Binary Data Format Languages and Software across caBIGTM

Binary Data Format Languages and Software across caBIGTM
Written by members of the Binary Data Format WG
Jyotishman Pathak, Pankaj Agarwal, Dong Fu, Scott Oster, Patrick McConnell, Sumit Middha
Abstract

The ability to describe data in a manner that will allow one to simplify transfer of data across domains without requiring global standard formats as well as allow third-party tools to easily access multiple formats of the described data is an important requirement. This is in particular relevant to the caGrid infrastructure for enabling universal data exchange. In this whitepaper, we evaluate an existing set of languages and software implementations for binary data format. The evaluation parameters focused on various aspects ranging from the maturity of the language and software to their ability to enable semantic labeling of individual data objects. Based on the investigation, the working group recommends that further evaluation and prototyping efforts should be focused on leveraging the Open Grid Forum developed Data Format Description Language (DFDL), and its reference implementations, namely Virtual XML Garden developed by IBM and Defuddle developed by the Pacific Northwest National Laboratory.
1. Introduction
Grid computing provides a framework and infrastructure for distributed hardware and software resources to interact and process information. Inevitably, these resources read and write data represented in different formats. Consequently, there is always a requirement for translation of the heterogeneous data into a common representation format. Notably, in the recent years, evolution of Extensible Markup Language (XML) as an open-standard has gained the popularity for facilitating the sharing of (structured) data across different information systems, particularly via the Internet. Numerous software technologies have been built that enable authoring, transforming and querying XML-based data. However, there are many types of data that are not (or should not be) represented as XML for practical reasons, such as data generated by sensors and data that are not necessarily in a tree structure (e.g., image metadata). Consequently, there is a need to develop techniques that would support processing of non-XML data as though it is XML, and in many cases, without explicit conversion to XML since such conversions can be an expensive process. That is, there is a requirement for describing the data that will allow one to simplify transfer of data across domains without requiring global standard formats, or to allow third-party tools to easily access multiple formats of the described data. Such an approach is in particular relevant to the caGrid infrastructure for enabling universal data exchange ensuring that data represented/stored in multiple formats can be transported across the grid in their native formats, without losing any associated syntactic and semantic metadata, and processed by applications.
The purpose of this white paper is to provide an overview of available data format description languages and to: 1.) initiate a process for evaluating the need for binary data format description technologies across caBIGTM workspaces; 2.) begin a process for exploring the match between existing binary data format description technologies and workspace requirements; and 3.) begin a process of investigating how binary data format description languages and software can be applied along with bulk data transfer efforts within caBIGTM.
The white paper outlines two case studies that were contributed by the broader caBIG community and have been used to motivate the initial detailed examination of binary data format languages and software. These case studies involve bulk data transfer of (i) imaging and (ii) microarray data. Moreover, these cases can be extended to next generation sequencing technology data issues, as discussed later.
The white paper finally provides a recommendation and outlines a process for systematically evaluating existing binary data format languages and software that can be useful to provide as well as process syntactic and semantic descriptions of different data formats.

The following sections of the whitepaper specifically expand upon the preceding themes, providing:

· Section 2: Background and significance
· Section 3: A survey of existing binary data format languages
· Section 4: A survey of existing binary data format processing software
· Section 5: A summary of caBIG community generated use cases for binary data formats
· Section 6: A set of recommendations for caBIG binary data formats and languages
· Section 7: Concluding remarks
2. Background and Significance

The last decade has brought about an enormous growth of digital data and content on the Internet. These data are stored in many different digital forms that vary from character based text format, to packed binary, to different "standard" scientific data formats including various self-describing data formats. Some examples of commonly used scientific data formats are GRid In Binary (GRIB), Binary Universal Format Representation (BUFR), Common Data Format (CDF), network CDF (netCDF), Hierarchical Data Format (HDF) and HDF for NASA’s Earth Observing System (HDFEOS). There are historical and practical reasons for having all these different standard data formats. Many of these formats were developed by different agencies for their own use and needs including addressing specific aspects such as compactness, portability, efficiency etc. However, with the advent of the Internet, these communities are less standalone day-by-day, and becoming more connected and pursuing inter-disciplinary research, which in turn is fostering data sharing. This is in particular true within a grid environment where data interchange is critically important.
However, in the recent years, evolution of Extensible Markup Language (XML) as an open-standard has gained the popularity for facilitating the sharing of (structured) data across different information systems, particularly via the Internet. Numerous tools and technologies have been built to generate, query, process and store XML data. Along side, various technologies have evolved to convert non-XML data into XML, and to convert XML data into other forms. For example, in the world of relational databases, Structured Query Language (SQL) has been extended to SQL 2003 to incorporate SQL/XML [1]. However, at the same time, there are many types of data that are not represented as XML for practical reasons, such as data generated by low-level sensors, data residing in archives, data not used for exchange with unknown partners, and data that are not tree structured (e.g., image metadata, video metadata, microarray and sequencing metadata). The inability to format data as XML may be caused by the lack of computing power, bandwidth, or storage capacity, and sometimes, it may even be necessary to transmit the same data in both XML and non-XML formats as legacy requirements dictate.

Consequently, there is a need to develop techniques that allows one to choose an appropriate data representation for an application based on its needs and at the same time allows providing a "description" of the data in an appropriate format so that multiple programs can directly interchange the described data. These descriptions can be provided by the creator of the format, or developed as needed by third parties intending to use the format and contains few basic building blocks that can describe different data structures. These basic building blocks are separately understandable and free from interactions when combined. As a result, the design becomes scalable to allow the addition of other data format descriptions without perturbing existing data format modules.

