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1 Introduction

The recently adopted deterministic propagation model, ITU-R P.1812, contains a modified 3-edge Deygout diffraction model first proposed for use in ITU-R P.452.  The Swiss Administration has expressed concern that this diffraction model is inaccurate when compared to measurements in mountainous regions.  In documents 3K/171, 3K/113 and others [5] they show that better agreement to measurements can be obtained by using the Bullington diffraction method.  However, several other groups, notably workers in the United Kingdom [1][2][3][4], have shown that the Bullington method gives totally unacceptable results on smooth earth paths over land or water, particularly at longer distances.  Correspondence Group 3K-1 was established by SG3 to gain a better understanding of the issues involved and, if possible, formulate a revised diffraction method that would meet the concerns of all parties

Much of the effort to date has concentrated upon a linear distance correction term contained within both diffraction methods with a view to introducing non-linear terms to make the Bullington method more acceptable at the longer distances.  A recent proposal by Switzerland to change to a ninth order polynomial distance correction term [7] does not change the large underestimation of diffraction loss on long smooth earth paths.  A separate document is in preparation in which these findings are demonstrated.

The comparison between the competing diffraction methods has been made using a database of measured results provided by a number of Administrations.  As part of its remit, the CG adopted a common format for the data sets and the Polish Administration has worked hard to collate the datasets into the new format.  Unfortunately, extensive analysis of the profiles contained within the datasets by workers in the UK has highlighted a number of errors within the profiles themselves.  A reduced dataset has removed the worst of these obvious errors but there are still some large unresolved mean offsets between datasets from differing sources (possibly due to clutter) that make calculating a meaningful overall standard deviation difficult.  The datasets also have a paucity of sea paths and small time percentage data.  It is, perhaps, unsurprising that no unambiguous conclusion over which method performs best overall over the entire input parameter space has been forthcoming.  Indeed, it is difficult to improve on the statistics from a simple (FSL + x) dB model.

This document is an attempt to examine some of the fundamental reasons, which have given the Swiss Administration their concerns over using the 3-edge Deygout diffraction method in mountainous terrain.  A Monte Carlo approach using synthetic path profiles has been adopted in an attempt to define the boundaries of the problem.  No comparisons to actual measurements have been made but it has been assumed that the two diffraction methods under consideration can safely represent the lower and upper bounds of diffraction loss for any particular path profile.  Justification for this statement rests with two sets of facts:

· The Swiss measurements have been very carefully taken using height-gain measurements to remove ground reflections and show good agreement to the Bullington method for highly mountainous paths considered irrespective of the number of obstacles on the path.  It is difficult to comprehend how a lower total diffraction loss can be achieved on a transhorizon path than by representing all the terrain features using a single virtual knife-edge.

· At the other extreme, a number of studies by David Bacon in the UK [3K/149 and [6]] have shown that the 3-edge Deygout method is a good approximation to the smooth earth diffraction methods in ITU-P.526 and gives a large enough diffraction loss at longer distances not to dominate over the troposcatter loss mechanism.

To date, it has been assumed that it is the roughness of mountainous terrain that is the key distinguishing factor that should be used to determine which diffraction method to use.  This paper focuses upon another of the factors that is presented in the Swiss papers but not highlighted to any great degree: the obstacle separation distance.  The obstacle separation distance is shown to be a very good differentiator between the smooth earth paths and shorter more mountainous paths as the earth curvature increasingly dominates the path profile.  

The approach adopted is to use the obstacle separation distance to drive an interpolation factor, which smoothly switches between the Deygout and Bullington methods.  Since the losses due to the primary edge in the Deygout method and the virtual edge in the Bullington method are almost equal at small obstacle separation distances, it is not necessary to compute the full Bullington method as well as the Deygout method.  It is only necessary to blend out the two secondary Deygout edges to achieve an almost identical result.

A suitable interpolation factor has been developed together with a pair of tuneable parameters to alter the position and range at which the switch occurs.  It is not possible to give precise values for these parameters without a comparison to actual measurements and it is hoped that other members of the CG can test the method using the refined datasets to make a suitable recommendation.  Since the method involves a minimal change to the current 3-edge Deygout method, it is hoped that some preliminary testing of the method can be undertaken in time for the 3K-1 CG meeting scheduled for March in London.

2 The Background

To date, it has been assumed that the terrain roughness is a key factor in differentiating Swiss terrain from the gentler hills in NW Europe.  Indeed, although this does play a part, it is the ratio of the mountain height to the maximum extent of earth curvature and the consequent knock-on effect that this has on the probability of detecting closely spaced obstacles that is of much more importance.  Figure 1shows that two different profiles can have widely different roughness figures, however calculated, but still have the same set of three Deygout knife-edges.

