I. Georges Bank Winter Flounder by Lisa Hendrickson

1.0 Background

The Georges Bank winter flounder stock was last assessed in 1998 at SAW/SARC 28 (NEFSC 1999). The 1998 VPA assessment incorporated a catch at age from 1982 - 1997 and research survey indices from the U.S. autumn (1963-1997) and spring (1968-1998) surveys, as well as the Canadian spring (1987-1998) surveys. Fully-recruited F (ages 4-6) in 1997 was estimated to be 0.41 and spawning stock biomass was estimated to be 3,500 mt.

In 1999, medium term stochastic projections were generated (NDWG 2000) by deriving a 1998 fishing mortality rate (= 0.42) based on annual landings, then assuming a 1999 fishing mortality rate equal to 1998. Medium term projections were performed by applying the harvest control rule to determine the corresponding level of fishing mortality for 2000 - 2008.

2.0 2000 Assessment Update

The Fishery

Total commercial landings (U.S. and Canadian) of Georges Bank winter flounder have declined since 1997 (1,430 mt) to 1,328 mt in 1998 and 1,019 mt in 1999 (Table II; Figure II). Since the late 1960's, U.S. landings have been the predominant component of the total commercial landings. Canadian landings have averaged 0.1% to 2.7% of the total landings since 1970.

Canadian landings in 1997 (143 mt) reached their highest levels since 1966, but have since declined during 1998 and 1999, to 91 mt and 76 mt, respectively. U.S. landings have also declined since 1997. Landings for 1998 and 1999 were estimated, based on prorations, at 1,237 mt and 943 mt, respectively. Discarding of winter flounder occurs at low levels in both the otter trawl and scallop dredge fisheries. However, lack of reliable information to estimate either the magnitude or characterize the size and age distribution of discards precluded discard estimation.

Research Survey Indices

Stratified mean weight (kg) per tow and mean number per tow from the NEFSC spring (April 1968-1999) and autumn (October 1963-1999) bottom trawl surveys, as well as the Canadian spring (1987-1999) bottom trawl surveys, are presented in Table I2. NEFSC autumn survey biomass indices are also shown in relation to the landings for this stock in Figure I1. While landings declined during 1998 and 1999, autumn survey biomass indices increased slightly, reaching their 1996 level in 1999 (1.756 kg/tow).

3.0 Harvest Control Rule

The MSY-based control rule for Georges Bank winter flounder adopted in Amendment 9 was derived from survey-based proxies of biomass and exploitation. The parameters of this control rule were revised during SAW/SARC 28 due to revised estimates of landings and a revision to the strata set used to develop survey indices for the NEFSC spring and autumn surveys. The revised control rule defined maximum sustainable yield as 2,700 mt, and survey equivalents of MSY-based reference points. The F_{MSY} proxy is defined as catch / NEFSC autumn survey biomass index and the B_{MSY} proxy is defined as an autumn survey biomass index value. Threshold F is defined as an F_{MSY} proxy (= 1.125) when the NEFSC autumn survey biomass index is greater than 2.73 kg/tow and declines linearly to zero at 1/2 the B_{MSY} proxy (= 1.37 kg/tow). The target exploitation rate was defined as 75% of the F_{MSY} proxy (=0.84) when the NEFSC autumn survey biomass index is greater than 2.73 kg/tow and declines linearly to zero at 1.37 kg/tow (Figure I2).

Exploitation indices (catch/NEFSC autumn survey biomass index) during 1964-1999 are presented, in Table I3 and Figure I3, in relation to the harvest control rule F_{MSY} proxy (= 1.125). The 1997-1999 mean exploitation index equals 0.787 and the 1997-1999 mean NEFSC autumn survey biomass index equals 1.618 (Figure I2).

The availability of an analytical assessment for this stock provides an opportunity to update the harvest control rule. A revised control rule which incorporated estimates of mean biomass and F weighted by biomass would eliminate the necessity of translating between mean biomass and autumn survey units.

4.0 Forecasts

No stochastic projections were performed for 2000-2001. However, the 1999 U.S. and Canadian landings were used to recalculate the realized F_{1999} (= 0.34). The projected F_{1999} (=0.41) from the analysis conducted in 1999 (NDWG 2000) was assumed to equal the F_{1998} . This projected value for F_{1999} is within the 80th percentile of the recalculated F_{1999} value (= 0.34) (Tables I4 and I5).

5.0 Sources of Uncertainty

• Sampling of U.S. commercial landings may be inadequate to characterize the size and age composition, particularly in the years since 1992. This leads to uncertainty in the age composition of landings in the catch at age matrix.

