I. Project Title: Levee Removal and Floodplain Connectivity Evaluation
II. Principle Investigators:

Kevin Christopherson
Utah Division of WildlifeUtah
152 East 100 North
Vernal, Utah 84078
435-789-3103 fax: 435-789-8343
email: nrdwr.kchristo@state.ut.us
Tim Modde
Colorado River Fish Project
266 North 100 West, Suite 2
Vernal, Utah 84078
435-789-0354 fax: 435-789-4805
email: Tim_Modde@fws.gov

Kevin Bestgen
Larval Fish Laboratory
Dep. Fish. \& Wild. Bio.
Colorado State University
Fort Collins, CO 80523
970-491-5475 fax: 970-491-5091
email: kbestgen@picea.cnr.colostate.edu
III. Project Summary:

The primary purpose of this work is to restore or enhance natural floodplain functions that support recovery of endangered fishes (especially the razorback sucker) in the Upper Colorado River Basin. To improve access to floodplain wetlands for native fish species levees have been breached at eight floodplain wetland sites along the Green River in Utah. Studies were conducted to evaluate fish species and ecosystem response to levee removal.

This study has been broken into four areas. Native species response, floodplain productivity, vegetational changes and nonnative species response. No work was conducted on vegetational changes in 1999. The Utah Division of Wildlife (UDWR) and U.S. Fish and Wildlife Service (USFWS) collected native and nonnative fish data. Utah State University was responsible for collecting information on productivity and vegetational changes. A report was completed following the 1998 field season
summarizing the findings of the study up to that point. FY 1999 was the last year of field work scheduled for the study. A final report is due in July 2000.
IV. Study Schedule:
a. Initial year: 1996
b. Final year: 2000
V. Relationship to RIPRAP:

General Recovery Program Support
II. Restore habitat
II.A. Restore flooded bottomland habitats
II.A.1. Conduct inventory of flooded bottomland habitat for potential restoration

Green River Action Plan
II. Restore Habitat
II.A. Restore and manage flooded bottomland habitat
II.A.1. Conduct site restoration

VI . Accomplishments of FY 99 Tasks and Deliverables, Discussion of Initial Findings and Shortcomings:

Native and Nonnative Fish Component

The task of field data collection for the 1999 field season was completed as defined in the 1999 SOW. Nonnative species composition within floodplain wetland sites were similar to previous years sampling. Black bullheads, fathead minnows, green sunfish and carp were the dominant nonnative species caught from wetland sites (See attached tables).

Numbers of native fish (excluding stocked razorback suckers) caught in floodplain sites during 1999 increased for most species from numbers caught in 1998.
Colorado pikeminnow were caught in 6 of the 12 sites during 1999 compared to only 3 sites in 1998. However, only 34 Colorado pikeminnow were caught in 1999 compared to 48 in 1998. During 1999, 16 razorback suckers (excluding fish stocked in wetland sites) were caught compared to none in 1998. Razorbacks were caught in 8 of the 12 sites sampled. Nine of the 16 razorback suckers caught were from razorback suckers that were stocked at Split Mountain in October 1998 by Ouray National Fish Hatchery. The remaining 7 were wild fish. Numbers of flannelmouth and bluehead suckers caught in 1999 also increased from 1998. Roundtail chub numbers were about the same in 1999 as in 1998.

Prior to 1999 field season the decision was made to stock razorback suckers of various life stages into 3 floodplain sites. In April, prior to connection with the river the 3 sites (The Stirrup, Baeser Bend and Above Brennan) were each stocked with 1,985 juvenile razorback suckers and 10 adult razorback suckers. During connection with the river in May, 56,907 larval razorback suckers were stocked in The Stirrup wetland. The primary purposes of stocking the fish was to determine if they would leave the wetlands voluntarily. If so what cues cause them to leave? And could they survive predation and poor water quality conditions during the late summer and through the winter? During connection with the river traps were set in the breaches of the 3 wetlands to monitor movement of fish from the sites. Problems with these traps occurred at all three sites. Water flowing into The Stirrup eroded holes underneath the traps. The problem was remedied by plugging the holes with sand bags. At Baeser Bend the water current blew the traps out after about 1 week of sampling. Fyke nets were placed in the mouth of the breach to replace the traps. Above Brennan also experienced erosion problems that were fixed with sand bags. However, at Above Brennan water rose above the top of the traps during peak flows. Despite the above problems the traps did function during most of the floodplain-river connection period.

Very little movement of razorback suckers from the wetlands was detected despite a long duration and magnitude of connection with the river during 1999. Only 1 razorback sucker was caught in traps set in levee breaches at the three sites. Answers to questions regarding voluntary movement of these razorback suckers from the sites into the river will hopefully be answered in the future.