It is instructive at this stage to reproduce Figure 2 contained with document 3K/171 drafted by the Swiss Administration (Figure 2 in this document also).  The thrust of the document is to show that the 3-edge Deygout method becomes increasingly inaccurate compared to measurements as the number of obstacles increases in the path.  However, the figure makes it clear that a combination of using a very detailed terrain database together with jagged mountain peaks is responsible for attributing three knife edges, separated by only 0.3km, to what, in essence, is a single diffracting obstacle.  The other salient feature of the terrain is that the higher the main mountain ridge, the less the probability of earth curvature blocking the stretched string joining transmitter to receiver.  This is illustrated in Figure 3 using a random placement of 3 synthetic knife edges, no more than 7 km apart on a 100km smooth earth path profile.  In the first picture the maximum obstacle height is restricted to be less than 25m whilst in the second it is less than 500m.  The principal knife-edges used in the Deygout construction are shown.

Figure 1
Example of terrain profiles with different roughness criteria but similar Deygout edges
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Figure 2
Path profile reproduced from document 3K/171
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It is interesting to note that, with the 3-edge Deygout construction, the presence of three well-defined obstacles does not guarantee that both secondary edges will contribute to the total loss.  This will depend upon which of the three edges is deemed to have the largest  value; both secondary edges will only be present if the centre obstacle is the main edge.  This high sensitivity to small changes in the terrain is one of the contributory factors leading to the high variability in the total loss when using the Deygout method.  It is also a reason as to why it is difficult to make meaningful comparisons between the Deygout and Bullington methods unless the terrain features can be well controlled.  Later sections will show this in more detail.  

Figure 3
Three randomly place knife edges whose heights are not allowed to exceed a) 25m and b) 500m
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Figure 3 also shows that it is the ratio of the height of the three close-spaced obstacles to the maximum height of the earth curvature, which is, in turn, governed by the path length, that sets the probability of determining three Deygout edges in close proximity to one another.  These observations can be exploited to create a hybrid diffraction model that should address both the Swiss concerns in modelling mountainous terrain and other nation’s disquiet that the Bullington method is not well suited to the longer smoother paths.  Before developing a new model, it is useful to conduct two studies using a Monte Carlo technique with some synthetic path profiles to gauge the magnitudes of the discrepancies between the two competing diffraction methods.

3 The Study Methodologies

Two studies were conducted to gauge the boundary conditions to the discrepancies between the Deygout and Bullington diffraction methods:

· Study A

In this method, three obstacles that are within 80% of the same height as each other were randomly placed on a smooth earth profile of a fixed length.  The maximum allowable height of the obstacles was then allowed to increment in a series of discrete steps.  One hundred samples were taken at each maximum height value.  This was then repeated for a small number of increasingly longer path lengths.  In order to prevent unwanted short range effects from blurring the results, the obstacles were prevented from being too close to either terminal.  This is in line with the recommendations in the Swiss papers where receivers were only placed on open ground with no obstructions in the immediate vicinity in the direction of the transmitter.  Also in line with the Swiss papers, a relatively high effective transmitter height was selected to mimic the use of the TV broadcast transmitters employed for the measurements.  Figure 4 and Table 1 show the parameters and values used.

Figure 4
The parameter definitions used in Study A
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· Study B

In the second method three obstacles that are within 90% of the same height as each other were randomly placed within a defined width window on a smooth earth profile of a fixed length.  The width of the window was allowed to vary in a set of discrete steps and its centre position was randomly variable.  The lower and upper bound of the window was not allowed to fall below or increase beyond a fixed distance from either terminal respectively.  An explanation for this is given in Study A.  The maximum height of the obstacle group was set to a fixed value.  One hundred samples were taken at each window width value.  This was then repeated for a small number of increasingly longer path lengths.  Figure 4 and Table 2 show the parameters and values used.

For both studies, the complete P.1812 recommendation with either the Deygout or Bullington diffraction method was calculated for every random profile generated.  A version of the recommendation using the Bullington method was provided to the CG earlier in the year [4].  Both individual and mean data values were calculated for a wide range of the internal model parameters.  The random number generator was re-seeded between the Deygout and Bullington calculation runs to ensure that meaningful diffraction loss and geometric comparisons could be made.  Results are given in the next section.