- The exclusion of U.S. otter trawl and scallop dredge discards most likely results in an underestimation of fishery removals from the younger age classes (ages 0 to 3). Indications from both the sea sample and vessel trip record databases suggests that scallop dredge discards may have increased since the implementation of groundfish retention restrictions resulting in an underestimation of fishery removals of both younger and older age classes.
- There is some uncertainty about the accuracy of reported Canadian landings because of the non-targeted nature of the Canadian fishery and the tendency to report landings of some flatfish species, including winter flounder, as unclassified flounders.
- The Canadian fishery has no formal sampling program to estimate the size and age composition of Canadian landings. This assessment assumed that the size and age composition of Canadian landings was identical to the overall size and age composition in the U.S. fishery. This assumption is sensitive to the possibility that selectivity patterns may be different between the fisheries in each country.

6.0 References

- NEFSC [Northeast Fisheries Science Center]. 1999. Report of the 28th Northeast Regional Stock Assessment Workshop (28th SAW): Stock Assessment Review Committee (SARC) consensus summary of assessments. *Northeast Fish. Sci. Cent. Ref. Doc.* 99-08; 304 p.
- NDWG [Northern Demersal Working Group], Northeast Regional Stock Assessment Workshop. 2000. Assessment of 11 Northeast groundfish stocks through 1999: a report to the New England Fishery Management Council's Multi-Species Monitoring Committee. Northeast Fish. Sci. Cent. Ref. Doc. 00-05; 175 p.

	522-525		5Z (52	5ZE (521-526, 541-543)						
	USA	USA Canada		USSR	Total	USA	USA Canada		Total	Assessment
1962		6996	26		7022					
1963		6911	120	19	7050					
1964	1371	12656	146		12802					1517
1965	1176	10479	199	312	10990					1687
1966	1877	13807	164	156	14127					2197
1967	1917	10815	83	349	11247					2349
1968	1570	 	57			4346	59	372	4777	1999
1969	2167		116			6380		235	6615	2518
1970	2615		61			7020	64	40	7124	2716
1971	3092		62			14000	65	1029	15094	4183
1972	2805	 	8			10266	8	1699	11973	4512
1973	2269		14			4387	14	693	5094	2976
1974	2124		12			4508	12	82	4602	2218
1975	2409		13			4833	13	515	5361	2937
1976	1877		15			3732	11	1	3744	1893
1977	3572		15			5954	15	7	5976	3594
1978	3185		65			6378	65		6443	3250
1979	3045		19			6293	19		6312	3064
1980	3931		44			9941	44		9985	3975
1981	3993		19			9711	19		9730	4012
1982	2961		19			7347	19		7366	2980
1983	3894		14			8014	14		8028	3908
1984	3927		4			7574	4		7578	3931
1985	2151	1	12			4758	11		4769	2163
1986	1762		25			 				1787
1987	2637		32							2669
1988	2804		55			i I I				2859
1989	1880		11							1891
1990	1898		55							1953
1991	1814		14			 				1828
1992	1822		27			 				1849
1993	1662		21							1683
1994	907		65							972
1995	706		54							760
1996	1265		71							1336
1997	1287		143							1430
1998	1237		91							1328
1999	943		76							1019

Table I1.	Landings (m	t) of	Georges	Bank	winter	flounder	from	1962-1999	by
	statistical	area	and cour	ntry.					

Table 12.

Gec Spr Can the coe

Standardized, stratified abundance (numbers) and biomass (weight) indices for Georges Bank winter flounder from the U.S. NEFSC Spring and Autumn, and Canadian Spring research vessel bottom trawl surveys. U.S. offshore survey strata 13-22; Canadian survey strata (5Z1-5Z8). Canadian biomass indices were estimated using the stratified mean number at length and the U.S. survey length-weight regression coefficients. Door standardization coefficients of 1.46 (numbers) and 1.39 (weight) applied to U.S. survey indices before 1985 to account for differences in catchability between survey doors.