The objective of this working group is to initiate the investigation of existing languages and technologies for "describing multiple data contents" within the caGrid infrastructure. We believe that having such a capability will assist in enabling universal data exchange ensuring that data represented/stored in multiple formats can be transported across the grid in their native formats, without losing any associated syntactic and semantic metadata, and processed by applications.
3. Binary Data Format Languages
In the following sections, we will introduce a number of binary data format languages that have been developed to “describe” the content of different types of data.
3.1 Data Format Description Language

DFDL stands for data format description language and is an XML-based language for describing data formats [2]. It allows one to choose an appropriate representation of data for an application based on its needs and provides a mechanism to describe the data format such that multiple software programs can directly interchange the described data. These descriptions can be provided by the creator for the format, or developed as needed by third parties intending to use the format. Thus, in essence, a DFDL description allows the data to be read from its native format and presented as an instance of a “logical data model” or enables conversion to a corresponding XML document. This is achieved via highly efficient DFDL parsers that are implemented based on lazy evaluation of the formats and support seekable, random access to data. The following are the objectives of DFDL implementations:
· Density: fewest bytes to represent information content (without resorting to compression) and fastest possible I/O.
· Optimized I/O: applications can write data aligned to byte, word, or even page boundaries and to use memory-mapped I/O to insure access to data content with the smallest number of machine cycles for common use cases without sacrificing general access.
DFDL achieves the above requirements by leveraging W3C XML Schema Definition Language (XSDL) [2]. In particular, an XML Schema is written for the logical model of the data and is augmented with special DFDL annotations, where the annotations describe the native representation of the data. Based on this representation, a DFDL parser interprets the data and represents it as a logical XML model. We explain the ideas using an example below adopted from [2].
Let us assume that we have the following XML data:

<w>5</w>

<x>7839372</x>

<y>8.6E-200</y>

<z>-7.1E8</z>

The logical model for this data can be represented in the following XML schema which simply describes the name and type of each element corresponding to the data:
<complexType name="example1">

<xs:sequence>

 <xs:element name="w" type="int"/>

 <xs:element name="x" type="int"/>

 <xs:element name="y" type="double"/>

 <xs:element name="z" type="float"/>

</xs:sequence>

 </complexType>

Further assume that we have access to this same data, but in non-XML format. A binary representation of the data can be visualized in the hexadecimal as follows:
0000 0005 0077 9e8c

169a 54dd 0a1b 4a3f

ce29 46f6

To describe the above in DFDL, we start with the XML schema describing the data model, and annotate the type definition as follows:

 <xs:complexType name="example1">

 <xs:annotation>

 <xs:appinfo>

[image: image11.png]Attribute HDFS

+name: String
+value: Variahle

Dataset
+location: URL

+openg.

Group

+name: String
+members: Variablel]

Variable

+name: String
+shape: Dimension(
+ype: DataType

+Array read)

-

Structure
+members: Variablel]

DataType HDFS
+byte.

+short

“int;

+long:

+loat

+double;

+String:
+BifField
+Enumeration
+Date/Time:
+Opague:
+Reference:
+VariableLength

+isUnsigned

<dfdl:format representation="binary"

 byteOrder="bigEndian"

 lengthKind="implicit"

 applies="toScope"/>

 </xs:appinfo>

 </xs:annotation>

 <xs:sequence>

 <xs:element name="w" type="int"/>

 <xs:element name="x" type="int "/>

 <xs:element name="y" type="double">

 <xs:annotation>

 <xs:appinfo>

 <dfdl:format representation="binary”

 floatType=”ieeeNonExtended”

 applies=”hereOnly”/>

 </xs:appinfo>

 </xs:annotation>
 </xs:element>

 <xs:element name="z" type="float" >

 <xs:annotation>

 <xs:appinfo>

 <dfdl:format representation="binary”

 floatType=”ieeeNonExtended”

 applies=”hereOnly”/>

 </xs:appinfo>

 </xs:annotation>
 </xs:element>

 </xs:sequence>

</xs:complexType>

This simple DFDL annotation expresses that the data is represented in binary format and that the byte order will be big endian, and this is pretty much all the information that the DFDL parser needs to read the data.

Similarly, consider if the same data were represented in a text format:

5, 7839372, 8.6E-200, -7.1E8
As before, we can annotate the same data model, although this time we define the properties that provide the character encoding, the field separator (comma), and the decimal separator (period):

<xs:complexType name="example1">

 <xs:annotation>

 <xs:appinfo>

 <dfdl:format representation=“text”

 encoding=“UTF-8”

 decimalSeparator=“.”>

 separator=","

 applies="toScope" />

 </xs:appinfo>

</xs:annotation>

<xs:sequence>

<xs:element name="w" type="int"/>

<xs:element name="x" type="int"/>

<xs:element name="y" type="double"/>

<xs:element name="z" type="float"/>

</xs:sequence>

</xs:complexType>

This DFDL description is sufficient for a DFDL parser to interpret the data and represent its logical XML model.

3.2 Binary Format Description Language

BFDL stands for binary format description language and is an XML dialect based on the eXtensible Scientific Interchange Language (XSIL) [3] that supports the executable documentation of arbitrary binary and ASCII data sets. Applying a BFD template to a set of files produces an XML output containing the original data in an XML-tagged format that can be interpreted by other programs or subjected to further processing (i.e. using XSLT).
More specifically, the basic framework of BDFL is based on XSIL and BFDL adds to new elements and several attributes to the XSIL specification. The elements support an if control structure (XBFDif) and dynamic reference to previously read values (i.e. variables) using XPath expressions (XBFDvalue-of). The new attributes provide mechanisms to describe additional file constructs (e.g., fixed length string buffers) and to reference external files via generic stream numbers instead of specific file names/URLs. See Figure 1 for an illustration and below for an example of how a BFD template can be used to generate an XML representation of data.
[image: image2.png]XML Format
1

