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Abstract

Many machine learning problems involve predicting the joint strategy choice of some goal-
directed “players” engaged in a noncooperative game. Conventional game theory predicts
that that joint strategy satisfies an “equilibrium concept”. The relative probabilities of the
joint strategies satisfying that concept are not given, and all other joint strategies are given
probability zero. As an alternative, I view this prediction problem as one of statistical
inference, where the “data” includes the game specification. This replaces the game theory
issue of how to specify a set of equilibrium joint strategies with the issue of how to specify
a density function over joint strategies.

I explore a Bayesian version of such a Predictive Game Theory (PGT) using the en-
tropic prior and a likelihood that quantifies the rationalities of the players. A popular game
theory equilibrium concept parameterized by player rationalities is the Quantal Response
Equilibrium concept (QRE). I show that for some games the local peaks of the posterior
density over joint strategies approximate the associated QRE’s, and derive the associated
correction terms. I also discuss how to estimate parameters of the likelihood from obser-
vational data. I end by discussing how PGT can be used to define an equilibrium concept,
thereby solving a long-standing problem of conventional game theory.

Keywords: Multi-agent systems, Noncooperative Games, Quantal Response Equilibrium,
Bayesian Statistics, Statistical Physics

1. Introduction

Say we have a system of interest that contains some goal-seeking agents. The specification
of the utility functions of those agents is potentially very informative data concerning that
system’s state. Accordingly, it would be useful if we could incorporate such utility function
data in statistical modeling of the system using the same kinds of techniques used in machine
learning to incorporate other, more conventional kinds of data concerning the system. In
this paper I present one way to do this.

1.1 Background

Many scenarios of interest in machine learning involve a set of goal-directed agents. Typ-
ically those agents have differing utility functions. In some of these scenarios all the goal-
seeking agents are artificial. Example include distributed adaptive control, distributed
reinforcement learning (e.g., such systems involving multiple autonomous adaptive rovers
on Mars or multiple adaptive telecommunications routers), and more generally multi-agent
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systems involving adaptive agents (Ferber (1996); Shamma and Arslan (2004); Schaerf et al.
(1995); Bieniawski et al. (2005); Tesfatsion and Judd (2006); Kalyanakrishnan et al. (2007);
Greenwald et al. (2003); Greenwald and Littman (2007); Brafman and Tennenholtz (2003);
Shoham et al. (2007); Mannor and Shamma (2007)). In other instances some of the agents
are human beings. Examples here include air-traffic management (Hwang et al. (2007),
multi-disciplinary optimization (Cramer et al. (1994); Choi and Alonso (2004)), and in a
certain sense, much of mechanism design, and in particular design of auctions (Fudenberg
and Tirole (1991); Myerson (1991); Nisan and Ronen (2001)).

Often in such scenarios we can quantify the goals of the agents as utility functions.
Traditional machine learning analysis of such scenarios has taken one of three approaches
to exploiting knowledge of those utility functions. The first approach is to simply ignore
them, and conduct the analysis as if one didn’t know them. In the second approach one
tries to exploit knowledge of the utility functions by identifying the agents as players in a
non-cooperative game defined by the utility functions, and then assuming that the actions
of the agents/players are at a Nash Equilibrium (NE) of that game (Myerson (1991); von
Neuman and Morgenstern (1944); Luce and Raiffa (1985)). (See Sec. 1.3 for the formal
definition of Nash equilibrium.) The third approach explored in machine learning has been
to model the agents as automata whose behavior involves their utility functions (Fudenberg
and Levine (1998); Jennings et al. (1998); Rubinstein (1998)).

The first approach throws away a major piece of data concerning the system. Indeed,
in the scenarios traditionally studied in behavioral game theory (Camerer (2003); Starmer
(2000); Hey and Orme (1994); Kahneman (2003b); Tversky and Kahneman (1992); Loomes
et al. (1998)), that data is all of our information about the system. While the second
approach doesn’t have this shortcoming, it conflicts with the extensive experimental data
that has established that even human beings do not play NE, never mind artificial agents.
(See below and Sec. 4 for other problems with using NE.)

While avoiding the shortcomings of the first two approaches, the instances of the third
approach explored to date have modeled the agents as simple learning algorithms. However
this introduces a dynamics to the analysis even if there is no such dynamics in the scenario
under study. Temporal quantities like initial conditions, asymptotic convergence properties,
time since initialization, etc. are all crucial issues with systems of interacting learning
algorithms. However time may not even be a variable in one’s data set. Another difficulty
with modeling the agents as learning algorithms is that typically closed-form calculations
are impossible and elaborate computer simulations of the entire system are necessary to get
results.

In the next subsection I introduce a fourth approach to this problem. In this approach,
loosely speaking, I try to exploit knowledge of the utility functions of the players the same
way one would exploit other, more conventional machine learning data.

1.2 Approach of this paper

Say one wishes to predict some characteristic of interest y concerning some physical system,
based on some information I concerning the system. Machine learning provides many
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ways to convert such a I into a probability distribution over y.1 Such a distribution is
far more informative than a single “best prediction”. However if needed we can synopsize
the distribution with a single prediction. One way to do that is to use the mode of the
distribution as the prediction. When the distribution is a Bayesian posterior probability,
P (y | I ), this mode is called the Maximum A Posterior (MAP) prediction. Alternatively,
say there is a real-valued loss function, L(y, y′) that quantifies the penalty we will incur if
we predict y′ and the true value is y. Then Bayesian decision theory counsels us to predict
the “Bayes optimal” value, which is the y′ that minimizes the posterior expected loss,
∫

dyL(y, y′)P (y | I ) (Jaynes and Bretthorst (2003); Gull (1988); Loredo (1990); Bernardo
and Smith (2000); Berger (1985); Zellner (2004); Paris (1994); Horn (2003)).

A priori, there is no reason that this standard approach to predicting the behavior of
physical systems is not appropriate when the physical system in question is some human
beings playing a game. To do this we would identify y with the joint choice made by the
players in the game. For example, if the players are engaged in a conventional strategic
form game, the choice of each player i is a probability distribution over her possible moves
in the game (Fudenberg and Tirole (1991); Myerson (1991); Aumann and Hart (1992);
Basar and Olsder (1999)). In game theory, this distribution is called the “mixed strategy”
of i (or just “strategy” for short). In such strategic form games the moves of the players
are independent, so the joint choice of the players — y — is the product of their mixed
strategies, which I write as q ≡

∏

i qi. In this example, I is the details of the game (e.g.,
the utility functions of the players), perhaps in conjunction with other information, like
quantifications of how rational each player is. So the Bayesian posterior is a distribution
over joint strategies, P (q | I ).

I use the term Predictive Game Theory (PGT) to refer to any application of statisti-
cal inference (Bayesian or otherwise) to games, in contrast to the use of statistical inference
by some players within a game. The ultimate goal of PGT is to use the same kinds of
statistical tools to exploit all information about a system being predicted, whether that in-
formation is the utility functions of some players in the system, or some more conventional
kind of statistical data concerning the system.

In this paper I focus on PGT for non-cooperative strategic form games, as in the ex-
ample sketched above (although PGT is also applicable to cooperative games, unstructured
bargaining, etc.). Perhaps the primary alternative to this type of PGT is conventional non-
cooperative strategic form game theory. That theory predicts that the joint strategy q of a
game specified in I necessarily falls in a set E(I ) that is given by applying an “equilibrium
concept” (e.g., the NE) to I . The relative probabilities of the strategies q ∈ E(I ) are not
specified. Moreover, all joint strategies not in E(I ) are assigned probability zero. PGT
replaces the game theory issue of how to specify such a set of equilibrium joint strategies for
a specified game, E(I ), with the issue of how to specify a density function over all possible
joint strategies of that game, e.g., a Bayesian posterior P (q | I ).

There are several important distinctions arising from this difference between the ap-
proach of game theory and of PGT. Using the kind of statistical techniques common in ma-
chine learning, PGT typically assigns non-zero probability density to a set of joint strategies

1In this paper I will sometimes be loose in distinguishing between probability distributions, probability
density functions, etc., and will generically write any of them as “P (. . .)” with the context making the
meaning clear.
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with non-zero measure. In contrast, the sets satisfying equilibrium concepts typically have
measure zero. Indeed, historically the motivation behind the use of equilibrium concepts
was a desire to make a “point prediction” of a unique joint strategy for any provided game.

In the usual way, a loss function can be used to distill PGT’s density function over joint
strategies into a single strategy, via decision theory. This mapping of a game to a single
Bayes optimal joint strategy can be viewed as an “equilibrium concept”. This equilibrium
concept depends on the loss function though (which is not specified in the game), unlike
conventional equilibrium concepts. Furthermore, this concept typically does produce a
single joint strategy. This contrasts with conventional equilibrium concepts, which typically
need some sort of “refinement” to produce a single strategy.

In addition, the Bayes optimal joint strategy typically is not one under which the players
are statistically independent. This is true even though the support of the density function
is restricted to joint strategies under which the players are statistically independent. Fur-
thermore, often under the Bayes optimal strategy no player’s strategy is best-response to
the strategies of the other players. Assuming there is more than one NE of the game, this
is true even if the players are all fully rational, i.e., if the support of the density over joint
strategies is restricted to the NE. In this sense, bounded rationality is automatic under
PGT, in contrast to conventional game theory.

To keep this paper tractable I have restricted the type of PGT issues explored here. The
first such restriction is to focus on non-repeated strategic form games. The presumption,
implicit in much of conventional game theory, is that there is some form of coupling among
the players that allows each player i to (partially) account for the other players’ utility
functions when choosing her moves. However that coupling is not explicitly considered.2

The second restriction is to only consider the Bayesian approach to inferring a distribu-
tion over q’s (Zellner (2004); Loredo (1990)). Thirdly, I restrict attention to I that consists
solely of specification of the game the players are engaged in, together with the rationalities
of the players, suitably quantified. This restriction is manifested in what kinds of likelihood
are considered. More sophisticated analysis might consider I that also includes samples
of distributions (e.g., of the mixed strategy of the players), that includes the kind of data
found in decision analysis, user modeling (Train (2003); Heckerman (1999); Horvitz (2005)),
etc. Such analysis would involve different kinds of likelihood from the one considered here,
likelihoods designed to integrate knowledge of the utility functions of the agents in a system
with other, more conventional probability-based data concerning the agents. In contrast,
conventional game theory does not concern posterior distributions over the possible states
of a system, and therefore cannot exploit such likelihoods. So it cannot be used to integrate
knowledge of utility functions with more more conventional data for prediction purposes.

