Objectives of the ADEOS2/GLI Mission

The combination of GLI+AMSR: Near surface phenomena

- 1. Carbon cycle and primary production study
- 2. Energy and water cycle study
- 3. Global warming study

GLI's 36 channels: too many or not enough?

- 1. Continuation of long-term products
- 2. Improvement of the product accuracy with comprehensive retrievals of atmosphere/surface parameters
- 3. New findings
- 4. Experiences for channel selection

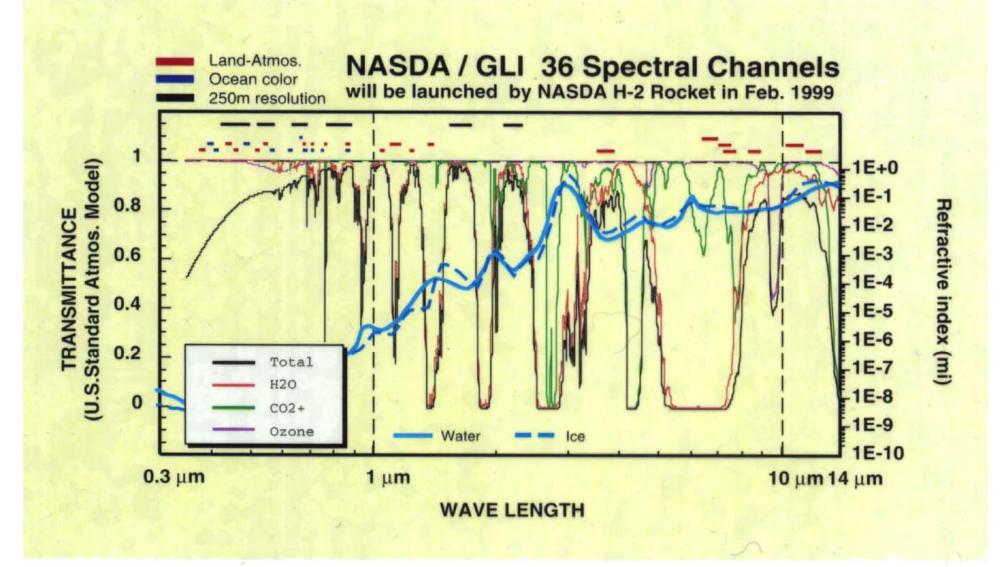


Fig. 21 GLI channels and the atmospheric transmittance (1976 US standard atmosphere model) ...