XML Format
2

 Figure 1 BFDL Workflow
<?xml version="1.0"?>

<!DOCTYPE XSIL SYSTEM "bfd.dtd">

<XSIL>

 <Param Name="month" Type="int"/>

 <Param Name="day" Type="int"/>

 <Param Name="year" Type="int"/>

 <Param Name="numColumns" Type="int"/>

 <Param Name="flag" Type="int"/>

 <XBFDif test="/XSIL/Param[@Name='flag'] = 5">

 <Array Name="frequencyData" Type="double">

 <Dim>

 <XBFDvalue-of select="/XSIL/Param[@Name='numColumns']"/>

 </Dim>

 <Dim>6</Dim>

 </Array>

 </XBFDif>

 <XBFDif test="/XSIL/Param[@Name='flag'] = 9">

 <Array Name="timeData" Type="double">

 <Dim>4</Dim>

 <Dim>

 <XBFDvalue-of select="/XSIL/Param[@Name='numColumns']"/>

 </Dim>

 </Array>

 </XBFDif>

 <Stream Encoding="Binary" Type="Remote" XBFDStreamnumber = "1">

 </Stream>

</XSIL>

 Figure 2 BFD Template
<?xml version="1.0"?>

<!DOCTYPE XSIL SYSTEM "bfd.dtd">

<XSIL>

 <Param Name="month" Type="int">10</Param>

 <Param Name="day" Type="int">12</Param>

 <Param Name="year" Type="int">2001</Param>

 <Param Name="numColumns" Type="int">3</Param>

 <Param Name="flag" Type="int">9</Param>

 <Array Name="energyData" Type="double">

 <Dim>3</Dim>

 <Dim>5</Dim>

 <Stream Delimiter=",">

8.5,9.6,10.7,11.8,1.9,2.0,3.1,4.2

34.1,56.2,68.3,80.4,45.7,49.2,72.7

 </Stream>

 </Array>

Figure 3 Product of running BFD template on data file

3.3 Earth Science Markup Language

ESML stands for Earth Science Markup Language and is a specialized markup language for earth science metadata based on XML [4]. The primary design goal for ESML is to provide an elegant solution allowing multiple existing data formats to interoperate with different applications. It has three primary components that enable data and application interoperability: the ESML Schema, the ESML Description Files and the ESML Library (Figure 4). The ESML Schema defines the grammar for generating an ESML Description File (instance document) for a given dataset in a certain data format. A GUI based Editor (ESML Editor) is also available for users to generate ESML Description Files. The ESML Library is the middleware that applications use to parse an ESML description and retrieve the data in the associated data file(s).
The example below shows an ESML description file for a simple binary data file with three fields. The data fields are two dimensional arrays. After declaring the format, the subsequent sequence of declarations follow the data structure of the file. The entire data file is enclosed within a single Structure element. The data fields themselves are nested in two Array elements
[image: image3.emf]
Figure 4 ESML Components

with size specified for each dimension. Data values in the array are described by the Field element, with a name (Uwind, DimX, DimY, respectively) and a data type definition to read integer data in base ten. The ESML core library provides the basic functionality of reading the structural metadata from the ESML description file and retrieving the data from the data file. The canonical DOM tree structure stores the metadata as it is parsed from the ESML description file.
[image: image4.emf]
Figure 5 Sample ESML Description File
3.4 Bitstream Syntax Description Language

BSDL stands for Bitstream Syntax Description Language and is an XML based language to describe the high-level structure of bitstreams [5]. Typically, a multimedia bitstream consists in a structured sequence of binary symbols; this structure being specific to the coding format. The objective of BSDL is not meant to replace the original binary format, but act as an additional layer, similar to metadata. It does not describe the bitstream on a bit-per-bit basis, but addresses its high-level structure, i.e. how it is organized in layers or packets of data. Furthermore, it does not deal with the semantics of the bitstream, i.e. the original object, image, audio or video it represents, but only considers it as a sequence of binary symbols.
[image: image5.emf]

Figure 6 BSDL Multimedia Content Application
Figure 7 shows an example of a fragment XML description of a JPEG2000 bitstream, an emerging still image coding standard based on a wavelet transform. In a simplified view, the bitstream is organized as a sequence of packets containing a header, identified by a two-byte marker with the hexadecimal value FF91, followed by two bytes indicating the length of the header, and four bytes indicating the packet number. This header is followed by the packet data, consisting in a sequence of bytes resulting from the arithmetic coding of the wavelet coefficients.
<Packet>

 <Header>

 <Marker>ff91</Marker>

 <Length>4</Length>

 <PacketNumber>1</PacketNumber>

 </Header>

 <PacketData>155-396</PacketData>

</Packet>

 Figure 7 Example of a fragment JPEG2000 Bitstream Description
Once we get an XML representation of the bitstream, it is then possible to define the corresponding editing operations on the XML document, which will consist in removing the elements corresponding to the packets of data to be cut off, and in modifying some element or attribute values. The strength of describing a bitstream structure using XML is that there are solutions already available to perform such XML-to-XML editing operations. These operations are performed via XSLT transformations.

Furthermore, the bitstream description itself contains the data to be written in the output bitstream, but does not specify how the value should be encoded. For example, if the description contains an element <Length>4</Length>, additional information is required to know whether the value "4" should be encoded as a short integer on two bytes or as a floating point variable. This information is contained in a Bitstream Schema as shown in Figure 8.
<xsd:element name="Header">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element name="Marker"

 type="xsd:hexBinary"/>

 <xsd:element name="Length"

 type="xsd:short"/>

 <xsd:element name="PacketNumber"

 type="xsd:int"/>

 </xsd:sequence>

 </xsd:complexType>

</xsd:element>

Figure 8 Bitstream Schema
3.5 Binary XML Description Language

BinX (Binary XML description language) is an XML Schema Standard for representing the “metadata”, associated with data stored in binary files, in XML [6]. The metadata can be used to describe information about the binary data, such as how the data was produced (parameters, algorithms used etc), when it was produced and by whom. It also contains a description of the structure and representation of the data itself.
BinX was developed by edikt (e-Science Data, Information and Knowledge Transformation: http://www.edikt.org). It is used to describe the content, structure and physical layout (endian-ness, blocksize etc.) of binary files. BinX is designed to enable transparent transfer of data between diverse platforms. It is a XML-compliant language to annotate data schema for binary files. The data elements in the binary data files are represented in XML tags. Therefore, the data schema or metadata of the binary file is separated from the binary data content, and stored in a separate XML file. Such a file is readable to the human users as well as computer tools to parse the datasets.
The following schematic shows (Figure 9) the flow of information when BinX files are used for describing binary data files and the BinX Library (software) is used to parse the original binary data files into structured data.
A generic example of a BinX file is:

