The Influence of Molecular Structure of Distillate Fuels on HFRR Lubricity

Thomas Gallant, Jim Franz and Makhail Ainajjar August 15, 2007

Pacific Northwest National Laboratory Operated by Estelle for the U.S. Department of Energy

Distillate Fuel Knowledge Gaps

Canada

Oil Sands Chemistry and Engine Emissions Roadmap Workshop

June 6-7, 2005 Edmonton, Alberta, Canada

During the joint DOE /CANMET workshop on Oil Sands derived fuels it was determined that our knowledge of distillate fuel chemistry was not adequate to support advanced engine research.

- Therefore, a collaboration was formed between CANMET/NCUT, ORNL and PNNL to:
 - Investigate analytical chemistry methods which would be applicable to distillate fuel chemistry, and
 - Demonstrate the value of these advanced analytical methods by identifying research areas, e.g., HCCI combustion, emissions, lubricity, or after treatment technologies, which the analytical data may provide improved understanding.

Collaborative Program Overview Oil Sands Distillate Streams

Lubricity and Fuel Chemistry Background

Previous research identified numerous factors affecting lubricity, e.g.,

- viscosity,
- sulfur,
- nitrogen and
- Di-aromatics,
- However, none of these factors by themselves completely explain all the wear results.
- In addition, the two lubricity tests most commonly used, i.e., High Frequency Reciprocating Rig (HFRR) and the Scuffing Ball on Cylinder Lubricity Evaluator(S-BOCLE), did not correlate well.

Lubricity Collaboration

PNNL, NCUT and Shell, Canada agreed to worked together to investigate the effect of molecular structure on lubricity, as defined by HFRR.

- PNNL 1H and 13C NMR
- PNNL HFRR (SwRI)
- NCUT GC-FIMS
- Shell, Canada Distillate Streams

Distillate Stream Selection Process

						BEST
Sample ID	Nitrogen	Sulfur	Di Aromatics	Viscosity	Rating	
F6-438	+	+	+	+	+4	
F6-446	0	I	+	+	+1	
F6-447	-	0	-	-	-3	
F6-445	-	-	-	-	-4	

Worse

• From 8 distillate streams, the GC-FIMS data was used to select 4 streams that provided a wide range of chemistries.

• An arbitrate ranking scale was applied to each fuel as it related to lubricity components.

Pacific Northwest National Laboratory U.S. Department of Energy 6

Distillate Stream Selection Process

Sample ID	Nitrogen	Sulfur	Di Aromatics	Viscosity	Bulk HFRR	Rating
F6-438	+	+	+	+	266	+4
F6-446	0	-	+	+	437	+1
F6-447	-	0	-	-	566	-3
F6-445	-	-	-	-	538	-4

• In general, the HFRR data follows the literature

Viscosity Effect Viscosity versus Wear Scar

HFRR versus Viscosity

Battelle

U.S. Department of Energy 8

Lubricity HFRR 60 C @ 100 g Load

			Low \	/iscosity	High Viscosity							
1			< C11	C11- C13	C13- C15	C15- C17	C17- C19	C19 - C21				
Sample <u>#</u>		<u>Bulk</u> HFRR	<u>< 200 C</u>	<u>200 - 235C</u>	<u>235 - 265C</u>	<u> 265 - 300C</u>	<u> 300 - 335C</u>	<u>335 - 360C</u>				
F6-438	+4	266				414	290	144				
F6-446	+1	437				484	240	267				
F6-447	-3	566	574	595	615	452						
F6-445	-4	538	627	593	543	510						
	High Di-a	aromatics	Legend high low	n sulfur > 500ppm sulfur 100< > 500 a low sulf < 10ppm	Eac frac poin Car the	ch distillate tionated by nt range the bon Numb viscosity e	stream way y NCUT int at correspo er range to effect on lui	as to a boiling onded to a o minimize oricity.				