A fourth restriction is to only explore the Bayesian posterior for an entropic prior over
mixed strategies (Loredo (1990)). More sophisticated analysis could consider alternative
priors. Finally, I am only considering a likelihood that says, in essence, that the logit
Quantal Response Equilibria (QRE) (J. K. Goeree (1999); McKelvey and Palfrey (1995,
1998); Chen and Friedman (1997))) — a very popular model of bounded rationality in

2For work‘ that explicitly does consider such coupling as “learning processes” in repeated form games,
see (Fudenberg and Levine (1998); Shoham et al. (2007); Stone (2007); Erev and Roth (2007); Hu and
Wellman (2003)).
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conventional game theory — is consistent with human behavior in games against Nature.
As elaborated below, this is a very weak choice for the likelihood function.

These choices for the prior and likelihood over q’s specify the posterior, in the usual way.
The QRE q’s turn out to be the local peaks of that posterior, for games against Nature.
In particular the MAP distribution is a QRE for such a game. However with the same
choices of prior and likelihood, the QRE’s are only approximations to the local peaks of the
posterior for strategic games involving other goal-seeking players. Below I derive conditions
under which those approximations are accurate. I also derive correction terms to those
approximations.

The likelihood considered in this paper is parameterized by the usual QRE parameters
(the exponents in the logit distributions of the players). I call these parameters the “ra-
tionalities” of the players. Some joint mixed strategies q (typically almost all of them) are
not a QRE for any choice of the player rationalities. For example, this can be the case
for certain NE. This can be a major problem for the QRE as a predictive model, since it
means that certain data is incompatible with that model. However I show here that every
joint strategy — including every NE — has non-zero posterior for an appropriate set of
rationalities of the players. So this issue is not a problem for PGT. I also discuss how to
estimate rationalities of players from observational data.

In the remainder of this introduction I present some notation. (A formal definition of the
NE is presented there.) In the next section I present background on the QRE, the entropic
prior, and logit (Boltzmann) distributions. In the following section I present a likelihood
function based on the QRE for a game against Nature. I then discuss the posterior over
joint mixed strategies given by combining that likelihood with the entropic prior. It is here
that I derive sufficient conditions for the QRE’s of an N -player game to be the MAP’s
of the posterior over joint mixed strategies. In this section I also discuss how to estimate
the parameters of logit-based distributions in noncooperative games, which is important
for actually using PGT. (There seems to be misunderstanding in the experimental game
theory literature on valid methods for estimating such parameters, e.g., in the context of
the QRE.)

In the following section I step back and discuss in broad terms why the equilibrium
concepts of conventional game theory are insufficient for the purposes of PGT, i.e., why
conventional game theory is deficient under its positive interpretation. In particular I discuss
how and why probability theory, as manifested in PGT, demands (sic) bounded rationality,
in contradiction of must of conventional game theory. (This section can be read without
first reading the earlier sections.) In the final section I briefly survey some applications of
PGT not presented in this paper.

1.3 Notation

Consider a general noncooperative game that has N independent players, indicated by the
natural numbers {1, 2, . . . , N}. Each player i has the finite set of allowed pure strategies
xi ∈ Xi, where |Xi| is the (finite) cardinality of Xi. The set of all possible joint strategies
is X , X1 × X2 × . . . × XN with cardinality |X| ,

∏N
i=1 |Xi|, a generic element of X

being written as x. ui : X → R is player i’s utility function, the mixed strategy of i is the
distribution qi(xi), and q(x) ,

∏N
i=1 qi(xi).
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∆X is the Cartesian product of the simplices ∆Xi
(implicitly imbued with the stan-

dard product topology over simplicial complexes). So mixed joint strategies (i.e., product
densities) are elements of ∆X . The expected utility of player i is written as Eq(u

i) =
∑

x

∏

j qj(xj)u
i(x). I define each player i’s environment function, often with the asso-

ciated random variable q−i implicit, as U i
q
−i

(xi) , Eq−i
(ui | xi). I will sometimes write

Eq(u
i) = qi · U i. As an example, given a set of utility functions, the NE of the asso-

ciated game is any q ∈ ∆χ such that for no i ∈ {1, . . . N} is there a q′i ∈ ∆Xi
where

q′i · U
i
q
−i

> qi · U
i
q
−i

.

Cov is the covariance operator, defined for any countable set of variables {y} and asso-
ciated distribution p ∈ ∆Y by

Covp[a(y), b(y)] ,
∑

y∈Y

p(y)a(y)b(y) −
∑

y

p(y)a(y)
∑

y

p(y)b(y).

(For added clarity, I will sometimes write this as Covp(y)[a(y), b(y)].) Given any player i,
I will use −i to refer to the set of all N − 1 other players. In particular, I will sometimes
write q−i × qi to indicate the p ∈ ∆X with components p(x) = p(xi, x−i) , qi(xi)q−i(x−i).

Curly braces indicate an entire set and vertical bars the cardinality of a finite set, e.g.,
{βi} is the set of all values of βi for all i, and |{βi}| the number of such i. Bold letters,
e.g., ~a, mean a finite-dimensional vector over the extended real numbers R

∗ (i.e., the reals
together with positive and negative infinity (Aliprantis and Border (2006))). ~a � ~b indicates
the generalized inequality that ∀i, ai ≥ bi. I(.) is the indicator function that equals 1 if the
equation that is its argument is true and 0 otherwise. Just as “P (.)” means a distribution or
density function as appropriate, so “δ(.)” indicates the Dirac or Kronecker delta function,
as appropriate.

Often no distinction will be made in the notation between finite and infinite spaces, with
measures and the like being implicitly matched to the type of space. In particular, sometimes
the symbol “

∫

” will be used with the associated measure implicit. As an example, for finite
spaces the point-mass measure is presumed, so that

∫

is equivalent to a sum. Similarly,
sometimes for expository simplicity, the term “distribution” will be taken to mean either a
distribution or a density, with the context making the precise meaning clear.

The Shannon entropy of a density q is written as S(q) = −
∑

y q(y)ln[ q(y)
µ(y) ]. As usual, µ

is an a priori measure over y, often interpreted as a prior probability distribution. Unless
explicitly stated otherwise, here we will always assume it is uniform, and not write it
explicitly. (See Jaynes (1957); Jaynes and Bretthorst (2003); Cover and Thomas (1991)).)

To distinguish it from densities like q that we wish to predict from outside of a game,
a distribution P that describes our prediction concerning a variable in a game is called a
predictive distribution.3 So for example, P (q | I ), P (x | I ) =

∫

dq P (q | I )q(x),
and P (q | I , xj) are all predictive distributions. Predictive distributions reflect our knowl-
edge/insight/ignorance concerning the game. This contrasts with distributions like q, which
reflect the “physical” distributions of the players in the game.

3This use of the term “predictive distribution” should not be confused with the one arising in Bayesian
statistics.
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2. Mathematical Background

Readers familiar with the QRE, entropic prior, and logit distributions are highly encouraged
to skip this section, going straight to the “meat” of this paper.

2.1 The QRE

In this paper I consider behavioral formalizations of the limited rationality of humans rather
than algorithmic ones. (See Fudenberg and Levine (1998); Hart (2005); Rubinstein (1998);
Russell and Subramanian (1995); Georgeff et al. (1999) for examples of formalizations of
limited rationality that instead model human thought.) There is an extensive literature on
such formalizations. Examples are stochastic preference theory, non-expected utility theory,
behavioral game theory in general and prospect theory in particular, etc. (See Starmer
(2000); Camerer (2003); Kahneman (2003a); Kurzban and Houser (2005); Fudenberg and
Levine (1998); List and Haigh (2005) for excellent overviews of this work.)

Of particular interest here is the behavioral formalization of limited rationality given by
the (logit) Quantal Response Equilibrium (QRE). This is a modification of the conventional
Nash equilibrium concept where one simultaneously models every players i in a game as
playing a mixed strategy qi(xi) that is a logit (i.e., Boltzmann) distribution in her expected
utilities. More precisely, one predicts that the outcome of the game is a solution to the
simultaneous set of equations

qi(xi) ∝ eβiEq(ui|xi) ∀i (1)

where the joint distribution q(x) =
∏

i qi(xi).

Not all q can be cast as a QRE for some appropriate {βi} (see Sec. 3.3 below). So in
particular, a q that occurs in the real world will in general differ, even if only slightly, from
every possible QRE. This means that with enough experimental data to tightly constrain
what q could be, in general we will be able to rule out every QRE as inconsistent with the
data. This is a major shortcoming of the QRE (a shortcoming of all equilibrium concepts
with a small number of parameters). Another shortcoming is that many games and asso-
ciated sets {βi} have multiple QRE’s and the QRE formalism provides no way to assign
them relative probabilities (just like with the NE).

I use the notation that q∗{βi}
(x) means a QRE, where the parameters {βi} are often

implicit. In general, for any particular game and (non-negative) {βi}, there is at least one
(and may be more than one) associated q∗. This follows from Brouwer’s fixed point theorem
(McKelvey and Palfrey (1995); Wolpert (2004a)).

At a NE q, simultaneously each player i sets her strategy qi to maximize her expected
utility Eqi,q−i

(ui) = Eqi
(U i

q
−i

) for the given q−i. Consider modifying this by having qi

instead maximize the associated free utility, given by

FU i
q
−i

,Ti
(qi) , Eqi

(U i
q
−i

) + TiS(qi) (2)

for some fixed Ti. For all Ti → 0 the q that simultaneously maximizes FU i
q
−i

,Ti
∀i is a NE

(Wolpert (2004a); McKelvey and Palfrey (1995); Meginniss (1976); Fudenberg and Kreps
(1993); Fudenberg and Levine (1993); Luce (1959)). For Ti > 0 one instead gets bounded
rationality. Indeed, under the identity Ti , β−1

i ∀i the solution to this extension of the

7



Wolpert

Nash equilibrium concept is a QRE.4 In this, Ti can be viewed as a quantification of the
rationality of player i.

In the context of game theory, the free utility Lagrangian has been investigated in
Fudenberg and Kreps (1993); Fudenberg and Levine (1993); Shamma and Arslan (2004).
The first attempt to derive it from first principles in that game theory context was in
Meginniss (1976).

Historically, the QRE was not motivated in terms of free utilities but by modeling payoff
uncertainty (McKelvey and Palfrey (1995)). It can also be motivated as the equilibrium of
a learning process by the players, a process that is closely related to replicator dynamics
(Wolpert (2004b); Anderson et al. (2002); Goeree and Holt (1999)). In addition, in a non-
game-theory context, the QRE can be derived from first principles as a way to do distributed
control (Wolpert and Rajnarayan (2007); Wolpert et al. (2006)).