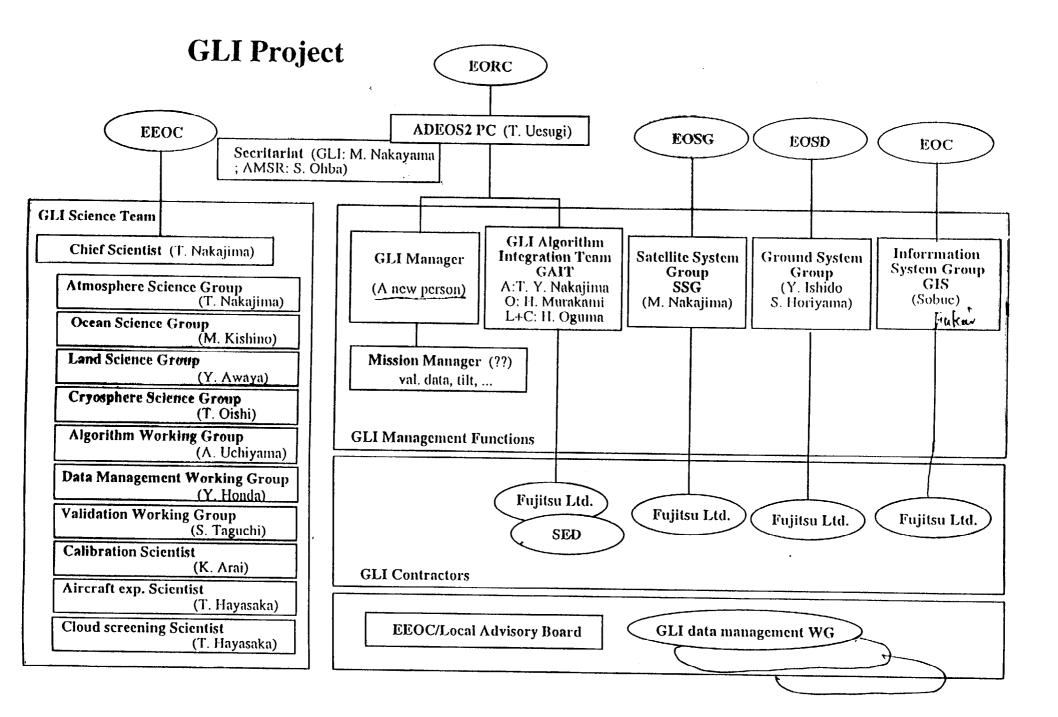
VNIR

(1km resolution)					
chl	380(10)	0 A C			
ch2	400(10)	0			
ch3	412(10)	0			
ch4p	443(10)	OLAC			
ch5p	460(10)	OLAC			
chố	490(10)	0			
ch7p	520(10)	OAC			
ch8p	545(10)	O A C			
ch9	565(10)	JO			
ch10	625(10)	0			
ch11	666(10)	0			
ch12	680(10)	0			
ch13	678(10)	LAC			
ch14	710(10)	0			
ch15	710(10)	LAC			
ch16	749(10)	0			
ch17	763(8)	LA			
ch18	865(20)	0			
ch19	865(10)	LAC			
(p:pieco	ewise linear	r)			
(250m resolu	ition)				
ch20	460(70)	LAC			
ch21	545(50)	LAC			
ch22	660(60)	LAC			
ch23	825(110)	LAC			
	unit (nm)				

Г

SWIR

(Ikm read	ution) -	
ch24	1050(20)	LAC
ch25	1135(70)	A
ch26	1240(20)	LAC
ch27	1380(40)	Λ
(250m ress		
ch28	1640(200)	LAC
ch29	2210(220)	LAC
	unit [nm]	


MTIR

(1km resolution)					
	3.715(0.33)	0	A C		
ch31	6.700(0.5)		Α		
ch32	7.300(0.5)		A		
ch33	7.500(0.5)		Α		
ch34	8.600(0.5)	ÖI	LA C		
ch35	10.80(1.0)	01	LAC		
ch36	12.00(1.0)	01	LAC		
	unit [µm]				

Cross tracking scan			
Altitude :803 km			
Inclination	:98.6 deg.		
Swath width	:1600 km		
Resolution	: 1 km		
(subpoint)	: 250 m		
Tilt angle	:20 deg.		
Period	:101 min.		
Recurrent Perio	d :4 days		
Local time	:10:30AM		
Data rate	:4.1Mbps		

APPLICATION CODE O : OCEAN
L : LAND
A : ATMOSPHERE
C : CRYOSPHERE

Fig. 22 Central wavelengths and bandwidths.

GLI Ocean Channel

	V	NIR		Т	IR
Ban	d nm	Band	n m	Band	μm
1	380	9	565	30	3.745
2	400	10	625	34	8.6
3	412	11	666	35	10.8
4	443	12	680	36	12.0
5	460	13	710		
6	490	14	749		
7	520	15	865		
8	545	10K11Cours Torison and Addition of the surface state			

http://www.eorc.masda.go.jp/ ADEOS-I/GLI/adeos2. html/

.

Ocean Science Group RA PI

G-0003 Ian James Barton **G-0011 Satoru Taguchi** G-0014 Mark R. Abbott G-0020. B. Greg Mitchell G-0035 Robert Frouin G-0059 Motoaki Kishino G-0062 Glenn F. Cota G-0065 Hajime Fukushima G-0068 Hiroshi Kawamura