Table 1
	Parameter
	Min
	Max
	Type
	Unit

	Freq
	0.6 
	-
	Fixed
	GHz

	p%
	50
	-
	Fixed
	%

	step size
	100
	-
	Fixed
	m

	dtmin
	5 
	-
	Fixed
	km

	dtmax
	3
	-
	Fixed
	km

	dobs
	dtmin
	dtmax
	Continuously Variable
	km

	d
	30
	1000
	Discrete Variable
	km

	Txh
	50 m
	-
	Fixed
	m

	Rxh
	10 m
	-
	Fixed
	m

	dN
	39
	-
	Fixed
	N-unit

	N0
	325
	-
	Fixed
	N-unit

	hmax
	0
	1000
	Discrete Variable
	m

	Vfact
	0.8
	-
	Fixed
	-

	# samples
	100
	-
	Fixed
	-


Figure 5
The parameter definitions used in Study B
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Table 2
	Parameter
	Min
	Max
	Type
	Unit

	Freq
	0.6 
	-
	Fixed
	GHz

	p%
	50
	-
	Fixed
	%

	step size
	100
	-
	Fixed
	m

	dtmin
	5 
	-
	Fixed
	km

	dtmax
	3
	-
	Fixed
	km

	dobs
	dtmin
	dtmax
	Continuously Variable
	km

	wobs
	0.2
	20
	Discrete Variable
	km

	d
	30
	1000
	Discrete Variable
	km

	Txh
	50 m
	-
	Fixed
	m

	Rxh
	10 m
	-
	Fixed
	m

	dN
	39
	-
	Fixed
	N-unit

	N0
	325
	-
	Fixed
	N-unit

	hmax
	500
	-
	Fixed
	m

	Vfact
	0.9
	-
	Fixed
	-

	# samples
	100
	-
	Fixed
	-


4 The Study Results

Display of the result of the studies presents a challenge with so many parameters varying.  In general, the easiest format is to plot any particular model parameter against one of the discrete variable parameter inputs.  In the case of Study A, the maximum obstacle height was used for the abscissa.  For Study B, the maximum window width was used for the abscissa.  These were plotted for a number of different total path lengths to best illustrate the features being revealed.  Mean values were calculated at each of the discrete abscissa values.  A number of derived parameters from the model intermediate values were also calculated for each sample taken and treated in the same manner as one of the basic model parameters.  

Figure 6
Example plots from one sample from study types A and B 
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Figure 6 shows example plots of a single sample of excess diffraction loss made at each of the abscissa values.  It is immediately apparent that there is, not unsurprisingly, a much greater level of variability with the Deygout method even with such simple experiments as these.  This variability makes it extremely difficult to formulate experiments using real terrain, as the number of controllable parameter permutations is just too great.

4.1 The Results from Study A

4.1.1 Geometric Considerations

Figure 7 shows an example of the diffraction path profile analysis using both the Deygout and Bullington methods for a 50 km path.  At 50 km, all but the smallest maximum height obstacles will dominate the earth curvature and both Deygout principal and secondary edges will be located at one of the knife-edges.  In the example shown the principal edge is located at the receiver horizon point.  Thus there is no Lr loss and one of the three knife-edges will not be used; the centre one in this case.  

Figure 7
Typical path profile analysis using the Deygout and Bullington methods for a 50km path and 200 m maximum obstacle height.
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Figure 8
Typical path profile analysis using the Deygout and Bullington methods for a 100km path and 200 m maximum obstacle height.
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In the Bullington case, the two outermost knife edges will form the two horizon points and a variable height virtual edge will always exist, the magnitude of which will be set by the proximity of these edges to the terminals.  Even the smallest maximum height edges will obey these rules unless they are grouped close to one or other end of the path.

At a 100 km path length, Figure 8 shows that the probability of a Deygout knife-edge not falling on one of the obstacles has now increased particularly at low maximum obstacle heights.  Once the obstacles are all located on one or other side of the path midpoint, there is a chance that even a 200 m high obstacle will not be visible to one or other terminal, and a point on the smooth earth will become one of the Deygout knife-edges.  The figure shows that when the obstacles are well spread out that only the lowest maximum height obstacles will not become horizon points.

In the Bullington 100km case, similar comments to those made in the previous case will apply

Figure 9
Typical path profile analysis using the Deygout and Bullington methods for a 200km path and 200 m maximum obstacle height.
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Figure 10
Typical path profile analysis using the Deygout and Bullington methods for a 500km path and 200 m maximum obstacle height.
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Once the path length reaches 200km, Figure 9 shows that lower maximum height obstacles need to be carefully positioned if they are to become Deygout knife-edges.  In the example, 200 m high obstacles only meet this criterion if there is one on either side of the path centre point.  