Finally, there has been a large body of work relating economics and statistical physics
(Brock and Durlauf (2001); Durlauf (1999); Dragulescu and Yakovenko (2000); Aoki (2004);
Farmer et al.). (Indeed, there is now an entire field of “econophysics”.) Since the logit distri-
bution is the cornerstone of statistical physics (where it occurs in the “canonical ensemble”
and the “grand canonical ensemble”), the QRE is also connected to statistical physics. In
particular, consider a team game, in which all ui are the same. Say that all players in
such a game have the same rationality, i.e., Ti is independent of i. As discussed in Wolpert
(2004a, 2005), for such a game the (shared) free utility essentially becomes what in statis-
tical physics is known as a “mean field approximation” to the “free energy” of a system
(hence the terminology “free utility”).

More generally, the QRE is akin to the canonical ensemble of statistical physics, with
three modifications. First, the single Hamiltonian of a statistical physics system is replaced
by the multiple utility functions of an N player game. This means we have multiple Boltz-
mann distributions rather than one, with move-conditioned expected utility functions play-
ing the role in each such distribution played by the energy spectrum in statistical physics
systems. Second, the exponent of those Boltzmann distributions is positive rather than
negative, since the bias in an N player game is towards higher utility values, rather than
towards lower energy values. Finally, under the QRE the players do not need to have the
same “temperature”. (Interestingly though, many of the experimental studies of the QRE
have assumed that they do share the same temperature.)

2.2 The entropic prior

Shannon was the first person to realize that based on any of several separate sets of very
simple desiderata, there is a unique real-valued quantification of the amount of syntactic
information in a distribution P (y) (Cover and Thomas (1991); Mackay (2003); Grunwald
and Dawid (2004); Topsoe (1979)). He showed that this amount of information is (the
negative of) the Shannon entropy of that distribution, S(P ). Note that for a product
distribution P (y) =

∏

i Pi(yi), entropy is additive: S(P ) =
∑

i S(Pi). So for example, the
distribution with minimal information is the one that doesn’t distinguish at all between the

4In McKelvey and Palfrey (1995), U i
q
−i

is called “a statistical reaction function”, and the set of coupled
equations giving that solution is called the “logit equilibrium correspondence”.
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various y, i.e., the uniform distribution. Conversely, the most informative distribution is
the one that specifies a single possible y.

Say that the possible values of the underlying variable y in some particular probabilistic
inference problem have no known a priori stochastic relationship with one another. For
example, y may not be numeric, but rather consist of the three symbolic values, {red, dog,
Republican}. Then simple desiderata-based counting arguments can be used to conclude
that the prior probability of any distribution p(y) is proportional to the entropic prior,
exp (αS(p)), for some associated finite constant α ≥ 0 (Cover and Thomas (1991); Mackay
(2003); Gull (1988); Loredo (1990); Jaynes and Bretthorst (2003)). 5

Intuitively, this prior says that absent any other information concerning a particular
distribution p, then the larger its entropy the more a priori likely it is. Independent of
the entropic prior’s desideratum-based motivations, it has proven extremely successful in
applications ranging from image reconstruction to density estimation to signal processing
(Mackay (2003); Gull (1988); Jaynes and Bretthorst (2003)). Indeed, it can be used to
derive statistical physics, whose predictions are arguably the best tested in science (Jaynes
(1957)). Nonetheless, I do not claim that it is the best possible choice for prior over mixed
strategies. Here it serves as a reasonable starting point for exploring PGT.

Under the entropic prior the posterior probability of p given information I concerning
p is

P (p | I ) ∝ exp (αS(p))P (I | p). (3)

The associated MAP prediction of p is argmaxpP (p | I ). As an example, say that I is a
particular element of a partition on the space of possible p’s, i.e., a restriction of p to some
particular set. Then for any α > 0, the MAP p is the one that maximizes S(p), subject to
being one of the p’s delineated by I .

Intuitively, Eq. 3 pushes us to be conservative in our inference. Of all hypotheses p
equally consistent (probabilistically) with our provided information, we are led to view as
more a priori likely those p that contain minimal extra information beyond that provided
in I .6 For this reason, the entropic prior has been proposed as a formalization of Occam’s
razor.

Note that the entropic prior evaluated for a product distribution is itself a product,
i.e., if q(x) =

∏

i qi(xi), then eαS(q) =
∏

i e
αS(qi). As a result, by symmetry the associated

marginal over x,
∑

x

q(x)P (q) ∝
∑

x

∏

i

qi(xi)e
αS(qi), (4)

must be uniform over x.

2.3 Miscellaneous properties of logit distributions

Certain simple identities and associated definitions concerning logit distributions will prove
useful below. First, given any function f : Y → R and c ∈ R, as in statistical physics I

5The issue of how to choose α for a particular application — or better yet integrate over it — is subtle,
with a long history. See work on ML-II (Berger (1985)) and the “evidence procedure” (Strauss et al. (1994)).

6This is different from saying that the larger the entropy s is, the more a priori likely it is that the

system has that s: PS(s) =
R

dp δ(S(p)− s)P (p) =
R

dp δ(S(p)−s)exp (αS(p))
R

dp exp (αS(p))
which may actually decrease with

increasing s, depending on the nature of dS
dp

.
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define the associated partition function

Zf (c) ,
∑

y

ecf(y) (5)

where I implicitly assume that f is bounded. For finite c, the logit (Boltzmann) distribution
in values of f(y) having exponent c is defined by

Lf,c(y) , ecf(y)/Zf (c) (6)

for finite c, and for infinite c it is defined by Lf,∞(y) , δ(y, argmaxf(.)), Lf,−∞(y) ,

δ(y, argminf(.)). Note that for any c and f , Lf,c(y) is uniform over any set of y sharing the
same value for f(y).

I define the Boltzmann utility as the first moment of f under the logit distribution:

K(f, c) ,
∑

y

f(y)Lf,c(y). (7)

K(f, c) is the expected value of f under the logit distribution in values of f having (poten-
tially infinite) exponent c. The function K(f, .) : R → R is C∞. Moreover, for any c ∈ R

∗,
K(., c) : R

|Y | → R is continuous. (It can be nondifferentiable for infinite c at the point
where f(y) = f(y′) for some pair (y, y′ 6= y).)

A crucial identity in statistical physics which I will use here gives the Boltzmann utility
(first moment of f) in terms of the partition function:

K(f, c) =
dln[Zf (c)]

dc
. (8)

Similarly, the variance of f under the logit distribution over f(y) values equals the sec-
ond derivative of ln[Zf (c)] with respect to c. This variance is strictly positive for finite
c and non-constant f . So for such f , K(f, .) is a nowhere decreasing bijection from
R
∗ → [minyf(y)), maxyf(y))]. In particular, say we know that K(f, c) = q · f for some

given distribution q. Then c is unique.
We can solve for this c satisfying K(f, c) = q · f by solving for the distribution Lf,c

that has minimal Kullback-Leibler distance (Mackay (2003); Cover and Thomas (1991))
from q.7 Similarly, we will often want to find the p ∈ ∆Y that maximizes S(p) subject to
the constraint that p · f = k. The (unique) solution is the logit distribution Lf,c where c
is a Lagrange parameter set to enforce the constraint, i.e., set so that K(f, c) = k. For
example, consider maximizing the entropy of a player with distribution p in a game against
Nature subject to a provided expected value of that player’s utility function, k = Ep(f).
The Lagrangian for this problem is the free utility of the player, Ff,c(p). As mentioned at
the end of Sec. 2.1, the associated solution for p is the QRE. In this game-against-Nature
context, that is just the logit distribution Lf,c.

Since for the appropriate value of c, Lf,c is the maximizer over p ∈ ∆Y of S(p) subject
to the constraint f · p = k, it is also the maximizer of S(p) subject to the constraint

7To see this expand the logit distribution inside the integral that defines that Kullback-Leibler distance,
−

P

y q(y)ln[Lf,c(y)/q(y)], differentiate with respect to c, and then use Eq. 8.
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f · p = K(f, c). This can be used to show that the entropy of the logit distribution Lf,c

cannot increase as c rises.8 So the picture that emerges is that as c increases, the logit
distribution gets more peaked, with lower entropy. At the same time, it also gets higher
associated expected value of f . See Grunwald and Dawid (2004); Topsoe (1979) for other
relationships between game theory and entropy.

3. The two kinds of randomness

In PGT we are considering two kinds of randomness. The first is the intrinsic randomness
in how the players physically choose their moves in any single play of the game. This
randomness is encapsulated in the qi of each player i. As an example of this kind of
randomness, for strategic reasons, a player i might consciously choose her move xi by
randomly sampling an explicitly chosen mixed strategy distribution qi. (Historically, such
strategic considerations were one of the first reasons that game theoreticians considered
mixed strategies in addition to pure strategies.) More generally, qi might not be explicitly
chosen by the player, but instead reflect stochasticity in the physical move-choosing process
in the player’s brain.

The second kind of randomness embodies ignorance that we, the external statistician,
have concerning how any particular real human players choose their mixed strategies. This is
the usual kind of randomness that underlies the use of probability distributions in Bayesian
statistics. It is encapsulated in P , and reflects the fact that we only know I , and from
that wish to infer something different, namely q. This randomness can be viewed (though
does not need to be) as a “degree of belief” we have in the various q’s. Note that qi(xi) can
differ from P (xi | I ) in general.

In this section I present one way to combine those two kinds of randomness, into a
posterior distribution P (q | I ). That posterior over possible joint mixed strategies q is
given by the prior and the likelihood. For pedagogical simplicity I have adopted the entropic
prior. This means that if we know nothing about the players in a game (so in particular
we do not know their utility functions, their rationalities, etc.), then we view a particular
almost uniform joint mixed strategy q as a priori more likely than a particular highly peaked
joint mixed strategy q. α quantifies how much more likely we find such relatively uniform
q.

Given a choice for the prior, our next task is to choose the likelihood, i.e., to formalize
what we know about the human players a priori.

8To see this say we replace the invariant p·f = K(f, c) with p·f ≥ K(f, c). Entropy is a concave function
of its argument, as is this inequality constraint, so our new optimization problem is concave. Therefore the
critical point of the associated Lagrangian is the optimizing p. Now if we increase c, and therefore increase
K(f, c), the feasible region for our new invariant decreases. This means that when we do that the maximal
feasible value of S cannot increase. So the entropy of the critical point of the Lagrangian for our new
invariant cannot increase as c does. However that critical point is just the logit distribution p = Lf,c, i.e.,
it is the optimizing p for the original equality invariant, p · f = K(f, c). So the property that increasing c
cannot increase the entropy under the new invariant must also hold for the original equality invariant.
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3.1 The likelihood

The first thing we know about the players is that under their joint mixed strategy their
moves are statistically independent (since we are restricting attention to normal form
games). Beyond that, all of the insights of behavioral game theory, psychology, and human
modeling (Camerer (2003); Starmer (2000); Allais (1953); List and Haigh (2005); Kurzban
and Houser (2005)) could be brought to bear on the task of determining the likelihood.