<?xml version="1.0" encoding="UTF-8"?>

<dataset xmlns="http://http://schemas.nesc.ac.uk/binx/binx" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://http://schemas.nesc.ac.uk/binx/binx binx.xsd"

byteOrder="bigEndian" bitOrder="bigEndian" blockSize="32">

 <definitions>

 <typeDef typeName="complexType">

 <struct>

 <ieeeFloat-32 varName="real"/>

 <ieeeFloat-32 varName="imaginary"/>

 </struct>

 </typeDef>

 </definitions>

 <file src="http://www.epcc.ed.ac.uk/testFile.bin">

 <ieeeFloat-32 varName="inputParameter1"/>

 <integer-32 varName="inputParameter2"/>

 <arrayFixed>

 <defType typeName="complexType"/>

 <dim indexFrom="0" indexTo="99" name="x"/>

 <dim indexFrom="0" indexTo="4" name="y"/>

 </arrayFixed>

 </file>

</dataset>

The root tag is <dataset> which is can contain a set of type definitions, contained within the <definitions> tag, followed by one or more file descriptions contained within the <file> tag. In this example a new type “ComplexType” has been declared in the definitions section that is defined to be a struct containing two floats, one called “real” and one called “imaginary”.

[image: image6.jpg]B
7

BinX Library Structured
mEami D
R em

Original

By G
g

 Figure 9 Binary XML workflow

This file contains two numbers a float (inputParameter1) followed by an integer (inputParameter2) followed by a two dimensional array of our new complex number type. The <dataset> tag allows us to define the byte order, the bit order and the blocksize. These can be changed for individual files, or indeed for individual fields. A visualization tool, called BinX Editor (BinXed), is available which can be used for designing BinX schema documents. A BinX document is an XML text file based on the BinX mark-up language for the purpose of describing a binary data file.
3.6 Message Transmission Optimization Mechanism
MTOM (SOAP Message Transmission Optimization Mechanism) is a W3C specification [7]. It is a method of efficiently sending binary data to and from Web services. It uses XOP (XML-binary Optimized Packaging) to transmit binary data and is intended to replace both MIME and DIME attachments.
The main focus of MTOM is to enable transmission of binary attachments such as images, drawings, XML documents etc. It is based on a technique called “by reference” where data transmission is achieved by attaching pure binary data as external unparsed general entities outside the XML document and then embedding reference URIs to those entities as elements or attribute values. This prevents the unnecessary bloating of data and wasting of processing power. In particular, the wire format of a MTOM optimized message is the same as the SOAP with Attachments (SwA) message [8], which also makes it backward compatible with SwA endpoints. The most notable feature of MTOM is the use of the XOP:Include element, which is defined in the XML Binary Optimized Packaging (XOP) specification to reference the binary attachments (external unparsed general entities) of the message. With the use of this exclusive element, the attached binary content logically becomes inline (by value) with the SOAP document even though it is actually attached separately. This merges the two realms by making it possible to work only with one data model. This allows the applications to process and describe by only looking at the XML part, making the reliance on DTDs obsolete. MTOM has also standardized the referencing mechanism of SwA.
The basic ideas of using XOP packaged data are that:

1. Binary data can be included alongside plain-text XML data, and the XOP package processing would take care of the optimization (which reduces the size of the original Base64 encoded data,

2. The internal references would be resolved, and

3. All levels of software above the XOP package management would not have to worry about managing the binary data either on the encoding or the decoding side.

Note that at the conceptual level, this binary data can be thought of as being base64-encoded in the XML Document. As this conceptual form might be needed during some processing of the XML document (e.g., for signing the XML document), it is necessary to have a one-to-one correspondence between XML Infosets and XOP Packages. Therefore, the conceptual representation of such binary data is, as if it were base64-encoded, based on the canonical lexical form of the XML Schema base64Binary datatype. In the reverse direction, XOP is capable of optimizing only base64-encoded Infoset data that is in the canonical lexical form.
3.7 Hierarchical Data Format

HDF (Hierarchical Data Format) [9] is a data format first developed in the 1980s and currently in Release 4.x (HDF Release 4.x). HDF version 5, or HDF5, is a new data format first released in Beta in 1998 and designed to better meet the ever-increasing demands of scientific computing and to take better advantage of the ever-increasing capabilities of computing systems. HDF5 is currently in Release 1.x (HDF5 Release 1.x). It was created by the NCSA (National Center for Supercomputing Applications) and is a data model and a programming model that consists of:
· a data format specification (multi object file format).
· a supporting library implementation.
HDF5 supports all types of data stored digitally, regardless of origin or size. Examples include petabytes of remote sensing data collected by satellites, terabytes of computational results from nuclear testing models, and megabytes of high-resolution MRI brain scans can be stored in HDF5 files, together with metadata necessary for efficient data sharing, processing, visualization, and archiving. Similar to XML documents, HDF files are self-describing and allow users to specify complex data relationships and dependencies. But, in contrast to XML documents, HDF files can contain binary data (in many representations) and allow direct access to parts of the file without first parsing the entire contents. It also supports a rich set of pre-defined datatypes as well as the creation of an unlimited variety of complex user-defined datatypes. Datatype definitions include information such as byte order (endian), size, and floating point representation, to fully describe how the data is stored, insuring portability to other platforms.
In general, HDF5 files are organized in a hierarchical structure, with two primary structures: groups and datasets. An HDF5 group is a structure containing zero or more HDF5 objects. Each group has two parts: (i) a group header, which contains a group name and a list of group attributes; and (ii) a group symbol table, which is a list of the HDF5 objects that belong to the group. An HDF5 dataset is stored in a file in two parts: a header and a data array. The header contains information that is needed to interpret the array portion of the dataset, as well as metadata (or pointers to metadata) that describes or annotates the dataset. Header information includes the name of the object, its dimensionality, its number-type, information about how the data itself is stored on disk, and other information used by the library to speed up access to the dataset or maintain the file's integrity. The Figure 10 below shows a UML representation of the HDF5 data model.