The single virtual Bullington edge is now becoming very high wherever the obstacles are located

The final example shown in Figure 10 is for a 500 km long path.  At this path length, the maximum earth curvature is of the order of 4000 m and only taller obstacles are significant in determining the locations of the Deygout knife-edges.  The probability that at least one smooth earth point is one of the horizon points is high unless the obstacles are either very high or spaced well apart.

4.1.2 The Excess Diffraction Loss

The next group of four images shows the excess diffraction loss for each of the selected path lengths as functions of the maximum allowable obstacle height.  Both the individual samples are shown and the mean taken by averaging each vertical column of 100 sample points for each diffraction method.  Excess diffraction loss is here defined to be the decibel path loss value in excess of the free space value.  Both diffraction methods make this available as the parameter Ld50.  

A number of interesting observations can be made that relate directly back to the geometry of the two methods.

· In all cases the Deygout method always gives a larger excess diffraction loss than the Bullington method; the higher the path length or maximum obstacle height, the larger the difference.

· Experiment has shown that the only way in which the Bullington method gives a higher excess diffraction loss than 3-edge Deygout is when there are asymmetric and very small horizon distances such as found in the eighth test case, “misc.csv” in the RAL set of test paths [2].   The introduction of the terminal guard distances, dtmin and drmin prevents this from occurring in this study.

· For the shortest path lengths, with low maximum obstacle heights, the losses of the two methods approach each other. 

· For paths in excess of 200 km in length there is always at least a 35 dB difference in excess diffraction loss even with no obstacles present (the lowest maximum height is 0 m).

· For paths in excess of 500 km, the excess diffraction loss for each method is practically independent of maximum obstacle height up to at least 1000 m.

· The spread of values using the Deygout method is always higher than the Bullington method reflecting the higher number of degrees of freedom.

· At higher path lengths, the spread of values for both methods decreases dramatically for the lower maximum obstacle heights. 

Figure 11
The excess diffraction loss using the Deygout and Bullington methods for a 50 km path.
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Figure 12
The excess diffraction loss using the Deygout and Bullington methods for a 100 km path.
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Figure 13
The excess diffraction loss using the Deygout and Bullington methods for a 200 km path.
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Figure 14
The excess diffraction loss using the Deygout and Bullington methods for a 500 km path.
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Actual Obstacle Separation

The next group of four images relate to the actual obstacle separation.  This parameter can be easily derived from two of the intermediate model parameters present within the path analysis section of ITU-R P.1812, namely the transmitter and receiver horizon distances, dlt and dlr.  

Equation 1 defines a new parameter, dos, which is used extensively in the remaining sections of this document. 
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where:


d: 
path length


dlt:
transmitter horizon distance


dlr:
receiver horizon distance

Obstacle separation distance is shown as a function of maximum allowable obstacle height for the four chosen path lengths.  These plots are shown with a log ordinate to allow the smaller values to be displayed.  The distribution of 100 sample points at any particular abscissa value is however roughly normally distributed.  This enables a 5-percentile level to be displayed as the value 1.65 times the standard deviation below the mean.  It is not plausible compute a smaller value as the sample noise becomes too great.  Since obstacle separation distance is purely a geometric parameter and the random number generator was re-seeded between the Deygout and Bullington runs, both give the same graph and only one is shown.

Again a number of observations can be made:

· At small path lengths, the obstacle separation distance is independent of maximum allowable obstacle height for both the mean and 5 percentile.

· The upper bound of the obstacle separation distance is roughly constant at the path distance minus the two distance guard intervals at each terminal.

· The lower bound of the obstacle separation distance has a high dependency on both the path length and the maximum allowable obstacle height becoming almost linear on a log ordinate plot.

· The probability of the obstacle separation distance being less than 10 km for paths in excess of 200 km length is very small indeed even for a maximum allowable obstacle height of 1000 m.

Figure 15
The actual obstacle separation using the Deygout and Bullington methods for a 50 km path.
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Figure 16
The actual obstacle separation using the Deygout and Bullington methods for a 100 km path.
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Figure 17
The actual obstacle separation using the Deygout and Bullington methods for a 200 km path.
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Figure 18
The actual obstacle separation using the Deygout and Bullington methods for a 500 km path.
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The Results from Study B

4.1.3 Geometric Considerations

Example plots showing the geometric construction of both diffraction methods are displayed as before.  For the plots and the simulation runs the maximum allowable obstacle height is set to 500 m.  The maximum allowable window size was set to be 7 km in the plots to allow visibility of the three obstacles.  The window size was varied from 0.2 to 20 km for the simulation runs.

