 16 3 2 1 1 1 1	53.2 21.2 16.3 4.9 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	RS FH GS SD	30 27 1 1	50.8 45.8 1.7 1.7	RS FH BB GS SS CC RD NP CS FM RZ	169 39 6 5 4 3 2 2 1 1	72.5 16.7 2.6 2.1 1.7 1.3 <1 <1 <1 <1
	TOT	71		TOT	340		TOT	403		TOT	325		TOT	59		TOT	233	
Trip 8	BB RS GS SS CC CP FH SD WS RZ RT	160 159 35 32 17 17 8 3 1	36.9 36.6 8.1 7.4 3.9 3.9 1.8 <1 <1 <1	RS BB GS SS CP FH CC SD RT BH WS CS	788 150 96 90 33 31 8 6 5 2 2	65.0 12.4 7.9 7.4 2.7 2.6 <1 <1 <1 <1 <1	RS SS BB CP GS CC FH FM WS BC SD RT	1041 267 101 23 19 18 8 2 1 1	70.2 18.0 6.8 1.6 1.3 1.2 <1 <1 <1 <1 <1 <1	RS CP SS FH BB GS CC BH SD WS CS FM RT	726 218 72 56 24 21 14 4 4 1 1	63.5 19.1 6.3 4.9 2.1 1.8 1.2 <1 <1 <1 <1 <1	RS BB GS CC CP SS FH WS BC	180 71 31 17 16 15 2 2	53.6 21.1 9.2 5.1 4.8 4.5 <1 <1	RS SS CP BB GS FH FM CC WS KS BC NP SD	379 64 37 35 16 10 6 5 3 2	67.7 11.4 6.6 6.3 2.9 1.8 1.1 <1 <1 <1 <1
	TOT	434		TOT	1,212		TOT	1,483	40.2	TOT	1,143 278	20.0	TOT	336 179	34.7	TOT RS	560 204	46.3
Trip 9	BB GS RS CP SS FH SD CC FM RT WS BC NP BH	1953 352 259 156 99 9 8 7 3 2 2 2 1 1	68.4 12.3 9.1 5.5 3.5 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	RS GS CP SS FH CC WS CS BC NP BH SD	2540 377 229 212 104 39 37 17 4 1 1	71.3 10.6 6.4 6.0 2.9 1.1 1.0 <1 <1 <1 <1 <1 <1 <1	RS CP GS FH CC SS SD WS CS FM	1238 1216 280 230 69 19 11 3 2	40.3 39.6 9.1 7.5 2.2 <1 <1 <1 <1 <1	BB GS CP FH SS CC FM	278 206 125 60 14 7 4 2	39.9 29.6 18.0 8.6 2.0 1.0 <1	BB GS FH CP SS CC FM BC NP CS	179 110 90 60 43 18 11 2 1	21.3 17.4 11.6 8.3 3.5 2.1 <1 <1 <1	BB CC CP FH GS SS FM SD CS	78 37 37 34 33 12 3 2	40.3 17.7 8.4 8.4 7.7 7.5 2.7 <1 <1
	RD TOT	1 2,855	<1	тот	3,563		ТОТ	3,070		ТОТ	696		тот	516		тот	441	

				19	99 LEVE	E RI	EMOV	AL RIV	ER F	REAC	CH SAMP	LIN	G (FY	KE NET	S)			
	REAC	СН 1 (290.0 - 2	83.0)	REA	ACH 2 (283.0 - 27	(6.0)	REA	CH 3 (276.0 - 20	59.0)	REA	CH 4 (269.0 - 26	2.00	REA	ACH 5 (262.0 - 25	55.0)	REAG	CH 6 (255.0 - 24	48.0)
	SP	#	%	SP	#	%	SP	#	%	SP	#	%	SP	#	%	SP	#	%
Trip 10	BB RS GS CC SS FH CP FM BC SD	1593 276 140 77 32 19 17 7 4 1	73.5 12.7 6.5 3.6 1.5 <1 <1 <1 <1 <1	BB RS GS CP SS FH FM CC WS BC BH SD TOT	2179 148 140 59 22 12 10 5 1 1 2,579	84.5 5.7 5.4 2.3 <1 <1 <1 <1 <1 <1 <1 <1 <1	BB RS FH GS CP SS WS CC FM BH	1368 268 182 174 121 14 12 8 5	63.5 12.4 8.5 8.1 5.6 <1 <1 <1 <1	RS BB CC GS SS CP FH NP FM	71 56 47 28 18 17 7 2 1	28.7 22.7 19.2 11.3 7.3 6.9 2.8 <1	BB CC RS FH GS CP WS SS FM	213 128 110 103 76 8 5 3 2	32.9 19.8 17.0 15.9 11.7 1.2 <1 <1	CC RS FH CP GS SS WS FM BB BH SM	120 108 66 34 20 12 12 11 8 2 1	30.5 27.4 16.8 8.6 5.1 3.0 2.8 2.0 <1
Total =	BB RS GS CP SS CC FH SD FM BC WS RT NP CS RZ BH RD	3706 734 529 190 179 101 45 12 11 5 4 3 2 2 2	67.1 13.3 9.6 3.4 3.2 1.8 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	BB RS GS CP SS FH CC WS FM SD CS RT BH BC NP BN	4873 1459 473 304 266 206 51 21 11 10 7 5 4 2	63.3 19.0 6.1 4.0 3.5 2.7 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	BB RS GS CP SS FH CC WS FM CS SD BC RT BH	2708 2662 473 426 404 351 45 16 11 6 4	38.1 37.4 6.7 6.0 5.7 4.9 <1 <1 <1 <1 <1 <1 <1 <1	RS CP BB GS SS FH CC FM BH SD NP RT WS RD CS	1248 296 289 177 150 146 66 20 6 4 3 2 2	51.8 12.3 12.0 7.3 6.2 6.1 2.7 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	RS BB GS FH CC CP SS WS FM BC SD NP CS	499 394 198 192 156 67 36 7 4 3 1	32.0 25.3 12.7 12.3 10.0 4.3 2.3 <1 <1 <1 <1 <1	RS CCC FH BB CP SS GS FM WS NP SD RD CS BH KS RZ BC SM	860 165 149 127 108 92 74 21 15 3 3 2 2 2 2 2	52.8 10.1 9.2 7.8 6.6 5.7 4.5 1.3 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1
	TOT	5,526		ТОТ	7,694		тот	7,109		ТОТ	2,411		ТОТ	1,559		TOT	1,628	•