Here though I will not try to formalize those insights. Instead I will simply assume
that the expected utility of any player is uniquely fixed (in a bounded rational way) by
her environment, i.e., by the expected utility values of each of her possible moves. I don’t
even assume that her precise mixed strategy is uniquely fixed by her environment. I only
assume that her mixed strategy is in the equivalence class of all her strategies that give
some particular (environment-dependent) value for her expected utility.

To formalize this minimal assumption, first consider just those instances in which player
i is confronted with some single environment U i

q
−i

. I assume that on average, the move i

chooses results in the same utility in all those instances: qi ·U
i
q
−i

has the same (potentially

unknown) value in all of them. I write that value as ǫi(U
i
q
−i

). I is the restriction that q is

a product distribution and that simultaneously for all players i, qi · U
i
q
−i

= ǫi(U
i
q
−i

). As an

example, at a NE ǫi(U
i
q
−i

) = maxxi
U i

q
−i

(xi) ∀i.

This likelihood amounts to saying that as far as player i is concerned when she chooses
her move, there is only one salient aspect of q−i. That salient aspect is the effect of q−i on
the utility values for i’s possible moves, i.e., its effect on U i

q
−i

. The likelihood embodies this

aspect of q−i and ignores all other (non-salient) aspects of q−i. In stipulating that only the
effects of q−i on her utility are salient to any player i, this likelihood follows the spirit of
the axioms of utility theory.

Our next step is to specify the function ǫi. To do this I consider how player i would
behave in a counterfactual “game against Nature”. In that new problem I focus on just one
player i, fixing the mixed strategies of the others, so that there are no common knowledge
issues, no reasoning about the reasoning of others. The presumption is simply that any
player i’s expected utility in such a game against Nature is consistent with what it would
be if — as in a QRE — she were using a logit mixed strategy for some associated exponent
bi. In essence, I assume that at the very least, the QRE is consistent with a player’s expected
utility in games against Nature, i.e., that its likelihood is non-zero in such a game.9

There is only one QRE for a game against Nature, namely q∗i = LU i
q
−i

,bi
for some

appropriate constant bi, which I call i’s rationality. Since ǫi must give the expected value
of U i

q
−i

under this distribution,

ǫi(U
i
q
−i

) , K(U i
q
−i

, bi). (9)

Our likelihood for this game against Nature is that (q is a product distribution and that)
qi · U

i
q
−i

= K(U i
q
−i

, bi) with q−i being fixed.

9Arguably, the rationales offered in McKelvey and Palfrey (1995) for the QRE, involving learning errors,
computational errors, etc. are most compelling for such a scenario where the environment is fixed.
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As mentioned above, from a statistical physics perspective each U i is akin to the en-
ergy spectrum of a statistical physics system. Adopting this perspective, our QRE-based
likelihood is akin to assuming that “expected energy” for each player i is a single-valued
function of that player’s energy spectrum. For any single such spectrum, many probability
distributions across the energy levels will have the same expected energy; our stipulation
concerning ǫi is only that the actual distribution have the same expected energy as would
a Boltzmann distribution with inverse temperature βi.

Another perspective on the QRE-based likelihood arises by rewriting it as

[maxxi
U i

q
−i

(xi)] − qi · U
i
q
−i

= [maxxi
U i

q
−i

(xi)] − K(U i
q
−i

, bi)

= K(U i
q
−i

,∞) − K(U i
q
−i

, bi). (10)

The left-hand-side of Eq. 10 can be viewed as the “expected regret” of player i for playing
mixed strategy qi (Shoham et al. (2007)). The right-hand side is independent of qi, but
depends on q−i. This suggests that we simplify Eq. 10, by replacing its right-hand side with
some constant ρi > 0 that is independent of q−i. This would replace the likelihood given by
Eq. 10 with one saying that the expected regret of player i must equal ρi. Unfortunately
though, for any constant ρi, if the function U i

q
−i

is close enough to uniform, then there is

no qi that satisfies [maxxi
U i

q
−i

(xi)] − qi · U
i
q
−i

= ρi. For such a ρi and U i
q
−i

, the likelihood

function (and therefore the posterior distribution) would be undefined. The likelihood of
Eq. 10 can be viewed as a way to modify such a regret-based likelihood, to ensure that there
are always some qi’s with non-zero likelihood, no matter what U i

q
−i

is.

A nice aspect of this QRE-based likelihood is that it provides a single number for each
player that characterizes that player’s rationality, namely bi. For fixed distributions of all
the players, that rationality for player i will not change if the utility function of player
i is changed by an additive constant, i.e., the likelihood is unchanged if a constant is
added to ui but q does not change. Nor is the rationality of player i sensitive to changes
in the lower extreme of the possible values of the player’s utility. (Propagated through
the likelihood, changes to that lower bound typically force modifications to qi that don’t
correspond to significant changes in bi.) Both of those properties are desirable in any
behavioral quantification of a player’s rationality.

As in previous theoretical work on the QRE, one can assume that the rationality of
each player is provided exogenously, as prior knowledge. Alternatively, like in any other
parameterized statistical inference problem, it can be estimated from empirical data. Such
estimation has sometimes been done in experimental tests involving the QRE. Some formal
approaches to such estimation are briefly recounted below.

It should be emphasized that no claim is being made that the bounded rationality of
real human beings is perfectly captured in some single rationality number, and that the
associated likelihood of joint mixed strategies exactly obeys Eq. 9. (Particularly objection-
able are the facts that for any set {bi}, the associated likelihood in Eq. 9 forbids certain
regions of ∆χ, and that it has such a pronounced discontinuity at the border of those for-
bidden regions.) Rather the QRE-based likelihood is suggested as an approximation to
human behavior, one that involves a small number of parameters (the rationalities of the
players). While this approximation is primarily intended to illustrate PGT, it is certainly
more accurate than the “approximations” of conventional game theory. (See Sec. 4.)
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3.2 The posterior

Given the entropic prior and the likelihood of Eq. 9 the posterior for a single player is

P (q | I ) ∝ eαS(q)I(qi · Uq
−i

= K(Uq
−i

, bi))
∏

j 6=i

δ(qj − q′j) (11)

where {q′j : j 6= i} are the pre-fixed (Nature) distributions of all players other than i. The
MAP for this game against Nature equals the associated QRE:

Proposition 1 In a game against Nature with α > 0, there is a single local peak of the
posterior over qi for rationality bi. This peak equals the QRE qi for the game. If α = 0,
then there is no qi with higher posterior than the QRE qi.

Proof For α > 0 any local peak of the posterior is a distribution q = (qi, q
′
−i) that max-

imizes S(q) subject to the constraint that qi · U
i
q
−i

= K(U i
q
−i

, bi). Since S is additive for

product distributions, this q is given by the qi(s) that maximize S(qi) subject to the con-
straint that qi · U

i
q
−i

= K(U i
q
−i

, bi). As described at the end of Sec. 2.3, there is a unique

such local peak qi, given by the logit distribution LU i
q
−i

,bi
. This proves the claim for α > 0.

The validity of the claim for α = 0 is immediate. QED.

The likelihood for more general games is given by requiring that q be a product dis-
tribution and that Eq. 9 hold simultaneously for all players i (other than Nature players).
Combining, our full posterior involving all the players is

P (q | I ) ∝ eαS(q)I(q ∈ ∆X )
N
∏

i=1

I(qi · Uq
−i

= K(Uq
−i

, bi)). (12)

Note that for any QRE q with logit exponents set to the {bi} specified in I , the associated
likelihood P (q | I ) equals 1.

Unlike motivations of the QRE, to motivate this choice of ǫi I do not say that each qi

must be a logit distribution. The probability density over possible qi is not assumed to be
a delta function about a logit qi. This reflects an unambiguous fact, ignored in most work
on the QRE: in the real world human beings almost never play mixed strategies that are
exactly logit distributions in move-conditioned expected utilities. (Often the strategies they
play aren’t even well approximated by such logit distributions.) Rather I make the weaker
presumption that QRE distribution has non-zero likelihood in the single-player inference
problem. That presumption motivates a~b-parameterized likelihood that can then be applied
in the multi-player scenario. (An even weaker assumption — beyond the scope of this paper
— would have ~b be a random variable that is sampled before the game is played.)

Define I~b
as the set of q such that ∀i, qi · U i

q
−i

= K(U i
q
−i

, bi), where it is implicitly

assumed that ~b � ~0. For any such ~b there is always at least one q ∈ I~b
; every QRE for

the set of logit exponents ~b is a member of I~b
. Since the support of the entropic prior is

all ∆X , this means that for any ~b � ~0, the posterior conditioned on q ∈ I~b
is always non-

zero at every q∗~b
. Accordingly, the posterior is well-defined (in the sense of being non-zero

somewhere). Therefore so are its local peaks, and in particular the associated MAP.
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On the other hand, for any finite ~b, in general the set of q’s that (in addition to the
QRE’s) satisfy I~b

has non-zero measure. Indeed, in general P (q | I~b
) is non-zero for q’s

that are not products of logit distributions.

Given the posterior of Eq. 12, one can do many things not possible using the QRE
equilibrium concept alone. For example, say one is interested in predicting a single q as
the outcome of a provided game, as in conventional game theory. One way to do this is
to predict the QRE. However as an alternative, if one is given a loss function over ∆χ,
then one can generate such a single q from the posterior P (q | I ) as the associated Bayes
optimal prediction for q. In general, this Bayes optimal prediction will vary with the loss
function of the statistician (who is external to the game) who is making the prediction. This
contrasts with the QRE, which ignores the concerns of the external statistician when telling
that statistician what prediction to make. Moreover, the posterior of Eq. 12 allows us to
calculate quantities like posterior variances (in ∆X) about this Bayes optimal prediction,
something not provided by the QRE equilibrium concept.

Alternatively, one can produce a single distribution over x’s by marginalizing P (q |
I ) down to a posterior distribution over x’s. This distribution does not depend on the
statistician’s loss function:

P (x | I ) =

∫

dq P (x | q, I )P (q | I )

=

∫

dq q(x)P (q | I ). (13)

In general, under the posterior P (q | I ) the distributions {qi} are statistically coupled.
(Recall that q reflects the players, and P reflects our inference concerning them.) Now
for the entropic prior P (q), there is no statistical coupling between xi and xj in the prior
distribution P (x) (cf. Eq. 4). However the potential coupling between the {qi} means that
under P (x | I ), the moves typically are not statistically independent. In such a situation,
to us, xi and xj are statistically coupled.

This is true even if the support of P (q) is restricted to NE of the game, so long as there is
more than one such NE. Intuitively, if we observe one player’s move, that tells us something
about which NE the players have jointly adopted, which in turn tells us something about
the other players’ likely moves. Hence, the moves are statistically coupled.