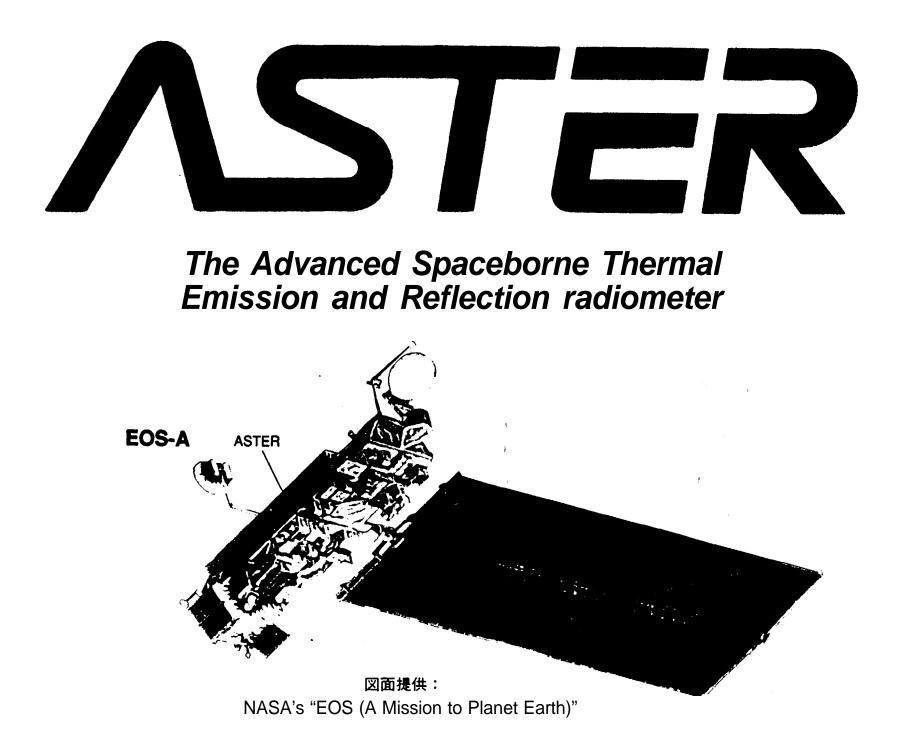
Algorithms for Standard Products

Algorithms for Research Products

- Accessory pigment Carotenoid, Phycobilin
- Phytoplankton species
 Trichodesmium, Coccolithus
- Natural fluorescence
- PAR
- Primary Production

Ecosystem method, Fluorescen

Absorption of suspended particles
SST skin


GLI Product

- Global 4 km resolution Standard
 Local 1 km resolution Request
- I-LAC 1 km resolution
 Near Japanese Islands
 continuation with OCTS I-LA

· CROSS CALIBLALZON GLI and MODIS

· Validate GLI Products with MODIS Products.

CHARACTERISTIC	VNIR	SWIR	TIR
Spectral Bands (band number: µm) (N: Nadir; B: Backward)	1: 0.52 - 0.60 2: 0.63 - 0.69 3N: 0.76 - 0.86 3B: 0.76 - 0.86	4: 1.600 - 1.700 5: 2.145 - 2.185 6: 2.185 - 2.225 7: 2.235 - 2.285 8: 2.295 - 2.365 9: 2.360 - 2.430	10 : 8.125 - 8.475 11: 8.475 - 8.825 12: 8.925 - 9.275 13: 10.25 - 10.95 14: 10.95 - 11.65
Ground Resolution (m)	15	30	90
Data Rate (Mbit s ⁻¹)	62	23	4.2
Scan Method	Push broom	Push broom	Whisk broom
Cross-Track Pointing (degrees)	± 24	±8.55	±8.55
Cross-Track Pointing (center_ pixel to center pixel; km)	646	232 '	232
Swath Width (km/# pixels)	60/4000	60/2000	60/667
IFOV (µrad) Nadir Backward	21.3±0.2 18.6±0.2	42.6 ±	127.8±
Detector Type	Si	PtSi-Si	HgCdTe
MTF at Nyquist Frequency Along track Cross track	≥0.20 ´ ≥0.25	≥0.20 ≥0.25	≥0.20 ≥0.25
Quantization (bits)	8	8	12