[image: image7]
Figure 10 UML representation of HDF5 data model

4. Binary Data Format Software Implementations
In the following sections, we will introduce a number of binary data software that act as reference implementations to some of the languages introduced in the previous sections.

4.1 IBM Virtual XML Garden

Virtual XML is the ability to view and process any data - whether XML or non-XML - as though it is XML, and in particular allow use of XML processing languages, such as XPath and XQuery, on the data. IBM Virtual XML Garden [11] adopts this approach for an XML-based virtualization of data resources. As part of this approach, it separates the representation of the data from the processing model; that is, we describe how to support processing of non-XML data as though it is XML and without explicit conversion to XML. The benefits associated with the virtual XML approach include leveraging existing interfaces, tools, knowledge, and communities of interest and also the ability to process both non-XML and XML data in a uniform way by using XML processing languages.
To achieve this, IBM Virtual XML Garden adopts W3C XQuery 1.0 and XPath 2.0 data models, which extends the XML Infoset with new features to meet the requirements for the new XML processing languages such as XPath 2.0, XSLT 2.0 and XQuery 1.0. An important element of IBM Virtual XML is to adopt languages that allow XML representation of data in all forms. IBM’s implementation is based on the Data Format Description Language (DFDL) introduced earlier. Expectedly, an important requirement for leveraging the power of DFDL is to efficiently implement processing of the descriptions and ultimately the data. IBM Virtual XML Garden achieves this by (1) implementing the processing languages lazily such that processing is driven in an “on demand” fashion by the consumer accessing the processing result, and (2) analyzing expressions and queries to understand the data profile properties of each component. The technical details of how this is achieved are beyond the scope of this white paper and are available at [11]. More details are available at: http://www.research.ibm.com/virtualxml/
4.2 Defuddle

Defuddle [12] is a reference implementation for the DFDL specification [2]. It supports translation and metadata extraction of arbitrary text and binary data through the use of DFDL schema descriptor files. It also optionally supports the application of style sheets to the output.
The Defuddle parser leverages existing tools for automatically parsing XML documents within the context of a logical model. It is based on the JAXB specification which provides a convenient way to use XML Schema to automatically parse XML instance documents into Java classes corresponding to that schema. Thus, from a design standpoint, this solution provides an off-the-shelf ingestion engine for the logical model (XML Schema), a dynamic logical model compiler (Java classes), and an XML document generator for streaming data from the classes to XML. Specifically, at run-time, the DFDL schema is ingested and processed to generate Java classes representing components of the logical model. These classes are then compiled using the standard Java compiler. The translation of the input data source(s) is then initiated using the JAXB XML marshaller. As the java objects are streamed by the parser, the logical model is formed by loading the required values from the data file. The XML model is streamed to an output that can then be processed by standard XML tools. The class generation process is performed automatically before translations are performed, but the compiled classes can be cached to improve performance on subsequent runs. More details on the software are available at: http://defuddle.pnl.gov/
4.3 Earth Science Markup Language Implementation

ESML is an interchange technology that enables data (both structural and semantic) interoperability with applications without enforcing a standard format within the Earth science community [4]. Users can write external files using ESML schema to describe the structure of the data file. Applications can utilize the ESML Library to parse this description file and decode the data format. As a result, software developers can now build data format independent scientific applications utilizing the ESML technology. Furthermore, semantic tags can be added to the ESML files by linking different domain ontologies to provide a complete machine understandable data description. This ESML description file allows the development of intelligent applications that can now understand and "use" the data.
The ESML implementation at its basic comprises of the ESML schema, an editor for modeling the schema elements and the ESML library that parses the ESML description files for processing the information. The latest implementation released by the group was in 2006 and no more active code development is pursued at present. Furthermore, it is unclear about how one would associate concepts from ontology to ESML descriptions; at least, we did not find any existing study on this topic. More details are available at: http://esml.itsc.uah.edu/
4.4 Binary XML Implementation

BinX is an XML schema-based language with which to describe the layout of binary data files. It is designed to enable transparent transfer of data between diverse platforms. The BinX library allows the reading and writing of BinX XML files and the associated binary data. It supports (or will support) functionality to:
· Browse – read data from binary files
· Extract – select partial data from the dataset
· Transform – use XSL to transform structure of binary data
· Create – create binary data and the associated BinX descriptions
The entire library is written in C++. The existing implementation also comprises of a visualization tool called BinX editor (BinXed) to assist in designing BinX documents. These documents, as shown in Section 3.5, is an XML text file based on the BinX mark-up language for the purpose of describing a binary data file. More details on the software are available at: http://www.edikt.org/binx/
4.4 Message Transmission Optimization Mechanism Implementation

MTOM (SOAP Message Transmission Optimization Mechanism) is a specification that enables transmission of "attached" binary data to XML messages. It leverages the XOP:Include element, defined in the XML Binary Optimized Packaging (XOP) specification, to reference the binary attachments (external unparsed general entities) of the message such that the attached binary content logically become inline (by value) with the SOAP document even though actually it is attached separately.
For our purposes, we investigated the Apache Axis2 project [13] which is a reference implementation of the SOAP ("Simple Object Access Protocol" [14]) submission to W3C. Axis2 comes with its own light-weight object model, AXIOM, for message processing which is extensible, highly performant and is developer convenient. It is based on an XML infoset model which refers to the information included inside the XML and for programmatical manipulation it is convenient to have a representation of this XML infoset in a language specific manner. For an object oriented language the obvious choice is a model made up of objects. For example, DOM and JDOM are two such XML models. AXIOM leverages a differed built XML info set representation based on StAX (JSR 173), which is the standard streaming pull parser API. Thus, the object model can be manipulated as flexibly as any other object model (Such as JDOM), but underneath the objects will be created only when they are absolutely required. This leads to much less memory intensive programming. AXIOM also has the ability to hold binary data. This is enabled by allowing AXIOM to hold raw binary content in the form of javax.activation.DataHandler on which MTOM is based. Consequently, using AXIOM one can send base64encoded data as well as externally attached raw binary data referenced by "XOP" element (optimized content) in a SOAP message. Additionally, the user can specify whether the binary data or base64encoded binary data is qualified to be optimized or not at the construction time of that node or later. In general, to take the optimum efficiency of MTOM a user is advised to send smaller binary attachments using base64encoding (none optimized) and larger attachments as optimized content. More details are available at: http://ws.apache.org/axis2/
4.5 Hierarchical Data Format Language Implementation