This phenomenon means that in some situations the joint mixed strategy P (x | I )
cannot equal a NE of the underlying game, no matter what the player rationalities are; a
NE is impossible. Similarly, so long as more than NE exists for the game, often the Bayes
optimal q cannot be one of those NE. These conclusions about the impossibility of a NE do
not depend on our choice of ǫi, or even on our encapsulating I in terms of ǫi’s. (N.b., the
phenomenon holds even if P (q | I ) is restricted to NE.) Rather they arise from the fact
that our prior allows non-zero probability for all of the NE.

Example 1 Consider a common payoff symmetric game involving two players, each with
move space {A, B}. Let the shared utility function be u(A, A) = 2, u(A, B) = u(B, A) =
0, u(B, B) = 1. Say the players are fully rational, so the support of P (q | I ) is restricted to
the NE of the game. The game has three NE: (A, A), (B, B), and the mixed strategy where
each player makes move A with probability 1/3. The first two of those q have entropy 0
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(they are delta functions). The associated value of the entropic prior, exp(αS(q))/Z(α), is
just [Z(α)]−1. The last NE has entropy ln[3] - 2/3ln[2].

If we define w(α) , exp(α{ln[3] − 2/3ln[2]}), then the prior probability of the first two
(pure strategy) NE are 1/[2 + w(α)], and the prior probability of the last (mixed strategy)
NE is w(α)/[2 + w(α)]. Since all three equilibria have the same likelihood (namely, 1),
these prior probabilities of the equilibria are also their posterior probabilities, P (q | I ).
Accordingly, by Eq. 13,

P (x = (A, A) | I ) =
1

2 + w(α)
+

w

(2 + w)
[
1

3
]2 =

9 + w(α)

9(2 + w(α))
,

P (x = (B, B) | I ) =
1

2 + w(α)
+

w

(2 + w)
[
2

3
]2 =

9 + 4w(α)

9(2 + w(α))
,

P (x = (A, B) | I ) = P (x = (B, A) | I ) =
2w

9(2 + w(α))
(14)

This distribution P (x | I ) not a NE; under this distribution neither player i plays best-
response to P (x−i | I ). In fact, P (x | I ) is not even a product distribution.

A third way to produce a single distribution from a posterior is to find its MAP. This
is discussed at length for the posterior of Eq. 12 in Sec. 3.4 below. In general, that MAP,
the distribution in Eq. 13, and the Bayes optimal q will all differ from the QRE q. See
Sec. 4 below for general discussion of how to use PGT to predict single q’s and how such
predictions are related to equilibrium concepts.

3.3 The posterior q covers all NE

Let q be a NE where for some player i, Ri,q , supp[qi] includes multiple xi ∈ Xi and qi is not
uniform over Ri,q. Since q is a NE, U i

q−i
(xi) is uniform over xi ∈ Ri,q. This means that any

logit distribution LU i
q−i

,bi
(xi) must be uniform across all xi ∈ Ri,q. Since by hypothesis qi is

not uniform over Ri,q, this means that qi cannot be described by a logit distribution. So such

a NE q is not a QRE for any vector of rationalities~b, even one including infinite components.
This complicates consideration of NE in terms of QRE’s, leading to the analysis of limits
of QRE’s as ~b → ~∞.

Similarly, consider any q where for some player i, for some Ξi ⊆ Xi consisting of more
than one element, U i

q−i
(xi) is uniform across xi ∈ Ξi, but qi(xi) is not. Such a q is not a

QRE for any ~b. More generally, consider the case where |Xi| > 2 for some i. For that case,
unless ln[qi(xi)] is a linear function of U i

q
−i

(xi), q is not a QRE for any ~b.

The QRE concept cannot be used to analyze these types of q’s directly (i.e., without
resorting to limiting procedures or the like). In particular, if one has experimental data
that mandates such a q, then one cannot analyze that data directly with the QRE concept.
Note that the difficulty is not the use of a logit distribution by the QRE; any equilibrium
concept using a distribution that is purely a function of U i

q−i
(xi) has this difficulty.

Such complications are greatly reduced in PGT. To see this, for every i define ∆̄i
X ⊆ ∆X

as the set of all joint mixed strategies q such that U i
q−i

(xi) is not uniform across all (!)

xi ∈ Xi. Next define ∆̄X ≡ ∩i∆̄
i
X . So ∆̄X is all q where for no i is U i

q−i
(xi) constant-

valued. In particular, a NE q is in ∆̄X so long as Ri,q is a proper subset of Xi for all i (since
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that means that ∀ i, ∃ xi : qi(xi) = 0, while qi is best-response to U i
q−i

). This holds even if
for some i’s, Ri,q contains multiple elements. Then we have the following result:

Proposition 2 For any i, ∀q ∈ ∆X , ∃ bi such that K(U i
q−i

, bi) = qi ·U i
q−i

. If q ∈ ∆̄i
X , then

that bi is unique. Define Bi : ∆̄i
X → R as that function taking q ∈ ∆̄i

X to the associated
unique rationality of i. Then if ∆̄i

X is an open set, Bi is differentiable everywhere in ∆̄i
X

that it is finite.

Proof First consider any q ∈ ∆X for which max[U i
q−i

(xi)] = min[U i
q−i

(xi)]. For this q, for

any bi, K(U i
q−i

, bi) = qi · U i
q−i

.

Next consider the remaining type of q’s, for which max[U i
q−i

(xi)] 6= min[U i
q−i

(xi)]. For

such a q, if qi · U i
q−i

= max[U i
q−i

(xi)] then we have K(U i
q−i

, bi) = qi · U i
q−i

∀i iff bi = ∞.

Similarly K(U i
q−i

, bi) =min[U i
q−i

(xi)] iff bi = −∞. Now consider the remaining cases, where

qi · U i
q−i

∈ (min[U i
q−i

(xi)], max[U i
q−i

(xi)]). Due to the bijectivity of K(U i
q−i

, .) with that

codomain, we again see that there is a unique bi such that K(U i
q−i

, bi) = qi · U i
q−i

∀i. This
completes the first claim.

To establish the second claim, simply note that by definition, all elements of ∆̄X are of
this second type where max[U i

q−i
(xi)] 6= min[U i

q−i
(xi)].

To establish the third claim, evaluate the derivative of Bi and show that it is finite. I
do this by applying the chain rule to K(U i

q−i
, Bi(q)) − qi · U i

q−i
= 0. The result for the

components qi(xi) and q−i(x−i) of the argument list of Bi are

∂Bi(qi, q−i)

∂qi(xi)
=

U i
q−i

(xi)

∂K(U i
q−i

,Bi)

∂Bi

∂Bi(qi, q−i)

∂q−i(x−i)
=

(

qi(xi) ·
∂U i

q
−i

(xi)

∂q−i(x−i)

)

−
∂K(U i

q−i
,Bi)

∂q−i(xi)

∂K(U i
q−i

,Bi)

∂Bi

where the shared denominator is non-zero since Bi is finite by hypothesis and since K(U i
q−i

, .)
is an increasing function of its second argument. QED.

As an immediate corollary of Prop. 2, ∀q ∈ ∆̄X there is one and only one ~b such that
K(U i

q−i
, bi) = qi · U i

q−i
∀i, and the associated function B : ∆̄X → R

N is a differentiable

function everywhere in ∆̄X that it is finite, assuming that ∆̄X is an open set.
Typically, the set of points in ∆X \ ∆̄i

X (i.e., all q : U i
q−i

is constant-valued) are isolated
from one another. This is because changing q−i infinitesimally typically will break a uni-
formity of U i

q−i
(xi) across xi ∈ Xi. In this case, the domain of Bi is all of ∆X except for a

set of points of measure 0, and Bi is differentiable at all q that are outside that measure-0
set and such that Bi(q) is finite.

Every element of ∆̄X has a well-defined value of B, by Prop. 2. In contrast, as elaborated
above, many of the elements of ∆̄X cannot be QRE’s for any ~b. In particular, even NE in
∆̄X cannot be QRE’s. In this, the “problem q’s” for PGT are a subset of the “problem q’s”
for the QRE.
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Moreover, in many regards the elements of ∆X \ ∆̄X are not as much of a problem for
a PGT analysis as they are for a QRE analysis. For any such q, there is at least one i for
which U i

q−i
is uniform. For that q and that i, there is not a well-defined value of Bi(q); any

bi is consistent with q. Analogously, if for that q the component qi is uniform, and if q is a
QRE for some rationality vector (b−i, bi), then q is a QRE for (bi, b

′
i) for any b′i.

On the other hand, if the qi component is not uniform, then the uniformity of U i
q−i

means that q could not be a QRE for any bi. In contrast, even if qi is non-uniform, the
likelihood I(K(U i

q−i
, bi) = qi · U i

q−i
) equals 1 for any bi. So such a q can be analyzed using

PGT, whereas it cannot be analyzed (directly at least) using the QRE concept. Indeed,
Prop. 2 gives the following result:

Proposition 3 For any q ∈ ∆̄X there is one and only one ~b such that the posterior P (q |
I~b

) 6= 0, namely B(q). For any q ∈ ∆X , let ~b∗ be any rationality vector where b∗i , Bi(q)
if q ∈ ∆̄i

X . Then for all q′ ∈ ∆X ,

P (q′ | I~b∗
)

P (q | I~b∗
)

≤ |X|α

where α is the exponent of the entropic prior.

Proof Prop. 2 means that for every q ∈ ∆̄X , there is one (and only one) ~b such that the
likelihood P (I~b

| q) is non-zero. Since the entropic prior is non-zero for all q, this means

that every q has non-zero posterior P (q | I~b
) under exactly one ~b, as claimed.

By definition, P (I~b∗
| q) = 1. Now P (I~b∗

| q′) ≤ 1 for any q′. Accordingly, the ratio
in the proposition is bounded above by the ratio of the exponential prior at q to that at q′.
However the ratio of eαS(q′′) between any two points q′′ is bounded below by exp(α·0)

exp(αln(|X|))
.

QED.

In particular, the first part of Prop. 3 holds for any Nash equilibrium q ∈ ∆̄X ; such equilibria
arise for ~b = ~∞. The relative probabilities of those Nash q are given by the ratios of the
associated prior probabilities. The second part of Prop. 3 is a bound on how much greater
the posterior can be at some q′ 6= q, given that the rationality vector is consistent with q.

The picture that emerges is that ∀~b, ∃ non-empty proper submanifold of ∆̄X that is the
support of the associated posterior. (Given ~b, the associated submanifold is those q’s such
that B(q) = ~b, which we know is non-empty since every ~b has at least one associated QRE.)
By the single-valuedness of B, there is no overlap between those submanifolds (one for each
~b). Since B is defined over all ∆̄X , the union of those submanifolds over all ~b is all of ∆̄X ,
including any Nash equilibria q’s lying in ∆̄X (for which ~b = ~∞). All q within a single
submanifold have the same value (namely 1) of their likelihoods. Accordingly, the ratios of
the posteriors of the q’s within the submanifold is given by the ratios of (the exponentials
of) the entropies of those q’s. This means that within any single one of the submanifolds
no q has too small a posterior (cf. Prop. 3).