To date razorback suckers stocked in floodplain sites appear to be thriving. During an intensive fall sampling effort 797 razorback suckers were caught in Baeser Bend, 158 in Above Brennan and 126 in The Stirrup. Fish in all three sites had tripled in size averaging over 1.3 mm of growth per day since stocked. Only one fish caught in The Stirrup was a suspect YOY. This fish was frozen and will be analyzed to determine its age. There are plenty of razorback suckers in all 3 wetlands to determine if overwinter survival will occur. Water depth in all three floodplain sites should be sufficient to see the fish through the winter. Baeser Bend was the shallowest site at just over 0.50 meters. If overwinter mortality does occur it will most likely be at this site. Utah Division of Wildlife will continue monitoring the stocked fish under a new SOW approved for FY's 2000-2001.

River fyke netting and electrofishing data for the 1999 field season is summarized in the attached tables. Seine data is not included because preserved fish have not been counted. Except for one important difference in reaches 1-3 fyke netting data, river sampling data looks reasonably similar to data from previous years. In reaches 1-3 there is a significant increase from previous years in the number of black bullheads, green sunfish and carp caught. Most of the fish caught for all 3 species were young of year (YOY) fish. It is possible these fish were highly successful reproducing within the river channel during 1999. However, a more likely source for these fish is Stewart Lake (upstream about 10 miles). Stewart Lake was drained (unscreened) in July of 1999. Offspring from fish that
reproduced in Stewart Lake probably ended up in the river. The number of fish caught for each of these species tapers off significantly below reach 3 (further from the source) (Table 5). Also, during 1999 YOY seining conducted by UDWR, Northeastern Regional Office, no black bullhead YOY were caught above Stewart Lake drain. This potential problem will be examined closely in upcoming Levee Removal Work Group meetings.

Sample processing, data management and data analysis are currently underway. A trip summary report of fish data was written for each sampling trip in 1999 and a field season summary has just been completed. Attached tables are from the field season summary report. Levee Removal Work Group will meet early next year to begin work on the completion report for the levee removal project.

Productivity component

The task of field data collection for the 1999 field season was completed as defined in the 1999 SOW. Results for this aspect of the study are pending due to unprocessed samples. Sample processing currently under way. Data management and data analysis will follow when samples are processed.

VII . Recommendations:

1. Continue stocking razorback suckers into floodplain wetlands to evaluate growth, survival and movement into/out of the floodplain wetlands.
2. Evaluate the reconfiguration of levee removal to maximize larval transport into floodplains.
3. Wetlands that are operated by draining annually or periodically should be screened to minimize nonnative fish escapement into the river.

VIII . Project Status: On track
IX . FY 99 Budget:
A. Funds budgeted:
UDWR USFWS

LFL	USU
$\$ 75,900$	$\$ 96,600$

B. Funds expended/obligated: $\$ 106,075 \quad \$ 77,625 \quad \$ 75,900 \quad \$ 96,600$
C. Difference:
$\$-0-\quad \$-0-$
$\$-0-\quad \$-0-$
D. Percent of FY 99 work completed: 100%
E. Recovery Program funds spent for publication charges: $\$ 0.00$
X. Status of Data Submission: In progress

XI . Signed: Matthew Andersen, December 7, 1999

Table 1. Summary of native fish catch for sites between RM 290.0 and 272.5 during 1999 field season.
1999 LEVEE REMOVAL SAMPLING NATIVE FISH SUMMARY

Table 2. Summary of native fish for sites between RM 268.0 and 249.0 during 1999 field season.
1999 LEVEE REMOVAL SAMPLING NATIVE FISH SUMMARY

LR - 7

Table 3. Summary of nonnative fish catch for sites between RM 290.0 and 272.5 during 1999 field season.
1999 LEVEE REMOVAL SAMPLING NONNATIVE FISH SUMMARY