Again a number of observations can be made:

· For a 50 km or 100 km path with a 500m high obstacle, the earth curvature is insignificant.  One of the three knife-edges will always be selected as the main edge. If the Deygout principal edge is anything other than the centre one then only one secondary edge is found as the sub path  value on the opposite side is below –0.78 (see Figure 19).

· For a 50 km or 100 km path, the Deygout principal edge and Bullington virtual edge are extremely similar in both position and height.

· For path lengths longer than 200 km, there is a high probability that one of the secondary Deygout edges is located at a point on the smooth earth profile with a consequent very large value for the obstacle separation distance, dos. (see Figure 22)

· At intermediate distances between 100 and 200 km, a Deygout secondary edge located at a smooth earth profile point may be either at a real string point giving a  greater than 0 or be a sub path obstacle with a loss below 6dB.

Figure 19
Typical path profile analysis using the Deygout and Bullington methods for a 50km path and 500 m maximum obstacle height.
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Figure 20
Typical path profile analysis using the Deygout and Bullington methods for a 100km path and 200 m maximum obstacle height.
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Figure 21
Typical path profile analysis using the Deygout and Bullington methods for a 200km path and 200 m maximum obstacle height.
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Figure 22
Typical path profile analysis using the Deygout and Bullington methods for a 300km path and 200 m maximum obstacle height.
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Excess Diffraction Loss

Figure 23 through to Figure 26 show the excess diffraction loss as a function of maximum allowed obstacle separation.  Again these figures contain both the raw sample points and the means averaged at each column position.  The following points can be made:

· The Bullington method gives an excess diffraction loss that is virtually independent of both maximum obstacle separation and path distance.

· The 3-edge Deygout loss increases with maximum obstacle separation but the trend is for lower increases at longer path lengths

· The Deygout and Bullington loss only become equal when the maximum obstacle separation is zero and the path length is less than 50 km.

· The spread of values for the Bullington method increases with path length up to a certain distance between 200 and 300 km and then reduces again.

· The spread of values with the Deygout method has a complex dependency on both path length and maximum obstacle separation.  Below 200 km, the range of values is consistently high but the standard deviation is smaller at lower path lengths (inferred from the density of the red coloration).

· The lower limit of the Bullington spread is abrupt whereas the that for the Deygout method is not except when the path length reaches 300 km

At first glance, these complex relationships are difficult to explain until looked at in the light of the next set of four graphs showing the actual obstacle separation as a function of maximum allowable obstacle separation.

4.1.4 Actual Obstacle Separation

Figure 27 through to Figure 30 show the actual obstacle separation as defined in equation 1 as a function of the maximum obstacle separation allowed.  The following observations are clearly displayed:

· Two distinct populations of sample points exist for path lengths above 50 km.  

· The distribution of points within each group alters as the path length increases as the movement in the mean line indicates.  At small path lengths, only the lower population exists whereas at 300 km only the upper population exists.

· At 50 km with only a single population of points, the actual obstacle separation mean is approximately half the maximum allowable mean.  This reflects the fact that, at any maximum allowable separation, the actual knife-edges were selected from a uniform distribution within the window.  This relationship holds even down to values as small as 2 km.

· The above relationship starts to break down below this as the quantisation effect of the profile spacing starts to dominate and the probability of the three edges being randomly placed at the same profile point increases.  This will increase the probability that one or other of the secondary Deygout edges will be not be present since with synthetic knife-edges the intervening terrain points lie on a smooth earth surface and with have too low a  value to give other than a 0 dB loss.

· The upper population of points is independent of the maximum allowable separation distance. 

· The spread of values in the upper population is remarkable constant with both maximum allowable obstacle separation and path length.

· There are a wide range of values from 20 km to 90 km in which no actual obstacle separations can exist

When all of these observations are taken as a whole it is clear that the actual obstacle separation distance defined in equation (1) embodies both the combination of the ratio of obstacle height and maximum earth curvature into a single parameter that can be exploited.  At small actual obstacle separations, the knife-edges should really be treated as single object for which the Bullington method clearly gives a more consistent value, which the Swiss measurements indicate is closer to being correct.  As either the obstacle separation increases due either to increasing separation of real edges or the sudden intervention of earth curvature as path length increases, then the 3-edge Deygout gives the necessary extra excess diffraction loss to ensure that diffraction does not dominate troposcatter.

A method is now required to switch between the Bullington and Deygout methods using the actual obstacle separation distance as the controlling parameter.  The next section examines some of the ways in which this might be possible.