HDF (Hierarchical Data Format) technologies are relevant when the data challenges being faced push the limits of what can be addressed by traditional database systems, XML documents, or in-house data formats. Many HDF adopters have very large datasets, very fast access requirements, or very complex datasets. Others turn to HDF because it allows them to easily share data across a wide variety of computational platforms using applications written in different programming languages. Some use HDF to take advantage of the many open-source and commercial tools that understand HDF.
HDF technologies at present include two data management formats (HDF4 and HDF5) and libraries, a modular data browser/editor, associated tools and utilities, and a conversion library. Both HDF4 and HDF5 were designed to be a general scientific format, adaptable to virtually any scientific or engineering application, and also have been used successfully in non-technical areas. The Open Source format is a key technological foundation for HDF core technologies. It allows users to collaborate regarding functionality requirements and permits users' experience and knowledge to be incorporated into the HDF product when appropriate. It also permits users and organizations without adequate technology resources to use a sophisticated and robust data management tool for no charge. HDF5 is particularly good at dealing with data where complexity and scalability are important. Data of virtually any type or size can be stored in HDF5, including complex data structures and data types. HDF5 is portable, running on most operating systems and machines. HDF5 is scalable - it works well in high end computing environments, and can accommodate data objects of almost any size or multiplicity. It is also efficient, providing fast access to data, including parallel I/O. It also can store large amounts of data efficiently - it has built-in compression, or applications can also provide their own special-purpose compression. HDF4 and HDF5 are both widely used in government, academia, and industry. There are more than 200 distinct applications of the formats and an estimated 1.6 million users of NASA data alone. It is also the base format for a number of community standards, such as HDF-EOS, the standard for NASA's enormous Earth Observing System http://eospso.gsfc.nasa.gov/, and NeXus, the standard for Neutron, Xray and Muon Science (http://www.nexus.anl.gov/index.html). More details are available at: http://hdf.ncsa.uiuc.edu/
5. caBIG™ Case Studies
The following two case studies, contributed by the members of the caBIG community, describe the need for leveraging descriptive languages during transportation of bulk data.
5.1 Use Case# 1: Querying for Imaging Data

The diagram in Figure 11, provided by the IVI middleware team, details the imaging use case of
[image: image8.jpg]Client

T
H query(CQL Query)

Service

DICOM-CQL-QueryProcessor ()

[DIcOWPAGS

DICOM Objects as zip files

of retrieveWithGridF TP

CIeanui)

T
'
'
'
Remove files from server

1
% : 5
> : !
o 1 CQL translated to DICOM Query (C_FIND) | |
: 1 i
g | DICOM Metadata H H
1 H H
g CQLResultSet 1 H
| CQL Results 3-" I i
H T 1 i
: H : i
H H 1 1
1 1 H H
1 1 H H
1 1 1 :
retrieveWithGridFTP(CqlQuery) : !
= | |
|_ EPRof BDT Resource 1 GreateBOT H !
h r—Resauree s —WSRFBDT ' :
H H Resource B |
1 1 1 i
' ! icQL-2-Dicom ! '
i i ! DICOM i _Dicom
1 1 Retrieve | Objects Moved ;
: ' T (C_GET) [> 10 gridFTP Sener}
1 1 ! :
w ! ! 1 gridFTPURL of Retrievei Objects i
> 1 1 : H |
w 1 ! getGridFTPUrs ' ! :
o i 1 1 ! |
[! GridFTP Fetch | ! |
W : : : >l
o ' ! Check f caller of gridF TP Fetch gri _
: | ! is the same user as the the caller A tion
: :
: i
H
! t
| |
| 1
: |
: L)
1
|

Figure 11 Sequence diagram depicting querying for images using GridFTP

querying their Data Service as well as using caGrid BDT to return images using GridFTP (binary transport). The standard Data Service query mechanism (shown in the top QUERY portion of the diagram) maintains all data semantics as the data types are fully described and semantically annotated with the standard Data Service metadata, and data returned from the service is in the XML form of those data types. The mechanism used to return binary images (shown in the bottom RETRIEVE portion of the diagram), however, has a potential loss of semantics, as the content of binary data returned by GridFTP is not described by metadata.
More specifically, the following is the flow of events based on the above diagram:
1. The caGrid Client issues a CQL query to the caGrid Data Service, and specifies the data should be returned with BDT/GridFTP.
2. The caGrid Data Service prepares the query results and creates a BDT resource for them, associating metadata describing the result type (referencing the data service metadata), as well as metadata describing the binary data format that will be used to transport them over GridFTP.
3. The caGrid Client (or any client which will be retrieving the data) may inspect the BDT resource’s metadata to determine the semantics of the contained data, as well as the expected binary format of the data to be retrieved.
4. The caGrid Client then retrieves the data in its binary format, using GridFTP.
5. The caGrid Client can then either process the data in its binary format, or use the metadata to transform the results back into their XML representation.
5.2 Use Case# 2: Querying for Microarray Data