3.4 The MAP q

Naively, one might presume that a QRE is the MAP of our posterior. After all, this is
the case when a single player plays against Nature. Furthermore, when there are multiple
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players, every QRE q obeys our constraints that Eq(u
i) = ǫi(U

i
q) ∀i, and it maximizes the

entropy of each player’s strategy considered in isolation of the others. However in general a
QRE will not maximize the entropy of the joint mixed strategy subject to our constraints
when there are multiple players. In other words, while MAP for each individual player’s
strategy, in general it is not MAP for the joint strategy of all the players. The reason is
that setting each separate qi to maximize the associated entropy (subject to having q obey
our invariant), in a sequence, one after the other, will not in general result in a q that
maximizes the sum of those entropies. So it will not in general result in a q that maximizes
the entropy of the joint system.

Proceeding more carefully, call a local maximum of the posterior that is in the interior
of ∆X a “local peak” of the posterior. As shorthand, introduce the following notation:

Definition 4 For all j,~b, φ ∈ R
N ,

q†j(xj) , L
U

j
q
−j

,bj
(xj),

rj(q, xi) ,
∑

xj

q†j(xj)Eq(u
j | xi, xj) [1 + bj{Eq

−j
(uj | xj) − E

q
−j

×q
†
j

(uj)}],

si(φ, xi) ,
∑

j 6=i

φj

[

Eq
−i

(uj | xi) − rj(q, xi)
]

then we have the following lemma:

Lemma 5 For a given ~b, any local peak of the posterior is given by the qi members of a set
of pairs {qi ∈ ∆Xi

, λi ∈ R} that simultaneously solves the following equations for all i:

qi(xi) ∝ e
λiU

i
q
−i

(xi)+si(λ,xi)
,

Eq(u
i) = K(U i

q
−i

, bi).

Proof By examination of the posterior, its maxima are q’s in ∆X that maximize S(q)
subject to the constraints in Eq. 9. (Recall that there always exist q ∈ ∆X obeying those
constraints.) So the local peaks of the posterior are the critical points of the Lagrangian
L (q, {λi}) = S(q) +

∑

i λi(qi · U i − ǫi(U
i)) +

∑

i γi(
∑

xi
qi(xi) − 1) that obey qi(xi) >

0 ∀i, xi, where the λi are Lagrange parameters enforcing the constraints in Eq. 9 and the
γi are Lagrange parameters forcing each qi to be normalized. At any such critical point,
∀ i, xi ∈ Xi,

0 =
∂L

∂qi(xi)
= −1 − γi − ln[qi(xi)] + λiE(ui | xi) +

∑

j 6=i

λj [E(uj | xi) −
∂ǫj(U

j)

∂qi(xi)
]

= −1 − ln[qi(xi)] + λiE(ui | xi) +

∑

j 6=i

λj



Eq
−i

(uj | xi) −
∑

xj

∂ǫj(U
j)

∂U j(xj)
Eq

−i,−j
(uj | xi, xj)



 .
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Accordingly, at such q’s, for all players i,

qi(xi) ∝ e
λiEq

−i
(ui|xi)+

P

j 6=i λj

»

Eq
−i

(uj |xi)−
P

xj

∂ǫj(Uj)

∂Uj(xj)
Eq

−i,−j
(uj |xi,xj)

–

where the proportionality constant enforces normalization. By inspection, for any real-
valued Lagrange parameters, each such qi does obey qi(xi) > 0 ∀xi, as required.

To proceed plug in Eq. 9 and then Eq. 8 to evaluate
∂ǫj(U

j)
∂Uj(xj)

. Then interchange the order

of the two differentiations, to differentiate with respect to U j(xj) before differentiating with
respect to bj The result is

∂ǫj(U
j
q
−j

)

∂U j
q
−j

(xj)
= q†j(xj)[1 + bj{U

j
q
−j

(xj) − E
q
†
j

(U j
q
−j

)}]

where I have made explicit the dependence of each U j on q−j . Next use the definition of

U j
q
−j

and the fact that q is a product distribution to expand this result as

∂ǫj(U
j
q
−j

)

∂U j
q
−j

(xj)
= q†j(xj)[1 + bj{Eq

−j
(uj | xj) − Eq

−j
×L

U
j
q
−j

,bj

(uj)}].

Now plug this result into the outer summands in our equation above for each qi(xi), getting

∑

xj

∂ǫj(U
j
q
−j

)

∂U
j
q
−j

(xj)
Eq(u

j | xi, xj)

=
∑

xj

q†j(xj)Eq(u
j | xi, xj) [1 + bj{Eq

−j
(uj | xj) − E

q
−j

×q
†
j

(uj)}].

Plugging in the definition of rj completes the proof. QED.

In particular, the MAP is a local peak of the posterior. Therefore if the MAP is interior to
∆X it must solve the coupled set of equations given in Lemma 5.

3.5 The modes of P (q | I ) and the QRE’s

It is illuminating to compare the conditions of Lemma 5 for q to be a local peak of the
posterior to conditions for it to be a QRE: any QRE is given by the qi members of a set of
values {qi ∈ ∆Xi

, λ′
i ∈ R} that simultaneously solves the following equations for all i:

qi(xi) ∝ e
λ′

iU
i
q
−i

(xi)
,

Eq(u
i) = K(U i

q
−i

, bi) (15)

where the second equation forces λ′
i = bi ∀i.10

10To see this, use the first equation to write Eq(u
i) = K(U i

q
−i

, λ′
i), and recall that K(., .) is monotonically

increasing in its second argument.
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This comparison suggests that in some circumstances the QRE is an approximation of
the local peaks of the posterior P (q | I ). To confirm this, first note that, ultimately, the
only free parameter in our solution for the local peak q’s is ~b. In addition, any QRE q∗ is
a solution to a set of coupled nonlinear equations parameterized by ~b. In general there is a
very complicated relation between the the local peak q’s and the q∗’s, one that varies with
~b (as well as with the {uj}, of course).

Intuitively, the reason for the difference between the two solutions is that each player
i does not operate in a fixed environment, but rather in one containing intelligent players
trying to adapt their moves to take into account i’s moves. This is embodied in the likelihood
of Eq. 9. In contrast to that likelihood, the likelihoods of the QRE each implicitly assume
that the associated player i operates in a fixed environment.

Formally, the difference arises because each qi not only appears in the first term in the
argument of I(qi · Uq

−i
= K(Uq

−i
, bi)) (which is the case in the game against Nature). It

also occurs in the second arguments of I(qj ·Uq
−j

= K(Uq
−j

, bj)) for the players j 6= i. This
means that if we change qi, then the likelihood of Eq. 9 induces a change to q−i, to have
the invariant for the players other than i still be satisfied. This change to q−i then induces
a “second order” change to qi, to satisfy the invariant for player i.

This second-order effect will not arise in a game against Nature, which treats the other
players as fixed. This reflects the fact that such a game against Nature is an instance of
decision theory, lacking the common knowledge aspect of games with multiple conflicting
players.

Now in general it is not the case that for every i, qi(xi) equals q†i (xi) on an xi-by-xi basis.
Indeed, if this were the case then q would be a QRE. However as an approximation we can
impose the weaker condition that the differences between those distributions approximately
cancel out inside the appropriate sum from Lemma 5:

E
q
†
j×q

−j,−i

(uj | xi) =
∑

xj

q†j(xj)Eq
−j,−i

(uj | xi, xj)

≅

∑

xj

qj(xj)Eq
−j,−i

(uj | xi, xj)

= Eq
−i

(uj | xi). (16)

(In particular, any QRE obeys this approximation exactly.) Making this approximation
inside all rj , for any φ ∈ R

N ,

si(φ, xi) = −
∑

j 6=i

φjbj

∑

xj

q†j(xj)Eq
−j,−i

(uj | xi, xj)

[

Eq
−j

(uj | xj) − E
q
−j

×q
†
j

(uj)

]

(17)

which we can write as

si(φ, xi) = −
∑

j 6=i

φjbjCov
q
†
j (xj)

[

Eq(u
j | xi, xj), Eq(u

j | xj)
]

. (18)

Combined with Lemma 5 this provides the following result:

21



Wolpert

Theorem 6 Let q be a joint mixed strategy where ∃ µ ∈ R
N and t ∈ R such that simulta-

neously ∀i, xi,

∑

j 6=i

µjbjCovqj(xj)[Eq(u
j | xj , xi), Eq(u

j | xj)] = (µi − bi)Eq(u
i | xi) + t.

Then the following two conditions are equivalent:
i) q is a QRE.
ii) q is a local peak of the posterior and obeys Eq. 16 exactly.

Proof It is immediate that if q is a QRE then it obeys Eq. 16 exactly. This means
that si(µ, xi) equals the expression in Eq. 18 for φ = µ. Accordingly, the condition in the
theorem involving a sum of covariances means that the exponent in Lemma 5 reduces to
(bi + λi − µi)Eq

−i
(ui | xi) − t for all i, xi ∈ Xi. So by that lemma, for our q to be a local

peak of the posterior it suffices for there to be a λ ∈ R
N such that Eq(u

i) = K(U i
q
−i

, bi) and

qi(xi) ∝ e
(bi+λi−µi)Eq

−i
(ui|xi) for all i, xi. Since q is a QRE with exponent bi, both of these

conditions are met for λ = µ. Therefore q is a local peak of the posterior, as claimed.
To prove the converse, plug the condition in the theorem involving a sum of covariances

with φ = µ into the expression in Eq. 18 for si(φ, xi). Identifying λ′ = λ−µ+b, this reduces
Lemma 5 to the conditions in Eq.’s 15 sufficient for q to be a QRE. QED.

In particular, say that
∑

j 6=i(bj)
2Covq∗j (xj)[Eq∗(u

j | xj , xi), Eq∗(u
j | xj)] is independent of xi

∀i at some QRE q∗. Then the condition in Thm. 1 holds, with µ = ~b. So any such QRE is
a local peak of the posterior.

Particularly for very large systems (e.g., a human economy), it may be that at some
QRE q∗, Eq∗(u

j | xj , xi) = Eq∗(u
j | xj) for almost any i, j and associated moves xi, xj .