	*Bonanza Bridge			*Horseshoe Bend			Baser/Chew			*The Stirrup			*Baeser Bend		
	SP	\#	\%												
Trip 1	FH BB RS CP SS WS TOT	$\begin{array}{r} 414 \\ 167 \\ 24 \\ 10 \\ 4 \\ 2 \\ \\ 621 \end{array}$	$\begin{array}{r} 66.7 \\ 26.9 \\ 3.9 \\ 1.6 \\ <1 \\ <1 \end{array}$	BB FH RS GS BC WS TOT	$\begin{array}{r} 346 \\ 127 \\ 28 \\ 25 \\ 2 \\ 1 \\ \\ 529 \end{array}$	$\begin{array}{r} 65.4 \\ 24.0 \\ 5.3 \\ 4.7 \\ <1 \\ <1 \end{array}$	NOT SAMPLED			FH BB GS RS WS CP TOT	$\begin{array}{r} 3,571 \\ 2,860 \\ 111 \\ 91 \\ 24 \\ 4 \\ \\ 6,661 \end{array}$	$\begin{array}{r} 53.6 \\ 42.9 \\ 1.7 \\ 1.4 \\ <1 \\ <1 \end{array}$	FH BB RS GS SS CC CP WS TOT	$\begin{array}{r} 3,875 \\ 729 \\ 75 \\ 13 \\ 8 \\ 5 \\ 3 \\ 2 \\ 4,710 \end{array}$	$\begin{array}{r} 82.3 \\ 15.5 \\ 1.6 \\ <1 \\ <1 \\ <1 \\ <1 \\ <1 \end{array}$
Trip 2	BB FH CP SS GS WS RS TOT	$\begin{array}{r} 417 \\ 113 \\ 49 \\ 38 \\ 12 \\ 2 \\ 1 \end{array}$	$\begin{array}{r} 65.9 \\ 17.9 \\ 7.7 \\ 6.0 \\ 1.9 \\ <1 \\ <1 \end{array}$	BB RS FH SS GS CP WS CC NP RD TOT	$\begin{array}{r} 792 \\ 310 \\ 76 \\ 25 \\ 18 \\ 15 \\ 10 \\ 9 \\ 1 \\ 1 \end{array}$	62.8 24.6 6.0 2.0 1.4 1.2 <1 <1 <1 <1	BB SS RS FH GS CC WS CP RD NP TOT	$\begin{array}{r} 38 \\ 37 \\ 29 \\ 28 \\ 5 \\ 4 \\ 3 \\ 3 \\ 1 \\ 1 \\ 149 \end{array}$	$\begin{array}{r} 23.3 \\ 22.7 \\ 17.8 \\ 18.8 \\ 3.1 \\ 2.5 \\ 1.8 \\ 1.8 \\ <1 \\ <1 \end{array}$	$\begin{array}{r} \mathrm{A} \\ \mathrm{BF} \\ \mathrm{MO} \\ \mathrm{AND} \end{array}$	SAMPLED FYKE NE WAS SET TO MON T OF FIS OF SITE D NECTION	N R NTO ING	$\begin{array}{r} \mathrm{A} \\ \mathrm{BF} \\ \mathrm{MO} \\ \mathrm{AND} \end{array}$	SAMPL FYKE N WAS S TO MON T OF FI OF SITE NECTIO	R NTO RING
Trip 3	BB CP GS SS WS FH RS TOT	$\begin{array}{r} 42 \\ 31 \\ 6 \\ 5 \\ 5 \\ 4 \\ 4 \end{array}$ 97	$\begin{array}{r} 42.0 \\ 31.0 \\ 6.0 \\ 5.0 \\ 5.0 \\ 4.0 \\ 4.0 \end{array}$	RS BB SS FH CP GS CC NP BC RD TOT	$\begin{array}{r} \hline 157 \\ 96 \\ 41 \\ 32 \\ 23 \\ 2 \\ 2 \\ 1 \\ 1 \\ 1 \\ 356 \end{array}$	$\begin{array}{r} \hline 42.4 \\ 25.9 \\ 11.1 \\ 8.6 \\ 6.2 \\ <1 \\ <1 \\ <1 \\ <1 \\ <1 \end{array}$	CP BB SS FH RS CC TOT	$\begin{array}{r} \hline 27 \\ 15 \\ 9 \\ 4 \\ 2 \\ 1 \\ \\ \hline \end{array}$	$\begin{array}{r} 41.5 \\ 23.0 \\ 13.8 \\ 6.2 \\ 3.1 \\ 1.5 \end{array}$	$\begin{array}{r} \mathrm{BF} \\ \mathrm{MO} \\ \text { AND } \end{array}$	SAMPLED FYKE NE WAS SE TO MON T OF FIS OF SITE D NECTION	N R NTO ING	B MO AND	SAMPL FYKE N WAS S TO MO T OF FI OF SITE NECTIO	OR NTO RING
Trip 4	BB SS RS FH GS CP WS CC RD TOT	894 149 80 73 29 17 12 3 1 1,258	$\begin{array}{r} \hline 70.9 \\ 11.8 \\ 6.3 \\ 5.8 \\ 2.3 \\ 1.3 \\ <1 \\ <1 \\ <1 \end{array}$	$\begin{aligned} & \hline \text { SS } \\ & \text { RS } \\ & \text { BB } \\ & \text { FH } \\ & \text { CP } \\ & \text { GS } \\ & \text { RD } \\ & \text { CC } \\ & \text { RB } \\ & \text { TOT } \end{aligned}$	329 205 69 25 15 4 4 2 1 654	$\begin{array}{r} 49.9 \\ 31.1 \\ 10.5 \\ 3.8 \\ 2.3 \\ <1 \\ <1 \\ <1 \\ <1 \end{array}$	$\begin{aligned} & \hline \text { RS } \\ & \text { SS } \\ & \text { FH } \\ & \text { BB } \\ & \text { WS } \\ & \text { GS } \\ & \text { CC } \\ & \\ & \text { TOT } \end{aligned}$	66 53 20 6 6 4 1 156	41.3 33.1 12.5 3.8 3.8 2.5 <1	$\begin{array}{r} A \\ \mathrm{BH} \\ \mathrm{MO} \\ \mathrm{AND} \end{array}$	SAMPLED FYKE NE WAS SE TO MON NT OF FIS OF SITE D NECTION	N OR NTO RING	$\begin{array}{r} \text { B } \\ \mathrm{BF} \\ \mathrm{MO} \\ \mathrm{AND} \end{array}$	SAMPLE FYKE N WAS S TO MO NT OF FI OF SITE NECTIO	N OR INTO RING