Lubricity High Frequency Reciprocating Rig (HFRR) 60 C @ 100 g Load

		_	Low \	/iscosity	scosity High Viscosity								
ſ			< C11	C11- C13	C13- C15	C15- C17	C17- C19	C19 - C21					
Sample <u>#</u>		<u>Bulk</u> HFRR	<u>< 200 C</u>	<u>200 - 235C</u>	<u>235 - 265C</u>	<u> 265 - 300C</u>	<u> 300 - 335C</u>	<u> 335 - 360C</u>					
F6-438	+4	266	influence t	hat overrides v	cture /iscosity	414	290	144					
F6-446	+1	437	(chain leng	gth)?		484	240	267					
F6-447	-3	566	574	595	615	452							
F6-445	-4	538	627	593	543	510							
							V						
	High Di-a	aromatics	Legend high	sulfur > 500ppm	Is that that visc	nere a molecu t causes this s cosity range?	lar structure in catter within a	nfluence a consistent					
	Low Di-a	romatics		a low sulf < 10ppm	ppm								

1H and 13C NMR Spectroscopy

Zb

<u>1H NMR</u>

Intensity	Region	Significance	Peak
	(PPM)		A
А	8.997 - 8.200	Tri-ring aromatics	В
В	8.200 - 7.551	Di-ring aromatics	D
С	7.551 - 7.182	Di-ring aromatics	E
D	7.182 - 7.130	Mono-ring aromatics	F
E	7.130 - 6.972	Mono-ring aromatics	H
F	6.972 - 6.785	Substituted mono-ring aromatics	1
G	6.785 - 6.425	Highly substituted mono-ring aromatics	J
Н	4 184 -2 306	Bridged CH2 groups in fluorene types	n I
1	3 306 - 2 883	a-CH	M
	2 883 - 2 641	a-CH2	N
ĸ	2 641 - 2 292	α -CH2 + α -CH3	0 P
	2 292 - 2 040	a-CH3	Q
M	2.040 - 4 963	Allylic groups	R
N	1 963 - 4 570	CH and CH2 groups of nanhthenes	S T
0	1.570 - 4 391	CH groups of iso-paraffins	U
D	1 301 - 1 115	CH2 groups of paraffins (n-and iso)	V
	1.115 0.041	CH2 groups of paraffins (n-and iso)	W
Q D	0.041 0.254	CH2 groups of paraffins (n-and iso)	X V
N	0.941 - 0.294		Z
			Za

<u>13C NMR</u>

K	Region	Significance
	(PPM)	
	220 - 202	Ketone Carbonyl
	202 - 195	Aldehyde Carbonyl
	195 - 182	Quinone Carboxyl
	182 - 175	Acid Carboxyl
	175 - 165	Ester or Amide Carboxyl
	165 - 143	Heteroatom (N, O, S) and alkyl (other than methyl) substituted aromatics.
	143 - 137	Tertiary carbon in alkyl substituted aromatics.
	137 - 131	Tertiary carbon in naphthalene units and methyl substituted aromatics.
	131 - 127.5	Substituted carbon in alkenes (R2C=CR2) and orth and meta CH in toluene.
	127.5 - ₁₂₄	Substituted carbon in alkenes (RHC=CR2) and para CH in toluene.
	124 - 115	Substituted carbon in alkenes (RHC=CR2)
	115 - 95	Unsubstituted carbon in alkenes (CH2=CR2).
	95 - 70	C, CH, and CH2 adjacent to oxygen halogen atoms.
	70 - 60	CH2 adjacent to oxygen and C in tertiary alchols.
	60 - 45	CH adjacent to Tertiary and isopropyl groups. Lso, CH3 in ether linkage.
	45 - 40	CH in allylic and benzylic groups and in joining tetralin ring.
	40 - 36	CH2 adjacent to substituted double bonds and tertiary carbon.
	36 - 33.5	CH, CH2 beta from secondary carbon and in cyclopentyl and cyclohexyl rings.
	33.5 - 31	CH, CH2 gamma from CH3. CH2 alpa to allylic and beta to aromatic groups.
	31 - 28.5	C in open chains. CH2 benzylic and CH2 not adjacent to CH in alkyl group.
	28.5 - <u>26</u> .5	CH, CH2 in open chains. CH2 in cyclohexyl groups and CH3 in Tert-buty ether.
	26.5 - _{24.5}	Some naphthenic CH2. CH2 beta in propyl, indan and cyclopentyl groups.
	24.5 - ₂₂	CH2 gamma from terminal CH3. CH 2 beta in unsubstituted tetralin.
	22 - 20	CH3 alpha in hydroaromatics and alkyls not shielded by adjacent rings or groups
	20 - 18	CH3 alpha in hydroaromatics and alkyls shielded by adjacent rings or groups
	18 - 15	CH3 in cyclohexanes and beta in ethyl aromatics and ethers.
	15 - 12.5	CH3 gamma to an aromatic ring or shielded by two adjacent rings or groups.
	125-0	CH3 gamma to aromatic rings or etbyl substituted cyclobeyanes