Figure 23
The excess diffraction loss using the Deygout and Bullington methods for a 50 km path.
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Figure 24
The excess diffraction loss using the Deygout and Bullington methods for a 100 km path.
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Figure 25
The excess diffraction loss using the Deygout and Bullington methods for a 200 km path.
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Figure 26
The excess diffraction loss using the Deygout and Bullington methods for a 300 km path.
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Figure 27
The actual obstacle separation using the Deygout and Bullington methods for a 50 km path.
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Figure 28
The actual obstacle separation using the Deygout and Bullington methods for a 150 km path.
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Figure 29
The actual obstacle separation using the Deygout and Bullington methods for a 200 km path.
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Figure 30
The actual obstacle separation using the Deygout and Bullington methods for a 500 km path.
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The Development of a New Hybrid Model

Before addressing the issues of the model itself, it is useful to examine a few more plots taken from Study B.  These will be used to show how it is possible to take the best part from the Bullington method and incorporate it into the current Deygout method without recourse to calculating both, which would be undesirable.

4.2 The Principal Knife-edge

Figure 31 compares the Deygout principal or main edge loss to that of the Bullington virtual edge for the four different path lengths.  As seen in the previous section, two populations of sample points exist, albeit not as distinct or well separated as before.  However the same general trend is seen for the points to split into two populations at middle distance path lengths before coalescing again at 300 km.  The important point to derive is that, at shorter path lengths, where the actual obstacle separation is small, the Deygout principal loss, Lm50, appears to be within a few dBs of the Bullington virtual edge loss, Ls50.  Figure 32 through to Figure 35 shows this in more detail for a 50km path length.  

Figure 31
Comparison between the Deygout Lm50 and Bullington Ls50 diffraction losses for different length paths.
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Figure 32 shows the difference between the Deygout principal and Bullington virtual edge as a function of maximum allowable obstacle separation.  Again the mean value is approximately half the maximum as uniform distributions of edges were used within the window.  In the region where individual knife-edges should really be treated as a single obstacle, the difference is less than 1 dB.  This observation is even more apparent, if the differential loss is plotted as function of actual obstacle separation in Figure 33.  

4.3 The Deygout Secondary Knife-edges

All of the considerations to date have tended to ignore any Deygout sub path losses since the edge will no longer be located at a string point and hence detectable by the obstacle separation distance parameter.  The results to date have been able to ignore the effect of sub path edges as the intervening terrain between obstacles is the smooth earth surface and, for the most part, any sub path loss will be so small that it is set to zero ( < -0.78).  Figure 34 and Figure 35 illustrate this.  The density of the Lt50 or Lr50 sample points below a 6 dB threshold, indicative of a finite sub path loss is very low compared to either the points above the line or those on the abscissa.  Points on the abscissa indicate no secondary edge was found ( < -0.78). 

Figure 35 shows the combined Lt50 plus Lr50 loss as a function of actual obstacle separation and is has an unusual distribution of points on the ordinate between 0 and 6 dB.  The only feasible explanation for the group is as follows:  For there to be a combined secondary loss below 6 dB, at zero actual obstacle separation implies that all three knife-edges are located at the same profile point.  In this case, the single edge becomes the principal one and then either one or both secondary edges have small sub path losses that sum to less than 6 dB.  Also the population of values above 6 dB splits into two groups.  The larger group peaking at a value of about 25 dB derives from there being only a single secondary edge (the principal edge is not the centre one) whereas the group above implies a centre principal edge with a secondary contribution from the edge on either side.

Figure 32
Difference between the Bullington Ls50 and Deygout Lm50 diffraction losses vs. maximum obstacle separation for a 50 km path.
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At longer path distances or much lower obstacle heights, it would be unwise to ignore the sub path losses and a later section will re-consider how to treat them.

Figure 33
Difference between the Bullington Ls50 and Deygout Lm50 diffraction losses vs. actual obstacle separation for a 50 km path.
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Figure 34
Secondary edge losses for the Deygout method vs. actual obstacle separation for a 50 km path.
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Figure 35
Sum of the secondary edge losses for the Deygout method vs. actual obstacle separation for a 50 km path.