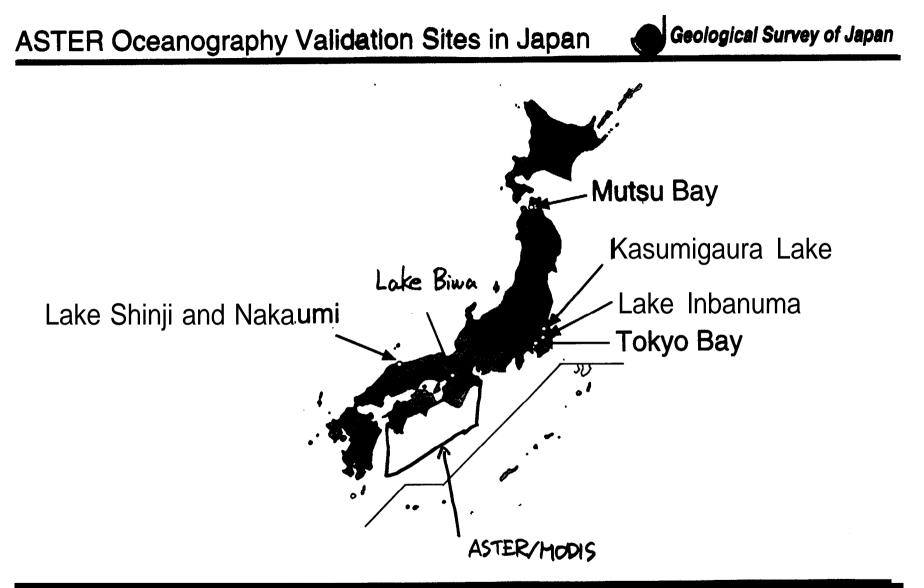
 Table 2-2. ASTER subsystem specifications

Proposal for ASTER-MODIS Joint Observation

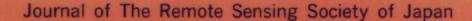
- Objective
 - Validate ASTER SST with MODIS SST.
 - Study sub-pixel phenomena in a MODIS pixel
- Location
 - Pacific Ocean, off the coast of Shikoku Island, Japan
 - 260 km(NS) by 430 km(EW)
- Frequency: three times per year
- ASTER Observation: Image strip between Shikoku and Kuroshio current Shikoku Island : Ground control point Coastal Water : "Cold" target Kuroshio Water : "Hot" target
- ASTER Oceanography working group has sent a Science Team Acquisition Request(STAR) for Shikoku.
- Availability of MODIS SST data...

Tsuneo Matsunaga

東京工業大学

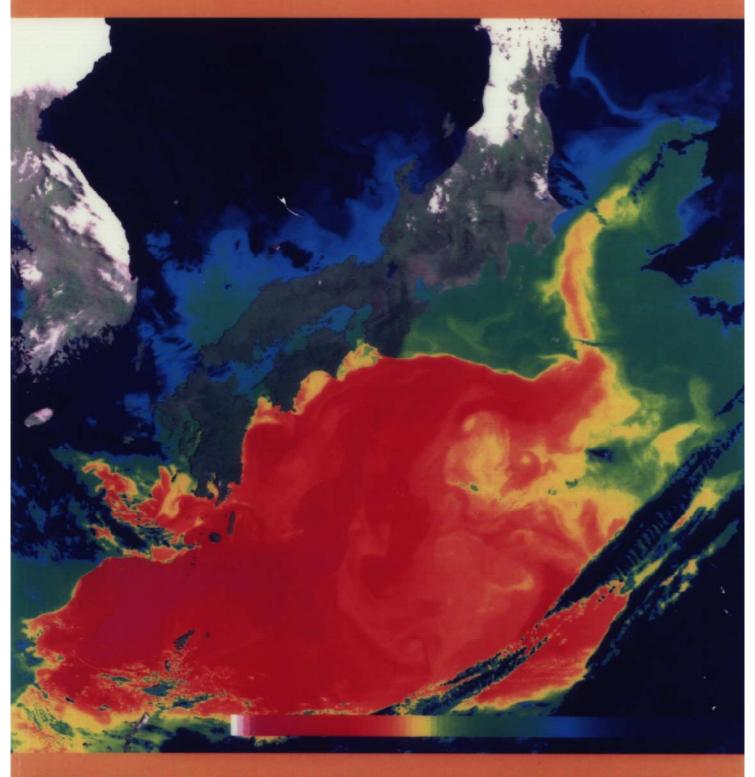


Comparison between ASTER and MODIS SSTs (2) Tokyo Institute of Technology


ASTER for MODIS SST

- Sub-pixel cloud fragment
 - ASTER can locate cloud fragments as small as 15 m (VNIR), 30 m (SWIR), and 90 m (TIR) which MODIS cannot identify.
- Detailed structure of oceanic fronts and so. on.
 - ASTER can act as "ZOOM-UP" lens for MODIS and show detailed thermal structures of sea surface phenomena while MODIS provides synoptic view of the same event.

Tsuneo Matsunaga



工業技術院 地質調査所

Vol. 15, No. 4 (1995)

日本リモートセンシング学会誌

社団法人 日本リモートセンシング学会

第15巻·第4号(1995)