1999 LEVEE REMOVAL SAMPLING NONNATIVE FISH SUMMARY

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \& \multicolumn{3}{|c|}{*Bonanza Bridge} \& \multicolumn{3}{|c|}{*Horseshoe Bend} \& \multicolumn{2}{|r|}{Baser/Chew} \& *The Stirrup \& *Baeser Bend \\
\hline \& SP \& \# \& \% \& SP \& \# \& \% \& SP \& \# \% \& SP \# \% \& SP \# \% \\
\hline Trip 5 \& \begin{tabular}{l}
SS \\
BB \\
RS \\
FH \\
CP \\
WS \\
GS \\
CC \\
TOT
\end{tabular} \& \[
\begin{array}{r}
46 \\
29 \\
26 \\
13 \\
7 \\
5 \\
3 \\
2 \\
\\
131
\end{array}
\] \& \[
\begin{array}{r}
33.8 \\
21.3 \\
19.1 \\
9.6 \\
5.1 \\
3.7 \\
2.2 \\
1.5
\end{array}
\] \& \begin{tabular}{l}
RS \\
FH \\
SS \\
BB \\
GS \\
CP \\
WS \\
RD \\
RB \\
TOT
\end{tabular} \& \[
\begin{array}{r}
378 \\
96 \\
57 \\
10 \\
7 \\
4 \\
2 \\
2 \\
1 \\
557
\end{array}
\] \& \[
\begin{array}{r}
66.9 \\
17.0 \\
10.1 \\
1.8 \\
1.2 \\
<1 \\
<1 \\
<1
\end{array}
\] \& \begin{tabular}{l}
RS \\
SS \\
FH \\
WS \\
BB \\
GS \\
TOT
\end{tabular} \& \begin{tabular}{rr}
419 \& 54.7 \\
225 \& 29.4 \\
66 \& 8.6 \\
16 \& 2.1 \\
5 \& \(<1\) \\
2 \& \(<1\)
\end{tabular}
\[
733
\] \& \begin{tabular}{l}
NOT SAMPLED WITH FYKE NETS \\
A TRAP WAS SET IN BREECH TO MONITOR MOVEMENT OF FISH INTO AND OUT OF SITE DURING CONNECTION.
\end{tabular} \& \begin{tabular}{l}
NOT SAMPLED WITH FYKE NETS \\
A TRAP WAS SET IN BREECH TO MONITOR MOVEMENT OF FISH INTO AND OUT OF SITE DURING CONNECTION.
\end{tabular} \\
\hline Trip 6 \& \begin{tabular}{l}
SS \\
BB \\
RS \\
FH \\
GS \\
CP \\
WS \\
RD \\
TOT
\end{tabular} \& \[
\begin{array}{r}
501 \\
360 \\
97 \\
26 \\
15 \\
9 \\
6 \\
3
\end{array}
\] \& \[
\begin{array}{r}
49.3 \\
35.4 \\
9.5 \\
2.6 \\
1.5 \\
<1 \\
<1 \\
<1
\end{array}
\] \& \begin{tabular}{l}
SS \\
RS \\
BB \\
FH \\
GS \\
CC \\
RD \\
WS \\
WE \\
KS \\
TOT
\end{tabular} \& \[
\begin{array}{r}
810 \\
256 \\
72 \\
60 \\
14 \\
2 \\
2 \\
1 \\
1 \\
1 \\
1,219
\end{array}
\] \& \[
\begin{array}{r}
65.0 \\
21.0 \\
5.9 \\
4.8 \\
1.1 \\
<1 \\
<1 \\
<1 \\
<1 \\
<1
\end{array}
\] \& \begin{tabular}{l}
SS \\
RS \\
FH \\
WS \\
BB \\
GS \\
CP \\
RD \\
TOT
\end{tabular} \& \begin{tabular}{rr}
943 \& 56.6 \\
443 \& 26.6 \\
158 \& 9.5 \\
37 \& 2.2 \\
13 \& \(<1\) \\
12 \& \(<1\) \\
2 \& \(<1\) \\
1 \& \(<1\)
\end{tabular}
\[
1,609
\] \& \begin{tabular}{l}
NOT SAMPLED WITH FYKE NETS \\
A TRAP WAS SET IN BREECH TO MONITOR MOVEMENT OF FISH INTO AND OUT OF SITE DURING CONNECTION.
\end{tabular} \& \begin{tabular}{l}
NOT SAMPLED WITH FYKE NETS \\
A TRAP WAS SET IN BREECH TO MONITOR MOVEMENT OF FISH INTO AND OUT OF SITE DURING CONNECTION.
\end{tabular} \\
\hline Trip 7 \& BB
RS
CP
GS
FH
WS
SS
TOT \& \[
\begin{array}{r}
\hline 253 \\
85 \\
34 \\
17 \\
9 \\
6 \\
4 \\
\\
408
\end{array}
\] \& \[
\begin{array}{r}
\hline 62.0 \\
20.8 \\
8.3 \\
4.2 \\
2.2 \\
1.5 \\
<1
\end{array}
\] \& \begin{tabular}{l}
BB \\
RS \\
FH \\
GS \\
SS \\
WS \\
CP \\
CC \\
TOT
\end{tabular} \& \[
\begin{array}{r}
\hline 2,172 \\
1,138 \\
680 \\
588 \\
115 \\
104 \\
25 \\
1 \\
4,823
\end{array}
\] \& \[
\begin{array}{r}
44.7 \\
23.4 \\
14.0 \\
12.1 \\
2.4 \\
2.1 \\
<1
\end{array}
\] \& \& NOT SAMPLED \& \begin{tabular}{lrr}
\& \\
FH \& 2,650 \& 56.0 \\
CP \& 630 \& 13.3 \\
BB \& 626 \& 13.2 \\
GS \& 474 \& 10.0 \\
RS \& 343 \& 7.3 \\
WS \& 7 \& \(<1\) \\
\& \& \\
\& \& \\
TOT \& 4,730 \&
\end{tabular} \& \begin{tabular}{lrr}
\& \& \\
RS \& 1,552 \& 45.3 \\
BB \& 788 \& 23.0 \\
FH \& 347 \& 10.1 \\
SS \& 319 \& 9.3 \\
GS \& 316 \& 9.2 \\
CP \& 94 \& 2.7 \\
CC \& 2 \& \(<1\) \\
\& \& \\
TOT \& 3,418 \&
\end{tabular} \\
\hline Trip 10 \& \[
\begin{aligned}
\& \hline \text { BB } \\
\& \text { FH } \\
\& \text { GS } \\
\& \text { RS } \\
\& \text { CP } \\
\& \text { WS } \\
\& \\
\& \\
\& \text { TOT }
\end{aligned}
\] \& 884
268
47
9
8
2