Structural Distributions by 1H NMR Spectroscopy

Intensity	Region	Significance				
	(PPM)			Distillate Stream		
А	8.997 -8 2 00	Tri-ring aromatics				
В	8.200 -7.5 51	Di-ring aromatics				
С	7.551 -7.1 82	Di-ring aromatics				
D	7.182 -7.1 30	Mono-ring aromatics		П		P
E	7.130 - _{6.9} 72	Mono-ring aromatics				0
F	6.972 - _{6.7} 85	Substituted mono-ring aromat	tics	E,		
G	6.785 - _{6.4} 25	Highly substituted mono-ring	aromatics			
Н	4.184 - _{3.3} 06	Bridged CH2 groups in fluorer	ne types			
I	3.306 - _{2.8} 83	α-CH		14		
J	2.883 -2.6 41	α-CH2		вЦС	١	1 Q
ĸ	2.641 -2.2 92	α -CH2 + α -CH3			M	11
L	2.292 -2.0 40			A 🚮		
IVI N	2.040 -1.9 63	Allylic groups	hanaa	10.1		
	1.903 -1.5 /0	CH and CH2 groups of haphin	nenes			// R
P	1 391 - 4 4 15	CH2 groups of paraffins (n-ar	nd iso)		Н'Ј^_ /	
0	1 115 -0 0 41	CH2 groups of paraffins (n-ar	nd iso)			
R	0.941 - 0.254	CH3 groups of paraffins (n-ar	1d iso) 10.0		5.0	0.0
IX .	0.201	or to groupe of paralitie (if all	ppm (f1)		*.*	
	9.0 -7.50	7.5-6.5	4.0-1.8	1.8-1.06	1.06-0.5	
		H H H	HH	НН		
		Typical Structur	es associate	ed with 1 H NM	R	
				Pacific	: Northwest National L	aboratory
elle					U.S. Department	of Engrey 12

Bati

Typical 1H NMR Fractionated Distillates

... 1H NMR Regions ... / Peak Intensity (Normalized to 100%) for Distillate and Fractionated samples ...

1H NMR Regions В С D Е НІ 0 R F G J K L Μ Ν Ρ Q А PPM 8.997- 8.200- 7.551- 7.181- 7.130- 6.972- 6.785- 4.184- 3.306- 2.883- 2.641- 2.292- 2.040- 1.963- 1.570- 1.391- 1.115- 0.941-8.201 7.551 7.181 7.13 6.972 6.785 6.425 3.306 2.883 2.641 2.292 2.04 1.963 1.57 1.391 1.115 0.941 0.254