Table 6. Summary of electrofishing results from 6 river reaches during the 1999 field season.

			1	999 1	LEVEE	REMO)VAI	LRIVE	R REA	CH S	SAMPL	ING (E	LEC'	TROFI	SHING)		
	REA	ACH 1 (289.8	- 288.6)	REA	ACH 2 (281.0	- 280.6)	REA	ACH 3 (276.5	5 - 275.5)	RE.	ACH 4 (268.8	3 - 267.7)	REA	ACH 5 (256.2	2 - 255.0)	REA	ACH 6 (250.4	- 249.4)
	SP	# Caught	# Observed	SP	# Caught	# Observed	SP	# Caught	# Observed	SP	# Caught	# Observed	SP	# Caught	# Observed	SP	# Caught	# Observed
Trip 1	CP FM CS CC BH WS WE TOT	7 3 1 1 1 1 1 1 15	6 6 0 0 0 0 0	CP FM CS BH CC	7 6 5 1 1	4 0 3 0 0	FM BH CP CC CS NP	9 5 3 3 2 1	7 1 2 0 3 0	CP FM CS BH CC	5 5 2 1 1	0 0 0 0 0	CP CS FM SM	5 2 1 1	0 0 0 0	CP CS	37 2	0 0
Trip 4	CP FM BH CS TOT	12 3 4 1 20	9 5 0 2 16	CP FM CS CC BH TOT	2 3 3 1 0	6 1 0 0 1 8	CP FM CS CC	3 3 2 0	15 3 1 1 20	FM CS CC CP	1 0 0 0	1 2 2 1	CP CC CS FM	2 1 1 1	0 0 0 0	CP FM CS	5 3 1	0 0 0
Trip 6	CP FM BH TOT	1 1 1 3	4 1 0 5	FM CP CS	2 1 1 4	5 1 0 6	CP FM CS BH TOT	7 5 1 1 14	4 2 2 0 8	СР	1	5	CP FM BH CS TOT	12 5 2 0 19	22 2 0 0 24	CP FM CS	7 3 2	9 1 1
Trip 8	ТОТ	0	2 2	CP RZ BB TOT	3 0 1 4	4 1 0 5	CP CC FM RT TOT	4 0 0 1 5	1 1 0 10		NOT SAMP	LED		NOT SAMP	LED		NOT SAMPL	ED
Trip 9	CP CC WS CS FM TOT	1 1 1 1 1 8	4 0 0 0 0 0 4	CP CC CS FM TOT	1 1 0 0	8 2 1 2	FM CC TOT	4 2 1	1 0	CP CC FM SM BB TOT	8 3 3 1 1 1 16	0 0 0 0 0	CP CC FM SM CS TOT	8 7 4 1 0 20	9 1 1 0 1 12	FM CC CS TOT	14 8 2 0	10 0 2 1

	REA	ACH 1 (289.8			ACH 2 (281.0			ACH 3 (276.5			ACH 4 (268.8	ING (E		ACH 5 (256.2		ĺ	ACH 6 (250.4	- 249 4)
	SP	# Caught	# Observed	SP	# Caught	# Observed	SP	# Caught	# Observed	SP	# Caught	# Observed	SP	# Caught	# Observed	SP	# Caught	# Observed
Trip 10	CP CC SM FM	4 0 1 0	6 2 0 1	CP FM CS CC RT BH GS NP TOT	8 6 1 3 2 1 1 0 22	16 2 3 1 0 0 0 1 23	FM CP CC BH	3 1 2 1	2 5 1 0	BH CP CC FM	3 1 2 1	0 3 0 0	CP CC FM SM	10 4 4 1	20 0 0 0 0	CC CP FM SM CS	17 10 3 2 0	4 17 2 0 2 25
Total =	CP FM BH CS CC WS SM WE	28 8 6 3 2 2 1 1	31 13 0 2 2 2 0 0	CP FM CS CC BH RT BB GS NP RZ TOT	22 17 10 6 2 2 2 1 1 0 0	39 10 7 3 1 0 0 0 1 1 1 62	FM CP BH CC CS NP RT	22 22 7 6 5 1	16 42 1 3 6 0 0	CP FM CC BH CS SM BB	15 10 6 4 2 1 1	9 1 0 2 2 2	CP FM CC CS SM BH	37 15 12 3 3 2	51 3 1 1 0 0	CP CC FM CS SM	73 20 17 5 2	36 6 3 4 0