In this situation, at the QRE the move of almost any player i has no effect on how the
expected payoff to player j depends on j’s move. If this is in fact the case for player i and
all other players j, then the covariance for each j, xi that occurs in Thm. 6 reduces to the
variance of Eq∗(u

j | xj) as one varies xj according to q∗j . By the discussion in Sec. 2.3 this
variance is given by the partition function:

Varq∗j
(Eq∗(u

j | xj)) = Varq∗j
(U j

q∗) =
∂2ln(Z

U
j

q∗
(b′j))

∂(b′j)
2

|b′j=bj
. (19)

In particular, for bj → ∞ — perfectly rational behavior on the part of agent j — the
variance goes to 0. So assume that Eq. refeq:approx holds to a very good approximation.
Then if every player i is “decoupled” from all other players, in the limit that all players
become perfectly rational the condition in Thm. 6 generically is met for µ = ~b. (The bj-
dependence in the covariance occurs in an exponent, and therefore generically overpowers
the (bj)

2 multiplicative factor.) So the QRE’s approach the local peaks of the posterior in
that situation.

On the other hand, if the players have bounded rationality, their variances are nonzero.
In this case the expression in Thm. 1 is nonzero for each i, j, xi. Typically for fixed i the
precise nonzero value of that variance will vary with xi. In this case, Thm. 1 suggests
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that the QRE differs from the local peaks of the posterior, and in particular differ from the
MAP.

There are many ways that these results can be extended. For example say a particular
QRE is a local peak of the posterior for some ~b. Then we can use a Laplace expansion
to approximate the posterior in the vicinity of that QRE as a Gaussian projected onto
the submanifold of joint mixed strategies that obey Eq. 15 (Robert and Casella (2004)).
Say that that QRE is close to the mean of the posterior over q’s (e.g., this would be the
case if that QRE is the MAP and the posterior is sharply peaked). Then our Gaussian
approximation could be used to approximate the variance of any function of q under our
posterior.

3.6 Estimating player rationalities

Say we do not know the player rationalities, but have to estimate them from data. There
are several such scenarios to distinguish. In one, the data consists of a single q generated
by sampling P (q | I ). (For example, we would have this scenario if all the players report a
mixed strategy, and we believe what they report to be true.) Say that for this q, for no player
i is U i

qi
uniform across Xi. Then for every i, K(Uq

i
, .) is a bijection from R → R (see Sec. 2.3).

Accordingly, in this case we can solve for the unique bi such that K(Uq
i
, bi) = qi ·Uq

i
. This

gives the single ~b with non-zero likelihood, and therefore the single ~b that has non-zero
posterior given our data.

Alternatively, say our data is a set D that consists of m IID samples of q. Then the
problem of estimating ~b from D is the problem of estimating a hyperparameter from sample
data. We can do this with many conventional techniques. As an example, let D(j) refer to
our j’th sample of q, and let γ be our other information in addition to D, namely the game
specification. So the likelihood of ~b is given by

P (D | ~b, γ) =

∫

dq P (D | ~b, q, γ)P (q | ~b, γ)

=

∫

dq





m
∏

j=1

P (D(j) | q)



 P (q | ~b, γ). (20)

If we have a prior over ~b, we can convert this likelihood into a posterior over ~b. Such a prior
also provides us with a posterior over q:

P (q | D, γ) ∝

∫

d~b P (D | ~b, q, γ)P (q | ~b, γ)P (~b | γ)

=

∫

d~b





m
∏

j=1

P (D(j) | q)



 P (q | ~b, γ)P (~b | γ)

where P (q | ~b, γ) is the posterior considered in the earlier part of this paper.

If one does not have a prior over ~b, one can still estimate it from D, for example by using
ML-II (Berger (1985); Bernardo and Smith (2000)). Under that technique one estimates ~b
as the value that maximizes the likelihood given in Eq. 20. To illustrate this, say that m
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is large enough so that we can approximate
∏m

j=1 P (D(j) | q) ≅ δ(q − ν(D)), where ν is
the frequency counts function that maps its argument to the associated (perhaps Laplace-
corrected) normalized histogram over X. Then under formal conditions that are often met
in practice, we can approximate the integral in Eq. 20 by

P (D | ~b, γ) ≅ P (ν(D) | ~b, γ). (21)

The right-hand side of this equation is the posterior P (q | I ) of Eq. 12, evaluated for
q = ν(D) and for I having the rationality values ~b. So in this limit of large enough m,
using ML-II to estimate ~b is identical to the ~b-estimation technique discussed just above
where our provided data is a single q, with that single q set to ν(D). Accordingly, for such
large enough m, we can invert K to solve for ~b, in the manner discussed just above. For
m that are not sufficiently large, to solve for the ML-II estimate of ~b we must calculate
correction terms to this ~b found by inverting K.

As an alternative approximation, say that we replace P (q | ~b, γ) with δ(q − q∗~b
), i.e.,

assume that q is a QRE.11,12 Under this approximation,

P (D | ~b, γ) ≅ P (D | q∗~b )

=
m
∏

j=1

P (D(j) | q∗~b ) (22)

where for simplicity γ is implicit on the right hand side. So ML-II in this approximation
reduces to solving for the set of rationalities ~b that maximizes the likelihood of D given the
QRE for ~b. Assume for simplicity that the correspondence ~b → q∗~b

produces a singleton for

all |bfb. Then the maximizing ~b can be found by doing gradient ascent over the function
~b → P (D | q∗~b

). That gradient is

∂P (D | q∗~b
)

∂~b
=

m
∑

k=1

∂P (D(k) | q∗~b
)

∂~b





∏

j 6=k

P (D(j) | q∗~b )



 . (23)

To calculate this gradient for a current ~b we must evaluate P (D(n) | q∗~b
) for all n ∈

1, . . .m. To that end simply note that

P (D(n) | q∗~b ) =
N
∏

i=1

q∗
i,~b

(Di(n)) (24)

where D(n) , (D1(n), D2(n), . . . , DN (n)). Accordingly, to evaluate each P (D(n) | q∗~b
) for

a current ~b, we only need use a numerical fixed-point solution algorithm to calculate each
term q∗

i,~b
(Di(n)) .

11Formally, this approximation is equivalent to replacing the entropic prior over ∆χ with a prior P (q)
whose support is restricted to the q’s that are QRE’s for some associated set of player rationalities.

12For simplicity, in the current discussion I ignore the possibility that there might be multiple QRE for
some ~b.
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To complete the calculation of
∂P (D|q∗

~b
)

∂~b
given in Eq. 24 we also need to evaluate the

partial derivatives
∂P (D(k)|q∗

~b
)

∂~b
. The formula for those partial derivatives is given by using

implicit differentiation on the fixed point set of coupled equations that defines q∗~b
. This

formula involves some matrix inversions and q∗~b
(D(n)), which can be evaluated numerically

as discussed just above. (See Wolpert and Kulkarni (2008)).

It is important to realize that in general the i’th component of the ~b′ that maximizes
the likelihood P (D | q∗~b′

) differs from the bi that maximizes the likelihood of i’s data given

the non-i components of q∗~b′
. Formally, defining ~b′ as the maximizer of P (D | q∗~b′

) and

recalling that player i’s logit distribution for environment U i
q∗
b′
−i

and rationality bi is written

as LU i
q∗
b′
−i

,bi
,

~b′i 6= armgaxbi
P (Di(1), Di(2), . . . Di(m) | q∗~b′−i

,LU i
q∗
b′
−i

,bi
). (25)

In other words, the maximum likelihood QRE assigns a different rationality to each player
i from the one that maximizes the likelihood of player i’s data sample considered by itself.
Intuitively, in finding the maximum likelihood QRE, we must distort our estimate of bi to
account for the effects of bi on the likelihoods of data samples of the other players’ mixed
strategies. Similarly, in general

~b′i 6= armgaxbi
P (Di(1), Di(2), . . . Di(m) | ν(D)−i,LU i

q∗
b′
−i

,bi
). (26)

These effects are not accounted for in much of the behavioral game theory literature in
which QRE’s are estimated from empirical data.

As a final comment, it is worth noting that in practice sampling of a human being’s
mixed strategy is almost never a stationary process. Like almost all of the behavioral game
theory literature, the analysis above ignores this and related deep problems in estimating
the mixed strategy of a human purely from her sample behavior. See Wolpert et al. (2008)
for a discussion of these problems.

4. Equilibrium concepts, bounded rationality and PGT

In this section I compare Bayesian PGT for noncooperative games with conventional non-
cooperative game theory from a broad perspective, not restricted to any particular prior
or likelihood. In particular I highlight what shortcomings of conventional noncooperative
game theory are overcome by PGT.

4.1 The two equilibrium concepts of PGT

Say we have information I about a game involving a set of human players. We want to
predict what mixed joint strategy q those humans will play. Adopting the role of a Bayesian
statistician external to the physical system of those humans, to make this prediction means
determining the posterior P (q | I ). This contrasts with what conventional game-theoretic
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equilibrium concepts provide, which is a subset of all possible q’s with no associated prob-
ability values (except in the degenerate sense that if that set contains a single element we
can interpret it as having probability 1.0). Due to this difference, PGT allows more sophis-
ticated tests comparing experiment and theory than do conventional equilibrium concepts,
e.g., tests of theoretical predictions concerning the variances of various attributes of the
players’ behavior.

In practice sometimes one must produce a single joint strategy as one’s “prediction” or
“estimate” of the joint strategy. To do that with PGT, say that we have a loss function
L(q′, q) that quantifies the penalty we will incur if we predict the joint mixed strategy q′

and the true joint mixed strategy is q. Then decision theory counsels us to set our single
prediction to the “Bayes-optimal” joint mixed strategy, i.e., to the q′ that minimizes ex-
pected L(q′, q) under the posterior density over q. By mapping a game to a single predicted
joint strategy this way, decision theoretic PGT provides an “equilibrium concept”. Un-
like typical equilibrium concepts (Fudenberg and Tirole (1991); Aumann and Hart (1992);
Basar and Olsder (1999); Binmore (1992); Luce and Raiffa (1985)), this one does not require
refinements; typically the Bayes-optimal prediction is unique.

Note that the Bayes-optimal equilibrium concept depends on the loss function of the
external statistician. It is not specified within the game, for example as a utility function.
So in particular, it varies with the person making the prediction.

Under special circumstances, the equilibria of conventional game theory arise as a special
case of Bayes optimality. Let T be a set of (perhaps refined) NE of the game. Say that we
have some reason to assign equal probability mass to every q ∈ T and zero (or infinitesimal)
probability density to all other q. Say furthermore that we have some reason to use the L1

loss function. Then there are multiple Bayes optimal predictions — the elements of T —
and we have no basis for choosing among them.

Of course, if the external statistician making the prediction were to change, then so
would the loss function, and in general the elements of T would no longer be the Bayes
optimal predictions. In addition, strictly speaking, the equilibrium concepts of game theory
(and so in particular whatever the one is that defines T ) do not assign relative probabilities
to the elements of T , a shortcoming rectified in PGT. More generally, it is hard to construct
physical scenarios involving real human beings that have such a posterior distribution that
“justifies” some equilibrium concept: infinite probability density at some q’s (the ones in
T ), with exactly equal probability mass at all of those q’s, and infinitesimal density at joint
distributions that are arbitrarily close to those q’s.