1,218 \& $$
\begin{array}{r}
\hline 72.6 \\
22.0 \\
3.9 \\
<1 \\
<1 \\
<1
\end{array}
$$ \& BB

FH
RS
GS
SS
WS
CP
BC
CC
TOT \& 5,319
2,906
312
83
82
15
12
6
3

8,738 \& \[
$$
\begin{array}{r}
\hline 60.9 \\
33.3 \\
3.6 \\
<1 \\
<1 \\
<1 \\
<1 \\
<1 \\
<1
\end{array}
$$

\] \& \& NOT SAMPLED \& | FH | 23,285 | 48.4 |
| :--- | ---: | ---: |
| BB | 19,252 | 40.1 |
| GS | 3,238 | 6.7 |
| RS | 1,684 | 3.5 |
| CP | 600 | 1.2 |
| WS | 10 | <1 |
| CC | 1 | <1 |
| | | |
| | | |
| TOT | 48,070 | | \& | BB | 4,053 | 66.8 |
| :--- | ---: | ---: |
| FH | 1,585 | 26.1 |
| RS | 225 | 3.7 |
| CP | 127 | 2.1 |
| GS | 73 | 1.2 |
| WS | 5 | <1 |
| SS | 1 | <1 |
| | | |
| | | |
| TOT | 6,069 | |

