Optical Spectroscopy for Protein Secondary Structure Evaluation

Keith A. Oberg, Ph.D. Medical Research Products A Advanced Bionics & MannKind Corporation

Optical Spectroscopy can help achieve equivalence

Conformational States of Proteins

Each state can have a unique spectroscopic signature

A Context for Optical Spectroscopy

Familiarity with the protein is critical
 Initial handling & pilot studies
 Formulation development
 Process development

Rapid & 'simple' tools are crucial
 Enables progress in initial stages
 Provides insight to the effect of environment
 Speeds resolution of development issues
 Improves in-process assay turnaround

A Context for Optical Spectroscopy

- Rapid
- Repeatable
- Inexpensive
- Nondestructive
- In-situ analysis possible
- Part-11 compliance
- Validatable
- Valuable screening tool
 reduces the need for
 complex / slow methods

- Low resolution
- Not always simple
- Not always reliable
- Troubleshooting not trivial
- Learning curve
- Limiting sample requirements
- Orthogonal data essential

Optical Methods & Application in Formulation

UV Absorbance

Parameters
 Intensity
 Band Shape
 Sensitivity
 Aromatic Residues
 Disulfides
 *Amide Bond

- Uses
 - Ouantitation
 Ouantitation
 - Service Territory Structure
 - Denaturation -C_m,
 Melts -T_m
- Characteristics
 - Reliable, simple, ubiquitous
 - Limited structural information

Fluorescence

Parameters

- Intensity
- Wavelength
- Anisotropy/polarization
- Sensitivity
 - Aromatic residues
 - Residue exposure
 - Residue proximity (FRET or quenching)
 - Cofactors
 - Dyes

Uses

- \odot Denaturation -C_m, T_m
- Tertiary or quaternary structure tracking
- Hydrodynamic properties, residue mobility
- Quenching
- Accessible hydrophobics
- Characteristics
 - Protein-specific
 - Solution

Fluorescence Examples

Circular Dichroism

Parameters

- Bllipticity
- Band shape (wavelength)

Sensitivity

- \circledast 2° structure α , U
- Chiral environment of aromatics & SS

Uses

- structure comparisons
- Cofactor binding& environment

Characteristics

- Small β-sheet signal
- Newer equipment is better
- Intensity critical
- Reference set needed for *a priori* structure analysis
- Far UV CD
 - Amide bands broad
 - Sensitive to UV absorbing solution components
 - Low concentration 0.01 5g/l, short path length better
 - aromatic contributions are protein specific
- Near UV CD
 - >1g/l, longer PL better
 - protein specific

CD Example 1

Truncated and full-length protein had different CD signals MED

CD Example 2

S

FTIR & (VCD)

Parameters

- Band-shape
- Frequency (wavelength)

Sensitivity

- Structure β sheet,
 helix/non-periodic
- Side-chains

Uses

- Structure estimation
- Secondary structural comparisons
- Side-chain environment& conformation
- Ligand binding
- Sconformational flexibility

Characteristics

- High protein concentrations (>5g/l)
- Interference from carboxylate in amide I
- Side chains and backbone signals overlap
- Band shape critical
- A priori structure estimation possible
- Difference spectroscopy common & simple
- Alternative solvents (D₂O) common
- Transparency not required
- Huge range of technique MEDICAL
 accessible

FTIR Example

Comparison of formulation pH

pH 7 black pH 6 blue pH 5 green pH 3 red pH 2 violet Arbitrary Y 2-0-1690 1710 1670 1650 1630 1610 Wavenumber (cm-1) 4 3-Absorbance 2– 1-0-1700 1690 1680 1640 1630 1620 1710 1670 1660 1650 1610 Wavenumber (cm-1)

pH Jumps simulate injection

Minimal Optical Instrumentation for Protein Work

CD-UV-Fluorescence Rectangular cells, 10um – 1cm ⊕ Thermal control (T_m) ⊕ Titrator (C_m)
 Integrated pH measurement FTIR Transmission – demountable CaF₂, 5um
 PTFE spacer

Secondary Structure Determination With Optical Spectroscopy

Secondary Structure from Spectra

2° Structure Determination from Optical Spectra

Curve Fitting: <u> Ourve Fitting:</u>

Assign bands*
 Integrate areas
 Results (IR only)

Principal Components: Build basis set* Train algorithm Onknown spectrum Model

Curve-Fitting of FTIR Spectra

Bacteriorhodopsin

Method	% $_{\alpha}$ -helix	% β-sheet	% turn
Curve fitting (FSD, auto) (Cabiaux et al., 1989)	51	18	21
Curve fitting (FSD, DR2) (Oberg and Fink, 1995)	52	20	24
Factor Analysis / RMR (Baumruk et al., 1996)	58	1	19
Electron Diffraction	77	0	2

Method	α -helix	β-sheet	turn	long loops
Curve fitting (FSD, DR2) Oberg et al. 1994	(25.4)	51.9	22.8	(25.4)
Curve Fitting Wilder et al. 1992	(20.6)	59.2	19.7	(20.6)
crystal structure	0	56	20	24

(in

Properties of the RaSP50 set: HE Space & Secondary Structure

similar secondary structure FCs but different folds. These demonstrate the spectral consequences of various differences in tertiary structure (Fig. 3).