Recall from Sec. 3.2 that an alternative “equilibrium concept” to the Bayes-optimal
equilibrium concept is given by marginalizing the posterior over densities, P (q | I ), down
to a (single) posterior over joint moves, P (x | I ). Typically the moves of the players are
stochastically coupled under that posterior over joint moves, even for priors and likelihoods
different from the ones considered in Sec. 3.2. Moreover, often the marginal distribution over
a particular player’s moves, xi, is not utility-maximizing against the marginal distribution
over the other players’ moves. This can occur even if the support of the posterior over joint
mixed strategies is restricted to Nash Equilibria (NE). In this sense, NE may be impossible,
and bounded rationality is unavoidable.

The decision-theoretic equilibrium concept (i.e., Bayes optimal q) varies with the loss
function, unlike the P (x | I ) equilibrium concept. However under both equilibrium con-
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cepts Xi and Xj may be statistically dependent. This is true even though the support of
P (q | I ) is restricted to distributions where Xi and Xj are independent (a linear combi-
nation of product distributions typically is not a product distribution). In addition, say
that P (q | I ) is restricted to NE q. Typically, if there are multiple such equilibria, then
P (xi | I ) is not an optimal response to P (x−i | I ). Even if we know that all the players
are perfectly rational, our prediction of their moves has “cross-talk” among the multiple
equilibria, which prevents perfect rationality. This is one sense in which PGT has built-in
bounded rationality. Note that this phenomenon has nothing to do with the use of an
entropic prior, a Boltzmann-based likelihood, or the like, as is illustrated in the following
example.

Example 2 Consider a two player game in which both players have two possible moves, L
and R. Indicate any (product distribution) q by two numbers, q1(x1 = L) and q2(x2 = L).
Suppose that we happen to have a likelihood and/or prior such that

P (q | I ) =
δ(q − (3/4, 3/4)) + δ(q − (1/4, 1/4))

2
(27)

where “δ(.)” is the Dirac delta function. Suppose also that we have quadratic loss. For that
loss function, as is easy to verify, the Bayes-optimal q is the average q,

∫

dq q(x)P (q | I ).
Viewed as a function of x, that particular Bayes-optimal q is the same as P (x | I ). Here
that Bayes-optimal q is the distribution P (L, L) = P (R, R) = 5/16, P (R, L) = P (L, R) =
3/16. Indicate that distribution as p. p is not a product distribution, so P (q = p | I ) = 0.
In other words, q = P (x | I ) = p, this game’s “equilibrium”, is a joint mixed strategy that
cannot arise.

To help distinguish when one should use one or the other of our equilibrium concepts,
consider a frequentist scenario, where we first give our prediction q′ ∈ ∆X for the outcome
of a game, and after that P (q | I ) is IID sampled an infinite number of times. If our reward
for making prediction p is the average value of L(q′, q) over that infinite number of samples,
then to maximize our reward we should use the Bayes-optimality equilibrium concept.

Say that instead, each time P (q | I ) is sampled to produce a q, that that q is itself
sampled, to produce an x. This means that the IID samples of P (q | I ) provide an empirical
distribution of the frequency with which each x occurs. With probability 1.0, the uniform
metric distance between this empirical distribution and P (x | I ) =

∫

dq P (q | I )q(x) is
zero. But that integral is just the second equilibrium concept discussed above. So if the
reward is how accurately we guess the empirical distribution over x’s, then we should use
this second equilibrium concept instead of the Bayes-optimality equilibrium concept.

Example 3 Say we want to compare two theories that both make predictions for the equi-
librium outcome of a pair of goal-seeking agents engaged in a game, and that can make their
predictions with no knowledge concerning the two algorithms except that at the equilibrium
of the game they are both perfectly rational. To do this we first collect many Reinforcing
Learning (RL) algorithms from the literature. Next we repeatedly and randomly choose pairs
from that set of RL algorithms. Then we have each such pair play the game in Ex. 1 many
times, producing a sequence of game outcomes. Finally, we remove all such sequences of
repeated play that don’t converge to a NE.
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We can now randomly this set of equilibrium joint mixed strategies and then randomly
sample the resultant mixed strategy to get a joint move x. We wish to compare our theories
by asking what each one predicts for that distribution, P (x). Standard noncooperative game
theory would only say that each sequence converges to one of the three q’s given by the
NE product distributions. To use noncooperative game theory to make a prediction about
P (x) we would need to reduce that set of three distributions to a single one. To do that we
would argue that one of the many NE refinements that have been studied Myerson (1991);
Fudenberg and Tirole (1991) applies to our scenario, a refinement that it so happens selects
a single one of those three NE. Noncooperative game theory would then predict that P (x) is
the product distribution of that selected NE.

In contrast, PGT would predict that P (x) is not even a product distribution. Rather it is
a weighted average of three product distributions. The weighting factors are biased in favor
of joint distributions q that have high entropy. Note that these are the kind of q’s that one
might expect to arise from RL algorithms that engage in exploration as well as exploitation.

PGT would also provide other predictions that conventional noncooperate game theory
cannot. For example, P (x) equals the average q,

∫

dq P (q)q(x). We could use PGT to
predict the covariance matrix of q’s,

[
∫

dqdq′ P (q)P (q′)qT q′
]

− [P (x)]2 1 (28)

(In this equation, 1 indicates the identity matrix, and the superscript “T” indicates trans-
pose). We could then compare that prediction to the empirical covariance matrix given by
the set of sequences. This cannot be done using conventional game theory.

Finally, suppose that our information I concerning a game does not explicitly tell us
that the players in the game are all fully rational. Then the rationalities of the (human)
players are random variables, and we must average over them to get the posterior over
joint mixed strategies. This generically means that P (q | I ) is non-zero for joint mixed
strategies q that are not perfectly rational. This is another way that PGT provides built-in
bounded rationality.

4.2 PGT as a meta-game

The first type of equilibrium concept in PGT can also be motivated as a “meta-game”
played against Nature. To formalize this meta-game, say we have a set of possible games
G, differing in their utility functions, their players, etc. For each such game γ ∈ G, let
∆X (γ) indicate the a finite subset of all possible joint mixed strategies in γ, with x ∈ X(γ)
the possible joint moves in that game.13. Now consider a two-stage “meta-game” Γ that
consists of a statistician (S ) playing against Nature (N). In this meta-game N ’s set of
possible moves is {(γ ∈ G, q ∈ ∆X (γ))}, i.e., the set of all possible games γ, and for each
such game, the set of all possible joint mixed strategies q over the joint moves in γ. The
mixed strategy of player N is a distribution over this space, P (γ ∈ G, q ∈ ∆X (γ)). At the
end of the first stage of the meta-game, N ’s mixed strategy is fairly sampled, producing an
outcome (γ′, q′). S knows that mixed strategy of N , P (γ ∈ G, q ∈ ∆X (γ)), ex ante.

13We usually have in mind that ∆X (γ) ;is the set of all mixed strategies in γ, measured to some precision
ǫ > 0.
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As an example, much work in conventional game theory presumes that a unique equi-
librium of any underlying game γ′ is highly desirable. So if there are multiple NE of the
game, one has the problem of how to “refine” that set of multiple NE into a singleton. This
problem has led to a huge body of work exploring different refinements like trembling hand
perfection, weak dominance, etc. (Myerson (1991); Fudenberg and Tirole (1991); Aumann
and Hart (1992)). In contrast, consider a PGT approach, where it is known that the players
are perfectly rational. So the support of P (q′ | γ′) is the set of multiple NE of γ′. In PGT
there is no a priori need to decide among those multiple NE. Instead one allows all of them
to occur, with relative probabilities given by P (q′ | γ′).

However in the real world sometimes a statistician must produce a single prediction
rather than a full posterior density over predictions. This provides a second stage for our
meta-game. In this second stage S is told γ′. Together with the (known) mixed strategy
of N , this gives S a posterior over what q′ is, P (q′ | γ′). In the second stage, S makes a
move in ∆X (γ′), i.e., picks a joint mixed strategy for the game γ′. We interpret that move
of the statistician S as a prediction of what q′ ∈ ∆X (γ′) was produced by the sampling of
player N .

As usual in games against Nature, N has no utility function. However S may have a
utility function, given by the negative of a loss function L(q, q′) that quantifies how accurate
her move q is as a prediction of N ’s move q′. In this case, to maximize her expected utility
the statistician chooses her move — her prediction of the joint mixed strategy that governs
the game γ′ — to minimize her expected loss under the posterior P (q′ | γ′). Formally, she
should guess a distribution whose support is argminpEP (q′|γ′)L(p, q′). This mapping of a
game γ′ to a single predicted joint strategy comprises the first equilibrium concept described
above. (See Grunwald and Dawid (2004) for some work related to this meta-game.)

5. Other applications of PGT

Under the QRE-based likelihood introduced above, if q−i changes, then U i
q−i

changes, and
therefore qi may have to change. So this likelihood implicitly presumes the players have
had some form of interaction to couple them (just as do conventional equilibrium concepts
when they have multiple solutions). In Wolpert (2005) a different likelihood is introduced
that involves no such coupling. This likelihood can be viewed as a novel formulation of
common knowledge (Aumann (1999); Aumann and Brandenburger (1995); Fudenberg and
Tirole (1991)).

Interestingly, as it arises with this likelihood, bounded rationality is identical to an
information-theoretic cost of computation. In this sense, under this likelihood cost of com-
putation is derived as a cause of bounded rationality. It is not simply imputed, as an
explanation of experimentally observed bounded rationality.

While various models of bounded rationality have been found to have some experimental
validity (e.g., QRE’s), no model with a small number of parameters will ever hold exactly.
This means that to analyze the rationality of human behavior in experimental settings
we need a way to quantify the rationality of any mixed strategy in any environment. As
elaborated in Wolpert (2005), PGT provides such a rationality measure, one that can be
derived from first-principles involving the Kullbach-Leibler distance.
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PGT is applicable to many domains beyond those considered in this paper. In particular,
in work in progress, PGT has been used to derive power law distributions over the possible
outcomes in unstructured bargaining. Those distributions have the Nash bargaining solution
as their mode.

Extending further, PGT should provide an extension of mechanism design to allow for
bounded rational players. Such an extension would also allow design of the mechanism to
depend on variances (and higher moments) of the mechanism’s utility function. In this
way risk aversion of the mechanism designer can be accommodated in the design of the
mechanism.

More speculatively still, PGT might be applicable to cooperative game theory. Just as
PGT obviates the issue of how to define a noncooperative game’s “equilibrium”, it might
do the same thing for cooperative games. This would remove one of the major stumbling
blocks to progress in cooperative game theory, which is notorious for having many competing
equilibrium concepts.
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