[image: image41.wmf]0

5

10

15

0

10

20

30

40

Actual Obstacle Separation (km)

Lt50 + Lr50 Loss

6


4.4 The New Model

Having determined a suitable parameter to use as a switch, an implementation method without any discontinuities is needed.  It is also desirable that any function employed has tuneable constants whose effects are easily understood and optimised.  This is important, as the model ultimately needs to be tuned against real terrain as opposed to the synthetic terrain used here.  Figure 36 is such a function, similar to one that has been employed within the model blending sections of both ITU-R P.452 and P.1812.  Equation 2 gives a suitable function that implements Figure 36.
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where:


ros  = [3]: 

constant to set the midpoint of the transition


dosd  = [1.5]:

constant to set the range of the transition

The two constants can be used to alter both the midpoint and range of the transition as indicated.  This will need to be tuned against measurements.  The suggested values given have been used in the remainder of the paper.

4.4.1 Methods of Use

The new interpolation function can be used in more than one manner and the advantages and drawbacks for each are examined:

4.4.1.1 Method A

In method A, the interpolation factor is used to simply switch between the full 3-edge Deygout and Bullington losses using equation 3:
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where:


Ld50:

new diffraction loss for 50% time


Ld50D:

original Deygout diffraction loss


Ld50B:

original Bullington diffraction loss

Figure 36.
New interpolation function for the hybrid diffraction method.
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4.4.1.2 Method B

As has been shown, the principal 3-edge Deygout loss, Lm50, is highly correlated to the Bullington virtual edge loss, Ls50, particularly at small obstacle separation distances, dos.  The next method exploits this relationship to switch out the secondary edges of the Deygout method at small obstacle separation distances as shown below:
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(4)

which is a straight replacement for equation (23) in ITU-R P.1812.

4.5 Testing the New Model

The effects of these methods are shown in Figure 37.  This figure is a reproduction of Figure 23 with reduced intensity sample points to highlight the effects of the blending methods.  Note that the abscissa shows the maximum allowable obstacle separation distance, which, on average, is approximately twice the actual obstacle separation achieved.  It is also possible to see a difference between the two methods near to 0 km separation due to a different the distance correction term in the Deygout and Bullington methods.  The former uses 0.4d and the latter 0.2d.  There would appear to be no particularly strong reason why these two could not be aligned.

Figure 37
The excess diffraction loss after applying the interpolation factor on a 50 km path.
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Figure 38 shows the mean losses for new model as a function of the mean actual obstacle separation distance.  It is clear from this plot that the Swiss example profile given in Figure 2 would return an excess diffraction loss very close to the Bullington value with either of the two methods but any path where the obstacle separation distance exceeded about 10 km the full Deygout value would be reached.

4.5.1 Susceptibility of the New Model to Profile Step Size

In document 3K/171 from Switzerland, reference was made to the fact that ‘only profiles which fulfil a minimum number of points and a good resolution’ should be used.  It is interesting to test the validity of this argument using the new method.  

A separate study was established in which the window containing three randomly placed knife-edges in Study B was replaced by a single randomly placed Gaussian distribution.  To simulate the effect of the terrain ruggedness the height of each profile point was randomly varied by 5% of the height at that point.  The standard deviation of the Gaussian was fixed but its position was allowed to randomly vary.  Only the 50 km path length was examined in detail.  The major parameters are given in Table 3.  All other relevant parameters are identical to those in Table 2.

Figure 38
The mean excess diffraction loss versus actual obstacle separation after applying the interpolation factor on a 50 km path.
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Table 3
	Parameter
	Min
	Max
	Type
	Unit

	step size
	10
	5000
	Discrete Variable
	m

	dtmin
	5 
	-
	Fixed
	km

	dtmax
	5
	-
	Fixed
	km

	
	3
	-
	Fixed
	km

	hmax
	500
	-
	Fixed
	km

	d
	50
	-
	Fixed
	km


These basic synthetic profiles were generated at a profile spacing of 10 m giving a 5001-point path profile.  The variable step size was obtained by down-sampling the points to give step sizes from 10 m to 5000 m.  Again, 100 samples were taken at each profile step spacing.  Figure 39 shows an example of the geometric analysis for each method at the full profile resolution of 10 m.

Figure 39
Example profile analyses for Deygout and Bullington used in the step size study for a 50 km path.  The peak of each profile is magnified to show the edges more clearly.
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Figure 40 shows the excess diffraction loss for the Deygout, Bullington and the two hybrid diffraction methods.  Points to note are as follows:

· The excess diffraction loss using the Deygout method is very susceptible to the step size as suggested in the Swiss papers for paths where the principal and secondary edges are very close to one another.

· The excess diffraction loss when using the Bullington method, by contrast, is almost unaffected by the step size.

· A large spread in the samples is seen in the Deygout case at all step sizes.  This only reduces at the 5000 m step size where there are only 11 points left in the profile.