A user queries the caArray data service experiment metadata for experiments of interest. The results are some sort of pointer to the raw experiment data, which takes the form of a binary file in CEL format (for Affymetrix-based experiments). The format is described at http://www.stat.lsa.umich.edu/~kshedden/Courses/Stat545/Notes/AffxFileFormats/cel.html (look at the version 4 format). CEL data exposed on the grid should be well formatted and semantically annotated so that users can consume of the data and discover it if desired. Specifically, there are a number of fields, which are described and have a particular datatype (integer, DWORD, etc.). Users of grid services exposing this data should be able to discover (1) which services are able to transmit CEL data through a high-throughput mechanism, and (2) what the semantic contents are of the data.
On a slightly different note, in the domain of next generation sequencing techniques, technologies such as Roche-454 use binary SFF data files. These are also well formatted as the CEL file discussed above, but are typically more bulkier (the format can be accessed from: http://www.ncbi.nlm.nih.gov/Traces/trace.cgi?cmd=show&f=formats&m=doc&s=formats#sff). Consequently, use case #2 can be extended to work with SFF files as well. Similarly, one disadvantage of using state-of-the-art high throughput technologies, such as Illumina-Solexa, is the transfer of a large number of TIFF image files from the instrument to the workstation where actual processing takes place. The total size of the image files can be upto 700GB and expectedly transfer of such bulk data is a time consuming process. Within this context, the imaging use-case #1 relates to utilizing GridFTP for images data transfer, and its applicability to such data will be tremendously useful for Illumina-Solexa sequence analysis.

6. Recommendations for caBIGTM Binary Data Format Languages and Software
The need for leveraging "descriptive languages" for binary data within caBIG is unprecedented, as had been demonstrated in the aforementioned use cases. However, each need comes with a different set of concerns and priorities. In such a setting, a universally useful solution will have to be described in fairly fundamental terms. Furthermore, any solution recommended for caBIG should effectively leverage the existing caBIG knowledge based infrastructure that is expressed in terms of CDEs, UML models, Interfaces and immutable concepts. In particular, the recommendation has to consider caDSR’s utility and how to maximally exploit it. The use of caDSR-derived, ontology-anchored knowledge structures (e.g., the NCI Thesaurus) when designing caBIG applications provides a means for semantic interoperability between such an application and others within the caGrid framework.
Based on our evaluation of the binary data format languages and software introduced in the previous sections, we have developed a “feature matrix” to compare them and base our recommendation for further evaluation, prototyping, and eventual implementation within the caGrid infrastructure. The various elements of the matrix are:

· Current Status: this indicates whether the particular project/team responsible for developing the language/software is active or not.
· Licensing: this indicates the type of license (open source, commercial, limited etc.) used to distribute the language/software under consideration.
· Maturity: this gives an estimate of the development timeframe for a particular language/software.
· Semantic Describability: this indicates how uniformly ontologies and vocabularies can be leveraged in associating semantic information to the data descriptions.
· Representative User Community: this indicates whether or not the language and its implementation have been adopted by various communities and how they are used in different applications.
· Developer Support: this indicates if there are any tutorials or documentation relevant to the language or software that can be readily used by developers for prototyping.
· Grid Compatibility: this indicates whether the language/software will be compatible to grid infrastructure, and caGrid, in particular.
From both matrices, we made the following observations:

Binary Data Format Languages: Out of all the languages that were considered for evaluation, we believe that the Data Format Description Language (DFDL) and Earth Science Markup Language (ESML) are the ones that satisfy most of the requirements in the “feature matrix”. In particular, we consider DFDL to be a front-runner since (i) it is developed by the Open Grid Forum with inputs and participation from caBIG community members, (ii) is under active development, and (iii) is based on use cases and potential applications expanding multiple communities (as opposed to ESML which is focused only on the earth science community). Additionally, the DFDL working group [2] grew out of Binary XML Language (BinX) which has been widely used and actively developed from 2003—2005. With respect to Bitstream Syntax Description Language (BSDL), we observed that even though the language is relevant in the context of “describing data”, it is more tightly connected to only bitstream data. A similar observation was also made with respect to the Message Transmission Optimization Mechanism (MTOM) which is heavily focused on addressing binary data attachment problems in Web services (i.e., SOAP with attachments) and does not inherently provide any means of describing binary data, nor does it propose a binary format for XML documents. MTOM/XOP is merely a way of serializing XML in a way that would make it more efficient to include Based64-encoded data. Furthermore, MTOM has scalability limitations when dealing with large binary data object. On a different note, the Hierarchical Data Format (HDF) has the capability to represent a variety of data types and provided techniques for efficient encoding of the data. However, the HDF community, unlike DFDL, has not well-addressed the issue of (semantically) describing the data.

	Languages/ Standards
	BFDL
	DFDL
	ESML
	BSDL
	BinX
	HDF
	MTOM

	Name
	Binary Format Description Language
	Data Format Description Language
	Earth Science Markup Language
	Bitstream Syntax Description Language
	Binary XML Language
	Hierarchical Data Format
	Message Transmission Optimization Mechanism

	Web Link
	http://collaboratory.emsl.pnl.gov/sam/bfd/
	http://forge.gridforum.org/projects/dfdl-wg/
	http://esml.itsc.uah.edu/
	http://www2002.org/CDROM/alternate/334/
	http://www.edikt.org/binx/
	http://hdf.ncsa.uiuc.edu/
	http://www.w3.org/TR/soap12-mtom/

	Current Status
	Inactive since 2003
	Active
	Inactive since 2006
	Inactive since 2003
	Inactive since 2005
	Active
	Active

	Maturity
	Developed since 2000 till 2003
	Developed since 2003 till date
	Developed since 2003 till 2006
	N/A
	Developed since 2003 till 2005
	Developed since early 90’s till date
	Developed since 2005 till date

	Semantic Describability
	N/A
	Allows semantic labeling of individual data objects and groups using meta-data elements.
	Allows elements to be hooked up to concepts from an ontology
	N/A
	N/A
	N/A
	N/A

	Representative User Community
	N/A
	Open Grid Forum???
	Earth Science community
	N/A
	Astronomy, Bioinformatics, Particle Physics, CAD/CAM/CAE.
	High energy physics, Aeronautics, Atmospheric science
	Web services???