Properties of the RaSP50 set: CATH Space & Tertiary Structure

Example: Bacteriorhodopsin

Method	% α -helix	% β–sheet	% turn
crystal structure	77	0	2
FSD and curve fitting (Cabiaux et al., 1989)	51	18	21
FSD, deriv. & curve fitting (Oberg and Fink, 1995)	52	21	19
Factor Analysis / RMR (Baumruk et al., 1996)	58	1	18
Partial Least Squares TF-ATR, 32 proteins	67	0	10
RaSP (PLS, TF-ATR)	75	0	11

DIC

PRODU

ΤS

The use of Hybrid IR-CD Spectra

		Human α -lactalbumin (in RaSP)			Bovine	Bovine α -lactalbumin (Not in RaSP)			
State	Data	α -Helix	β-Sheet	Turn	Other	α -Helix	β-Sheet	Turn	Other
Native	IR	35.9	2.9	15.1	42.9	31.0	13.4	14.3	40.3
Native	CD	25.3	11.5	12.6	39.8	26.1	14.2	12.9	39.1
Native	IR+CD	29.0	4.0	17.5	46.6	27.6	11.9	16.0	43.2
Native	Actual	30.1	6.5	18.7	44.7	30.6	6.5	15.9	47.1
А	IR	48.9	1.6	15.7	33.7	39.0	4.2	15.9	40.0
А	CD	42.2	7.4	12.3	37.5	29.3	14.1	12.9	42.5
A	IR+CD	43.8	0.0	15.7	41.9	31.9	1.6	17.0	48.0

MEDICAL ÎN research Products

The Performance of the Rasp50 Set in Secondary Structure Analysis

	α-helix		β -s h	<u>β-sheet</u> .			
	RMS		RMS				
Data	error	ζsubset	error	ζsubset			
	$ \Delta \text{IRCD}_{\text{det}} < 6\%$						
IR alone	4.82	4.24	7.19	2.65			
CD alone	4.46	4.58	7.62	2.50			
IR+CD	4.46	4.59	6.26	3.04			
	$ \Delta \text{IRCD}_{\text{det}} > 6\%$						
IR alone	8.59	2.78	6.90	2.44			
CD alone	9.60	2.49	10.26	1.64			
IR+CD	6.54	3.66	6.94	2.43			
max(CD/IR)	6.77	3.53	6.76	2.50			

RaSP analysis accuracy can be evaluated

Cluster Analysis

Optical Spectroscopy for Determining Secondary Structural Equivalence

Curve-Fitting of FTIR Spectra

FIGURE 2: Comparison of the interleukin-1 β amide I (1600–1700 cm⁻¹) and II (1500–1600 cm⁻¹) bands from ATR-FTIR after Fourier self-deconvolution (FSD) resolution enhancement. IB is the inclusion body, FA is folding aggregate, TA is thermal aggregate, K97V:N is native K97V, and wt:N is native wild type. The major peak (1625 or 1637 cm⁻¹) corresponds to β -sheet or extended structure.

FIGURE 3: Interleukin-1 β amide I curve-fit spectra from ATR-FTIR spectra showing the individual amide I components. IB is inclusion body, FA is folding aggregate, TA is thermal aggregate, and N is native. Reconstructed spectra are superimposed on original data; the fits were such that it is difficult to distinguish the two.

Difference Spectroscopy for Determining Structural Equivalence:

Conformational comparison
 Stability comparison
 Identification of gross and subtle conformational differences
 Comparison of formulations

FTIR Difference Spectroscopy

ΤS

FTIR Difference Spectroscopy

FIG. 11. Spectra of apomyoglobin with a "totally absorbing" cosolute, urea. The solutions used for this experiment would have been opaque in a transmission IR experiment. (Top) 8 M Urea with the water signal subtracted, (middle) protein signal from apomyoglobin in 8 M urea, (bottom) protein signal from extensively aggregated apomyoglobin in 2 M urea solution. The urea and H_2O signals have been subtracted from the apomyoglobin spectra.

Difference Enhancement Processing

Useful in measuring formulation effects Second derivative overlap integral Differentiate Overlap integral Difference sharpening structural distortion score Normalize Generate difference spectrum Fourier Self-Deconvolution Integrate |result| = score

Formulation Effects on Structure

Formulation Effects on Structure

DICAL 🖗

Structural Distortion and Shelf Life

Conclusions

- A broad range of low resolution optical spectroscopies are available that can probe a broad range of structure ensembles
- Optical techniques are rapid and reproducible, but do not stand alone
- Optical techniques can play role in the earliest stages of development
- Optical techniques are useful screens in troubleshooting development issues
- Optical spectroscopy can be useful on complex mixtures and physical states

Acknowledgements

- Anthony Fink
- Ron WetzelMargaret Speed
- Vladimir Uversky
- Erik Goormaghtigh
- Yvonne Looze
- Ron LebelPeter LordHakan Edstrom
- Thomas Lobl
- Mark King

- John Rolf
- Xichen Zhang
- John Patterson
- Mark Hokenson
- Barbara Gorecka
- Sandy Strawbridge
- Sumukh Ray
- Punam Patel
- Vidya Gadamasetti
- Catalina Wong
- Alona Vizel