	U.S. Sprin	g Survey	U.S. Autum	n Survey	Canada Spring Survey			
	Number/tow	kg/tow	Number/tow	kg/tow	Number/tow	kg/tow		
1963			1.200	1.815				
1964			1.298	1.822				
1965			2.152	2.050				
1966			5.163	5.655				
1967	Spring Survey in	nitiated in 1968	1.791	2.074				
1968	2.700	3.114	1.308	1.072				
1969	3.136	4.290	2.370	2.385				
1970	1.864	2.294	5.620	6.490				
1971	1.838	2.168	1.324	1.259				
1972	4.946	5.321	1.261	1.580				
1973	2.946	3.507	1.218	1.195				
1974	6.049	5.782	1.193	1.464				
1975	1.955	1.407	3.790	2.061				
1976	4.672	3.012	5.987	3.925				
1977	3.792	1.580	4.862	3.992				
1978	7.068	5.055	4.056	3.100				
1979	1.736	2.206	5.065	3.829				
1980	3.221	2.801	1.661	1.865				
1981	3.727	3.749	3.831	2.434				
1982	2.295	1.523	5.301	2.692				
1983	8.405	7.111	2.726	2.363				
1984	5.529	5.604	3.933	2.445				
1985	3.837	2.650	1.979	1.119				
1986	2.003	1.214	3.575	2.178	Canadian Survey ini	tiated in 1987		
1987	2.803	1.247	0.762	0.889	3.73	2.83		
1988	2.925	1.648	4.084	1.273	2.70	1.65		
1989	1.299	0.757	1.560	1.051	3.48	1.88		
1990	2.803	1.573	0.498	0.346	3.29	1.74		
1991	2.403	1.319	0.268	0.136	1.43	0.97		
1992	1.416	0.898	0.677	0.384	2.25	1.39		
1993	1.018	0.570	1.166	0.663	2.78	1.45		
1994	1.292	0.578	0.870	0.578	2.45	0.98		
1995	2.613	1.489	2.357	1.337	3.10	1.17		
1996	2.314	1.504	1.539	1.756	2.20	1.12		
1997	1.610	1.192	1.744	1.534	2.80	1.77		
1998	0.762	0.722	1.784	1.565	1.42	1.08		
1999	3.830	3.479	1.539	1.756	0.98	0.74		
2000	4.420	3.693						

	Exploitation					
Year	Index					
1964	0.833					
1965	0.823					
1966	0.389					
1967	1.133					
1968	1.865					
1969	1.056					
1970	0.418					
1971	3.322					
1972	2.856					
1973	2.490					
1974	1.515					
1975	1.425					
1976	0.482					
1977	0.900					
1978	1.048					
1979	0.800					
1980	2.131					
1981	1.648					
1982	1.107					
1983	1.654					
1984	1.608					
1985	1.933					
1986	0.820					
1987	3.002					
1988	2.246					
1989	1.799					
1990	5.645					
1991	13.441					
1992	4.815					
1993	2.538					
1994	1.682					
1995	0.568					
1996	0.761					
1997	0.932					
1998	0.849					
1999	0.580					

GB Winter Flounder 1998 3 100 4577161 0 1 0 0 0 0 0 1 0 0 0 0 0 1 1 7 1 7 0.200000 0.168000 0.300000 0.474000 0.670000 0.917000 1.195000 1.73400 0.387000 0.573000 0.788000 1.055000 1.137200 1.73500 0.221000 0.000000 0.620000 0.920000 1.000000 1.000000 1.000000 1.00000 0.200000 3 16 4627000 2725000 6089000 5963000 8027000 5307000 9002000 5243000 3327000 4523000 2441000 2906000 4813000 6944000 2987000 946000 1000 bootN.dat 1000.000 0.000 11400000.000 0.33 0.0000 0.540000 0.860000 1.000000 1.000000 1.000000 1.000000 110 1328000 1019000 0 0.0 0.0 0.420

<u>Table 15. Output file from stochastic projection program used to</u> recalculate realized F_{1999} (= 0.34).