\hline
\end{tabular}

1999 LEVEE REMOVAL SAMPLING NONNATIVE FISH SUMMARY

	*Bonanza Bridge			*Horseshoe Bend			Baser/Chew			*The Stirrup			*Baeser Bend		
	SP	\#	\%												
Total $=$	BB	3,046	56.6	BB	8,876	48.9	SS	1,267	44.9	FH	29,506	49.6	FH	5,807	40.9
	FH	-920	17.1	FH	4,002	22.1	RS	959	34.0	BB	22,738	38.2	BB	5,570	39.2
	SS	747	13.9	RS	2,784	15.4	FH	276	9.8	GS	3,823	6.4	RS	1,852	13.0
	RS	326	6.1	SS	1,459	8.0	BB	77	2.7	RS	2,118	3.7	GS	402	2.8
	CP	165	3.1	GS	741	4.1	WS	62	2.2	CP	1,234	2.1	SS	328	2.3
	GS	129	2.4	WS	133	<1	CP	32	1.1	WS	41	<1	CP	224	1.6
	WS	40	<1	CP	94	<1	GS	23	<1	CC	1	<1	CC	7	<1
	CC	5	<1	CC	19	<1	CC	6	<1				WS	7	<1
	RD	4	<1	RD	10	<1	RD	2	<1						
				BC	9	<1	NP	1	<1						
				NP	2	<1									
				RB	2	<1									
				WE	1	<1									
				KS	1 18,133	<1							TOT	14,197	
	TOT	5,382		TOT	18,133		TOT	2,705		TOT	59,461		TOT	14,197	

Table 4. Summary of nonnative fish catch for sites between RM 268.0 and 249.0 during 1999 field season.
1999 LEVEE REMOVAL SAMPLING NONNATIVE FISH SUMMARY.

1999 LEVEE REMOVAL SAMPLING NONNATIVE FISH SUMMARY.

Table 5. Summary of total fish catch for fyke netting in 6 river reaches during the 1999 field season.

1999 LEVEE REMOVAL RIVER REACH SAMPLING (FYKE NETS)

	REACH 1 (290.0-283.0)			REACH 2 (283.0-276.0)			REACH 3 (276.0-269.0)			REACH 4 (269.0-262.00			REACH 5 (262.0-255.0)			REACH 6 (255.0-248.0)		
	SP	\#	\%															
Trip 1	RS	40	56.3	RS	146	42.9	RS	137	34.0	RS	173	53.2	RS	30	50.8	RS	169	72.5
	SS	16	22.5	FH	124	36.5	SS	112	27.8	FH	69	21.2	FH	27	45.8	FH	39	16.7
	FH	9	12.7	SS	50	14.7	FH	92	22.8	SS	53	16.3	GS	1	1.7	BB	6	2.6
	GS	2	2.8	GS	8	2.4	GS	50	12.4	FM	16	4.9	SD	1	1.7	GS	5	2.1
	WS	1	1.4	BB	4	1.2	CS	5	1.2	BB	3	<1				SS	4	1.7
	NP	1	1.4	CS	2	<1	FM	3	<1	GS	3	<1				CC	3	1.3
	CS	1	1.4	SD	2	<1	CP	2	<1	BH	2	<1				RD	2	<1
	FM	1	1.4	FM	1	<1	BB	1	<1	CP	1	<1				NP	2	<1
				CC	1	<1	WS	1	<1	WS	1	<1				CS	1	<1
				WS	1	<1				RD	1	<1				FM	1	<1
				BN	1	<1				RT	1	<1				RZ	1	<1
										NP	1	<1						
										CC	1	<1						
	TOT	71		TOT	340		TOT	403		TOT	325		TOT	59		TOT	233	
Trip 8	BB	160	36.9	RS	788	65.0	RS	1041	70.2	RS	726	63.5	RS	180	53.6	RS	379	67.1
	RS	159	36.6	BB	150	12.4	SS	267	18.0	CP	218	19.1	BB	71	21.1	SS	64	11.4
	GS	35	8.1	GS	96	7.9	BB	101	6.8	SS	72	6.3	GS	31	9.2	CP	37	6.6
	SS	32	7.4	SS	90	7.4	CP	23	1.6	FH	56	4.9	CC	17	5.1	BB	35	6.3
	CC	17	3.9	CP	33	2.7	GS	19	1.3	BB	24	2.1	CP	16	4.8	GS	16	2.9
	CP	17	3.9	FH	31	2.6	CC	18	1.2	GS	21	1.8	SS	15	4.5	FH	10	1.8
	FH	8	1.8	CC	8	<1	FH	8	<1	CC	14	1.2	FH	2	<1	FM	6	1.1
	SD	3	<1	SD	6	<1	FM	2	<1	BH	4	<1	WS	2	<1	CC	5	<1
	WS	1	<1	RT	5	<1	WS	1	<1	SD	4	<1	BC	2	<1	WS	3	<1
	RZ	1	<1	BH	2	<1	BC	1	<1	WS	1	<1				KS	2	<1
	RT	1	<1	WS	2	<1	SD	1	<1	CS	1	<1				BC	1	<1
				CS	1	<1	RT	1	<1	FM	1	<1				NP	1	<1
										RT	1	<1				SD	1	<1
	TOT	434		TOT	1,212		TOT	1,483		TOT	1,143		TOT	336		TOT	560	
Trip 9			68.4	BB	2540	71.3	BB	1238	40.3	RS	278	39.9	RS	179	34.7	RS	204	46.3
	BB	1953 352	12.3	RS	377	10.6	RS	1216	39.6	BB	206	29.6	BB	110	21.3	BB	78	17.7
	RS	259	9.1	GS	229	6.4	CP	280	9.1	GS	125	18.0	GS	90	17.4	CC	37	8.4
	CP	156	5.5	CP	212	6.0	GS	230	7.5	CP	60	8.6	FH	60	11.6	CP	37	8.4
	SS	99	3.5	SS	104	2.9	FH	69	2.2	FH	14	2.0	CP	43	8.3	FH	34	7.7
	FH	9	<1	FH	39	1.1	CC	19	<1	SS	7	1.0	SS	18	3.5	GS	33	7.5
	SD	8	<1	CC	37	1.0	SS	11	<1	CC	4	<1	CC	11	2.1	SS	12	2.7
	CC	7	<1	WS	17	<1	SD	3	<1	FM	2	<1	FM	2	<1	FM	3	<1
	FM	3	<1	CS	4	<1	WS	2	<1				BC	1	<1	SD	2	<1
	RT	2	<1	BC	1	<1	CS	1	<1				NP	1	<1	CS	1	<1
	WS	2	<1	NP	1	<1	FM	1	<1				CS	1	<1			
	BC	1	<1	BH	1	<1												
	NP	1	<1	SD	1	<1												
	BH	1	<1															
	CS	1	<1															
	RD TOT	2,855	<1	TOT	3,563		TOT	3,070		TOT	696		TOT	516		TOT	441	