	Peak Intensity (Normalized to 100%)													%					
Distillate						-	-			-									total
F6-438	0.04	0.32	0.87	0.36	1.43	1.26	0.23	0.16	1.11	1.91	4.16	3.07	0.65	9.19	8.64	31.86	8.71	26.03	100.00
Fractionated																			
<200 C	0.02	0.1	0.56	0.4	1.62	0.74	0.07	0.05	0.43	0.92	3.11	3.42	0.5	8.09	7.09	28.69	9.92	34.27	100.00
200-235 C	0.06	0.24	0.52	0.26	1.24	0.96	0.08	0.17	0.77	1.58	2.98	3.34	0.64	9.52	7.86	27.84	10.2	31.74	100.00
235-265 C	0.01	0.16	0.55	0.27	1.11	0.97	0.16	0.06	0.65	1.61	3.39	2.74	0.66	9.98	8.05	28.13	11.02	30.48	100.00
265-300 C	0.32	0.39	0.72	0.25	1.14	1.04	0.17	0	0.71	1.88	3.74	2.73	0.62	9.79	8.07	30.9	10.09	27.44	100.00
300-335 C	0.06	0.46	1.15	0.3	1.29	1.21	0.21	0.14	0.93	1.94	4.03	3.02	0.58	8.8	7.94	31.96	8.97	27.01	100.00
>350 C	0	0.32	0.85	0.26	1.13	1.12	0.42	0.15	1.05	1.97	4.13	2.93	0.60	8.51	7.77	32.3	10.82	25.67	100.00
Distillate																			
F6-446	0.03	0.13	0.45	0.17	0.61	0.36	0.02	0.01	0.43	0.61	1.66	0.98	0.42	6.99	6.04	41.52	8.45	31.12	100.00
Fractionated																			
<200 C	0.04	0.16	0.62	0.38	1.41	0.7	0.08	0.01	0.42	1.03	2.53	2.8	0.56	9.06	7.6	25.47	9.51	37.62	100.00
200-235 C	0.06	0.33	0.75	0.27	1.41	0.99	0.1	0.05	0.71	1.96	3.48	2.98	0.58	8.84	6.78	28.59	9.45	32.67	100.00
235-265 C	0.03	0.34	0.76	0.18	0.97	0.83	0.13	0	0.48	1.53	3.09	2.38	0.41	8.28	6.37	32.4	9.96	31.86	100.00
265-300 C	0	0.2	0.52	0.19	0.63	0.43	0.04	0	0.49	0.89	2.27	1.07	0.41	7.73	6.33	39.18	8.31	31.31	100.00
300-335 C	0.01	0.17	0.43	0.14	0.4	0.25	0.04	0.01	0.3	0.34	1.24	0.61	0.32	6.08	6.22	42.82	8.88	31.74	100.00
>350 C	0.05	0.32	0.24	0.06	0.22	0.13	0.03	0.27	0.66	0.56	1.32	0.91	0.51	6.61	6.21	41.4	10.84	29.66	100.00

Lubricity High Frequency Reciprocating Rig (HFRR) 60 C @ 100 g Load

			Low \	/iscosity	High Viscosity							
			< C11	C11- C13	C13- C15	C15- C17	C17- C19	C19 - C21				
<u>Sample</u> <u>#</u>		<u>Bulk</u> HFRR	<u>< 200 C</u>	<u>200 - 235C</u>	<u>235 - 265C</u>	<u> 265 - 300C</u>	<u> 300 - 335C</u>	<u> 335 - 360C</u>				
F6-438	+4	266				414	290	144				
F6-446	+1	437				484	240	267				
F6-447	-3	566	574	595	615	452						
F6-445	-4	538	627	593	543	510						
						$\underline{\qquad}$						
	High Di-a	aromatics	Legend		Lets	focus on th	nis set of					
	riigii bi t		high	n sulfur > 500ppm	chemistries, as it demonstrates							
	Low Di-a	romatics	low	sulfur 100< > 500	ppm SOME	eunexpect	ed HFRR r	esults				
			ultra	a low sulf < 10ppm								

Battelle

Pacific Northwest National Laboratory U.S. Department of Energy 14

Di-Aromatic and Sulfur Compound Influence C16 Boiling Point range

Di-Aromatic / Sulfur Compound versus C16 Fraction Wear Scar

U.S. Department of Energy 15

HFRR Lubricity Alkane

HFRR Lubricity versus Alkane (265-300C Fraction)

N-Alkane Distribution GC-FIMS Data

1 H NMR (4.0-1.06ppm Region)

- This 1H NMR region is typically associated with Cetane, implying a positive influence by long alkane chain and a negative influenceby Branched (iso-alkanes)
- Correlated well to both Bulk and the 265C- 300C fractionated samples.

Pacific Northwest National Laboratory U.S. Department of Energy 18

Conclusions / Next Steps

- A variety analytical methods are required to adequately explore different theories regarding lubricity.
- Lubricity is a complex mechanism that has a molecular structure component.
- Viscosity influence may be an indirect measure of hydrocarbon chain length on boundary lubrication.
- The 13C NMR and GC-FIMS data needs to be explored to fully understand the molecular structure information of the 4.0 - 1.06 1H NMR region.