Table 1 “Feature Matrix” for Binary Format Description Languages
	Software
	IBM Virtual XML Garden
	PNNL Defuddle
	ESML Implementation
	BinX Implementation
	HDF Implementation
	Apache Axis 2

	Reference implementation of which language?
	Data Format Description Language
	Data Format Description Language
	Earth Science Markup Language
	Binary XML Language
	Hierarchical Data Format
	Message Transmission Optimization Mechanism

	Web Link
	http://collaboratory.emsl.pnl.gov/sam/bfd/
	http://forge.gridforum.org/projects/dfdl-wg/
	http://esml.itsc.uah.edu/
	http://www.edikt.org/binx/
	http://hdf.ncsa.uiuc.edu/
	http://ws.apache.org/axis2

	Current Status
	Active
	Active
	Inactive since 2006
	Inactive since 2005
	Active
	Active

	Licensing
	IBM Alphaworks
	Apache License 2.0
	GNU LGPL 2.1
	University of Edinburgh
	N/A
	Apache License 2.0

	Maturity
	Developed since 2004 till date
	Developed since 2005 till date
	Developed since 2003 till 2006
	Developed since 2003 till 2005
	Developed since early 90’s till date
	Developed since 2002 till date

	Developer Support/ Usability
	Good; developer documentation is available
	Average
	Good; developer document is available
	Poor
	Good; developer documentation is available
	Good; developer documentation is available

	Grid Compatibility
	Supports OGF developed DFDL
	Reference implementation of OGF DFDL
	N/A
	N/A
	N/A
	N/A

Table 2 “Feature Matrix” for Binary Format Description Language Implementations
Binary Data Format Languages Implementations: Since DFDL is one of the languages that fit our requirements, naturally its reference implementations, namely IBM Virtual XML Garden and PNNL Defuddle, were relevant. Both the implementations are actively developed and well-supported, although Virtual XML is based on IBM Alphaworks license which might limit its adoption in the open-source world. Additionally, ESML implementation met the requirements although it is no longer under development and support. Both HDF and MTOM implementations, HDF5 and Apache Axis 2, respectively, are very widely used by different communities and actively developed. They also have very good support and documentation to assist in building applications. The BinX implementation, on the other hand, lacks these aspects and in some sense remained more of an “academic pursuit”.
Based on the observations made by our group, we believe that there are many statements of further work that needs to be accomplished. A summary of those tasks is presented here.
1. Further Evaluation of Binary Data Format Languages and Software: as identified in this white paper, our small working group, due to limited resources and time constraints, barely scratched the surface in evaluating the existing binary data format languages and software. We believe that this evaluation should be continued, in particular, with the participation of members responsible for development of the languages/software to get their feedback and (expert) opinions in understanding the details. One aspect that warrants further investigation is the issue of whether or not the languages/software are caGrid compatible, and if not, what can be done to achieve the desired compatibility level.
2. Experimentation and Developing Prototypes: Our current evaluation did not include any prototyping efforts. We believe this is an important requirement, in particular, to measure the scalability and performance related issues. Furthermore, such efforts will provide hands-on experience in addressing the compatibility issues.
3. Active Engagement of the Community: We believe that successful incorporation of “descriptive languages” within the caGrid infrastructure will heavily impact how different types of data are interpreted. Consequently, this will influence the development of various applications that leverage the caGrid SDK and its associated software components. Hence, engaging the wider caBIG community during the various phases of evaluation, implementation and adoption of descriptive languages in caGrid will be beneficial.
7. Conclusions
There exist compelling use cases within the caBIG community that could greatly benefit from leveraging binary data format languages and software. The existence of multiple, and often overlapping technologies necessitates the selection of a sufficiently extensible and evolvable system that is both able to meet currently perceived need, and that will also be able to adapt to future need and technologies. The recommendations provided in Section 6, which include further evaluation and prototyping with existing binary data format languages and software system should provide such benefits to the caBIG community.
8. References
http://www.iso.org/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=353411.
The ISO: SQL/XML—Part 14 (SQL 2003) specification, ISO/IEC 9075-14:2003, International Organization for Standardization []

2.
OGF Data Format Description Language [http://forge.gridforum.org/projects/dfdl-wg/]

3.
XSIL Extensible Scientific Interchange Language [http://www.cacr.caltech.edu/SDA/xsil/]

4.
Ramachandran R, Graves S, Conover H, Moe K: Earth Science Markup Language (ESML): A solution for scientific data-application interoperability problem. Computers and Geosciences 2004, 30(1):117-124.

5.
Amielh M, Devillers S: Bitstream Syntax Description Language: Application of XML-Schema to Multimedia Content Adaptation. In: World Wide Web Conference. 2002.

6.
BinX: Binary XML Language [http://www.edikt.org/binx/]

7.
W3C Message Transmission Optimization Mechanism [http://www.w3.org/TR/soap12-mtom]

8.
SOAP with Attachments [http://www.w3.org/TR/SOAP-attachments]

9.
Hierarchical Data Format [http://hdf.ncsa.uiuc.edu/]

10.
ROOT: An Object-Oriented Data Analysis Framework [http://root.cern.ch/]

11.
IBM VirtualXML Garden [http://www.research.ibm.com/virtualxml/]

12.
Defuddle: an open source descriptive parser for text and binary data [http://defuddle.pnl.gov/]

13.
Apache Axis2 Project [http://ws.apache.org/axis2]

14.
W3C Simple Object Access Protocol [http://www.w3.org/TR/soap/]

[image: image9.png]

[image: image10.png]

� Note that there are many elements of the DFDL schema such as applies=“hereOnly” that are applied when generating a DFDL annotation. A detailed discussion of the DFDL schema is beyond the scope of this paper and more information is available at: � HYPERLINK "http://forge.gridforum.org/projects/dfdl-wg/" ��http://forge.gridforum.org/projects/dfdl-wg/�

Last Updated: 2/28/2008

Page 1 of 35
Last Updated: 2/28/2008

Page 32 of 35

[image: image1.wmf]_1262173559.unknown