LR - 13

	REACH 1 (290.0-283.0)			REACH 2 (283.0-276.0)			REACH 3 (276.0-269.0)			REACH 4 (269.0-262.00			REACH 5 (262.0-255.0)			REACH 6 (255.0-248.0)		
	SP	\#	\%															
Trip 10	BB	1593	73.5	BB	2179	84.5	BB	1368	63.5	RS	71	28.7	BB	213	32.9	CC	120	30.5
	RS	276	12.7	RS	148	5.7	RS	268	12.4	BB	56	22.7	CC	128	19.8	RS	108	27.4
	GS	140	6.5	GS	140	5.4	FH	182	8.5	CC	47	19.2	RS	110	17.0	FH	66	16.8
	CC	77	3.6	CP	59	2.3	GS	174	8.1	GS	28	11.3	FH	103	15.9	CP	34	8.6
	SS	32	1.5	SS	22	<1	CP	121	5.6	SS	18	7.3	GS	76	11.7	GS	20	5.1
	FH	19	<1	FH	12	<1	SS	14	<1	CP	17	6.9	CP	8	1.2	SS	12	3.0
	CP	17	<1	FM	10	<1	WS	12	<1	FH	7	2.8	WS	5	<1	WS	12	3.0
	FM	7	<1	CC	5	<1	CC	8	<1	NP	2	<1	SS	3	<1	FM	11	2.8
	BC	4	<1	WS	1	<1	FM	5	<1	FM	1	<1	FM	2	<1	BB	8	2.0
	SD	1	<1	BC	1	<1	BH	1	<1							BH	2	<1
	SD			BH	1	<1										SM	1	<1
				SD	257	<1								648		TOT	394	
	TOT	2,166		TOT	2,579		TOT	2,153		TOT	247		TOT	648		TOT	394	
Total $=$	BB	3706	67.1	BB	4873	63.3	BB	2708	38.1	RS	1248	51.8	RS	499	32.0	RS	800	52.8
	RS	734	13.3	RS	1459	19.0	RS	2662	37.4	CP	296	12.3	BB	394	25.3	CC	165	10.1
	GS	529	9.6	GS	473	6.1	GS	473	6.7	BB	289	12.0	GS	198	12.7	FH	149	9.2
	CP	190	3.4	CP	304	4.0	CP	426	6.0	GS	177	7.3	FH	192	12.3	BB	127	7.8
	SS	179	3.2	SS	266	3.5	SS	404	5.7	SS	150	6.2	CC	156	10.0	CP	108	6.6
	CC	101	1.8	FH	206	2.7	FH	351	4.9	FH	146	6.1	CP	67	4.3	SS	92	5.7
	FH	45	<1	CC	51	<1	CC	45	<1	CC	66	2.7	SS	36	2.3	GS	74	4.5
	SD	12	<1	WS	21	<1	WS	16	<1	FM	20	<1	WS	7	<1	FM	21	1.3
	FM	11	<1	FM	11	<1	FM	11	<1	BH	6	<1	FM	4	<1	WS	15	<1
	BC	5	<1	SD	10	<1	CS	6	<1	SD	4	<1	BC	3	<1	NP	3	<1
	WS	4	<1	CS	7	<1	SD	4	<1	NP	3	<1	SD	1	<1	SD	3	<1
	RT	3	<1	RT	5	<1	BC	1	<1	RT	2	<1	NP	1	<1	RD	2	<1
	NP	2	<1	BH	4	<1	RT	1	<1	WS	2	<1	CS	1	<1	CS	2	<1
	CS	2	<1	BC	2	<1	BH	1	<1	RD CS	1	<1 <1				BH	2	<1 <1
	RZ	1	<1	NP	1	<1				CS	1	<1				KS	2	<1 <1
	BH	1	<1	BN	1	<1										RZ	1	<1
																SM	1	<1
	TOT	5,526		TOT	7,694		TOT	7,109		TOT	2,411		TOT	1,559		TOT	1,628	