PROJECTION RUN: GB Winter Flounder INPUT FILE: gbwf2.inp OUTPUT FILE: gbwf2.out RECRUITMENT MODEL: 3 NUMBER OF SIMULATIONS: 100 MIXTURE OF F AND QUOTA BASED CATCHES YEAR F QUOTA (THOUSAND MT) 1998 1.328 1999 1.019 0.420 2000 SPAWNING STOCK BIOMASS (THOUSAND MT) YEAR AVG SSB (000 MT) STD 1998 3.292 0.597 1999 3.203 0.689 2000 3.574 0.752 PERCENTILES OF SPAWNING STOCK BIOMASS (000 MT) 5% 10% 50% 75% 90% 95% 99% YFAR 1% 25% 2.354 1998 1.996 2.568 2.861 3.281 3.670 4.042 4.320 4.805 1999 1.747 2.113 2.379 2.717 3.184 3.635 4.063 4.405 4.960 2000 1.951 2.391 2.643 3.064 3.545 4.050 4.534 4.849 5.519 ANNUAL PROBABILITY THAT SSB EXCEEDS THRESHOLD: 0.000 THOUSAND MT Pr(SSB > Threshold Value) YEAR 1998 1.000 1999 1.000 1.000 2000 MEAN BIOMASS (THOUSAND MT) FOR AGES:1 TO 7 YEAR AVG MEAN B (000 MT) STD 1998 4.202 0.692 1999 4.560 0.853 4.942 0.917 2000 PERCENTILES OF MEAN STOCK BIOMASS (000 MT) YFAR 1% 5% 25% 50% 75% 90% 95% 99% 10% 3.109 5.393 1998 2.704 3.382 3.719 4.179 4.631 5.064 5.962 1999 2.723 3.221 3.501 3.982 4.528 5.106 5.648 6.003 6.731 2000 2.932 3.480 3.785 4.306 4.913 5.550 6.133 6.487 7.202 ANNUAL PROBABILITY THAT MEAN BIOMASS EXCEEDS THRESHOLD: 11.400 THOUSAND MT Pr(MEAN B > Threshold Value) YEAR 0.000 1998 0.000 1999 2000 0.000 F WEIGHTED BY MEAN BIOMASS FOR AGES:1 TO 7 YEAR AVG F_WT_B STD 0.325 0.056 1998 1999 0.232 0.046 2000 0.280 0.030 PERCENTILES OF F WEIGHTED BY MEAN BIOMASS FOR AGES:1 TO 7 25% YEAR 1% 5% 10% 50% 75% 90% 95% 99% 1998 0.221 0.245 0.262 0.287 0.318 0.357 0.393 0.426 0.489 1999 0.151 0.170 0.180 0.200 0.225 0.256 0.291 0.316 0.374 2000 0.209 0.230 0.241 0.259 0.280 0.301 0.318 0.329 0.349 ANNUAL PROBABILITY THAT F WEIGHTED BY MEAN BIOMASS EXCEEDS THRESHOLD: 0.330 Pr(F_WT_B > Threshold Value) YEAR 1998 0.404 0.034 1999 2000 0.046 RECRUITMENT UNITS ARE: 1000. FISH AVG BIRTH YFAR RECRUITMENT STD 1998 4738.131 2088.952 4748.381 2091.011 1999 2087.938 2000 4726.709 PERCENTILES OF RECRUITMENT UNITS ARE:1000. FISH BIRTH YEAR 1% 5% 10% 25% 75% 90% 95% 99% 50% 1998 946.000 946.000 2441.000 2906.000 4627.000 5963.000 8027.000 9002.000 9002.000 1999 946.000 946.000 2441.000 2987.000 4627.000 6089.000 8027.000 9002.000 9002.000 2000 946.000 946.000 2441.000 2906.000 4627.000 5963.000 8027.000 9002.000 9002.000

Table I5. (Cont.)

LANDIN	GS FOR	F-BASED	PROJEC	TIONS								
YEAR	AVG	LANDING	S (000	MT) S	TD							
1998		1.328		0.	000							
1999	9 1.019			0.	000							
2000	0 1.380		0.	281								
PERCEN	TILES C	F LANDI	NGS (00	0 MT)								
YEAR	1%	6	5%	1	0%	25%		50%	75%	90%	95%	99%
1998	1.	328	1.328	1	. 328	1.32	8	1.328	1.328	1.328	1.328	1.328
1999	1.	019	1.019	1	.019	1.01	9	1.019	1.019	1.019	1.019	1.019
2000	0.	766	0.937	· 1	.030	1.18	9	1.370	1.559	1.738	1.857	2.095
REAL	ZED F S	ERIES F	OR QUOT	A-BASED	PROJEC	TIONS						
YEAR	AVG	F S	TD									
1998	0.44	2 0.	097									
1999	0.35	2 0.	091									
2000	0.42	20 0.	000									
DEDCE	NTILES		17ED E	SEDIES								
	10		100	JENIES 25%	E0%	75%	0.0%	0.5%	0.0%			
1000	0 070	0.045	0 226	20%	0 404	0 404	90%	90%	99%			
1990	0.270	0.315	0.330	0.375	0.424	0.494	0.301	0.021	0.749			
1999	0.206	0.235	0.257	0.290	0.335	0.396	0.460	0.516	0.641			
2000	0.420	0.420	0.420	0.420	0.420	0.420	0.420	0.420	0.420			

Figure I1. Total commercial landings (U.S. and Canadian) of Georges Bank winter flounder, 1964-1999, and NEFSC autumn bottom trawl survey stratified mean weight (kg) per tow in 1963-1999.

Figure I2. Harvest control rule for Georges Bank winter flounder based on survey equivalents of MSY-based reference points and 1997-1999 mean exploitation index.

Figure I3. Trends in Georges Bank winter flounder exploitation indices (catch/autumn survey biomass index), during 1964-1999, in relation to the harvest control rule F_{MSY} proxy (= 1.125).