Table 6. Summary of electrofishing results from 6 river reaches during the 1999 field season.

	1999 LEVEE REMOVAL RIVER REACH SAMPLING (ELECTROFISHING)																		
	REACH 1 (289.8-288.6)			REACH 2 (281.0-280.6)			REACH 3 (276.5-275.5)			REACH 4 (268.8-267.7)			REACH 5 (256.2-255.0)			REACH 6 (250.4-249.4)			
	SP	\# Caught	\# Observed	SP	\# Caught	\# Observed	SP	Caught	\# Observed	SP		\# Observed	SP	\# Caught	\# Observed	SP	Caught	\# Observed	
Trip 1	CP	7	6	CP	7	4	FM	9	7	CP	5	0	CP	5	0	CP	37	0	
	FM	3	6	FM	6	0	BH	5	1	FM	5	0	CS	2	0	CS	2	0	
	CS	1	0	CS	5	3	CP	3	2	CS	2	0	FM	1	0				
	CC	1	0	BH	1	0	CC	3	0	BH	1	0	SM	1	0				
	BH	1	0	CC	1	0	CS	2	3	CC	1	0							
	WS	1	0				NP	1	0										
	WE TOT	1 15	$\begin{array}{r} 0 \\ 12 \end{array}$	TOT	20	7	TOT	23	13	TOT	14	0	TOT	9	0	TOT	39	0	
Trip 4	CP	12	9	CP	2	6	CP	3	15	FM	1	1	CP	2	0	CP	5	0	
	FM	3	5	FM	3	1	FM	3	3	CS	0	2	CC	1	0	FM	3	0	
	BH	4	0	CS	3	0	CS	2	1	CC	0	2	CS	1	0	CS	1	0	
	CS	1	2	CC	1	0	CC	0	1	CP	0	1	FM	1	0				
	TOT	20	16		0	1													
				TOT	9	8	TOT	8	20	TOT	1	6	TOT	5	0	TOT	9	0	
Trip 6	CP	1	4	FM	2	5	CP	7	4	CP	1	5	CP	12	22	CP	7	9	
	FM	,	1	CP	1	1	FM	5	2				FM	5	2	FM	3	1	
	BH	1	0	CS	1	0	CS	1	2				BH	2	0	CS	2	1	
					4	6	BH	1	0				CS	0	0				
	TOT	3	5	TOT				14	8	TOT			TOT	19	24	TOT	12	11	
Trip 8	CP			CP	3	4	CP	4	8	NOT SAMPLED			NOT SAMPLED			NOT SAMPLED			
		0	2	RZ	0	1	CC	0	1										
				BB	1	0	FM	0	1										
					4	5	RT	1	0										
	TOT			TOT				5	10										
Trip 9	CP		4	4	CP	,	\bigcirc	CP		4	CP		0	CP		9	CP		10
	CC	1	0	CC	1	2	FM	2	1	CC	3	0	CC	7	1	FM	8	0	
	WS	1	0	CS	0	1	CC	1	0	FM	3	0	FM	4	1	CC	2	2	
	CS	1	0	FM	0	2				SM	1	0	SM	1	0	CS	0	1	
	FM	1	0							BB	1	0	CS	0	1				
	TOT	8	4	TOT	2	13	TOT	7	5	TOT	16	0	TOT	20	12	TOT	24	13	