· Both the new hybrid methods perform well showing almost the same independency from the step size.

· Small offsets between the hybrid methods and Bullington relate to the different distance dependency terms being assumed in the models.

Figure 40
The excess diffraction loss using the Deygout and Bullington methods as a function of profile step size for a 50 km path.
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As a check that the diffraction edges were being correctly identified at the very coarse spacing, Figure 41 to Figure 44 were produced.  In Figure 41, the actual obstacle separation distance is plotted as a function of the profile step size.  The mean obstacle spacing was being maintained even at the 2000 and 5000 step sizes although this has little real meaning with only two or three quantised values from which to choose.  A 0 km obstacle spacing was possible for profile step sizes down to 50 m.  For this to occur the path must have a common terminal horizon point and the possibility that sub path losses are being ignored, although in this case they are likely to be close to the principal edge. 

Figure 42 illustrates the Deygout principal and Bullington virtual edges are very well correlated although the small group of points near to the bottom of the line occur when the path becomes highly asymmetric with a very small horizon distance.  The Bullington virtual edge loss will then increase more rapidly than the Deygout principal edge.  Figure 43 shows that these high differential losses are attributable to points that come from the 2000 and 5000 m step sizes.

Finally, Figure 44 shows a plot of the combined loss of the Deygout secondary edges as a function of actual object separation.  The points congregate around an obstacle separation of 1 km, which is a critical region within which obstacles in mountainous terrain should probably be considered as one object.  The plot also shows that no profile step size produced a single knife-edge with a combined sub path loss of less than 6 dB.

Figure 41
The actual obstacle separation as a function of profile step size for a 50 km path.
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Figure 42
The Deygout principal and Bullington virtual edges as a function of profile step size for a 50 km path.
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Figure 43
The differential loss between the Deygout and Bullington edges as a function of profile step size for a 50 km path.
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Figure 44
The combined loss of the Deygout secondary edges as a function of profile step size for a 50 km path.
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4.5.2 Sub Path obstacles

In many of the previous sections, the issue of any sub path losses has been put to one side.  This was valid for the types of profiles under examination where it was demonstrated that the numbers of sample points that included Deygout sub path losses was very low in comparison to the overall number of samples.  There are, however, a number of types of path where this blending out of sub path losses should not be done.  The basic problem that needs to be solved is how to identify when a sub path edge loss is significant in a Deygout context.  Sub path edges by definition do not produce stretched string points or terminal horizon distances in their own right.

Figure 45 illustrates a case where it would not be prudent to ignore the sub path edges. However, by having a common terminal horizon distance, the obstacle separation distance becomes 0 km and the full switch to the Bullington method occurs.  This will eliminate both sub path losses.  A solution is required and the relative position of the secondary Deygout edge and the terminal horizon distance provides the answer.  Figure 46 shows a situation in which the secondary Deygout edge on the transmitter side is further from the transmitter than the horizon point.  

Figure 45
An example of significant sub path losses.
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Normally the terminal horizon point and corresponds to one or other of the 3 Deygout edges, but as the plot shows, there are certain combinations of obstacle heights and separations in which this is not the case.  The crucial difference between these two figures is:

· when a Deygout edge represents a sub path loss, then dlt > dit50 or dlr < dir50
· when a Deygout edge represents a fully obstructed loss , then dlt <= dit50 or dlr >= dir50
Figure 46
An example where the position of the secondary Deygout edge on the transmitter side is further from the terminal than the terminal horizon point.

[image: image56.wmf]0

5

10

15

20

25

30

35

40

45

50

0

100

200

300

400

500

600

0

100

200

300

400

500

600

Distance (km)

Height (m)

d

lt

d

lr


4.5.3 A refinement to the new model

The preceding observation provides the means to refine the hybrid model to take account of genuine sub path obstacles that would otherwise be blended out.  Exactly the same considerations with regard to the proximity of edges apply to sub path obstacles as to fully obstructed edges.  If a sub path edge becomes too close to a fully obstructed edge, then the whole should really be treated as a single obstacle.  The same interpolation function as described earlier can also be used in this case, with the crucial difference that, instead of being controlled by the obstacle separation distance, dos, the function is controlled by the difference between the horizon distance and the secondary Deygout edge, dsost or dsosr:
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or:
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where:


d: 

path length


dlt:

transmitter horizon distance


dlr:

receiver horizon distance


dit50:
Deygout secondary edge on the transmitter side


dir50:
Deygout secondary edge on the receiver side

Since the two potential secondary edges may now need to be blended out differently from one another, the new interpolation function has to be applied at an earlier stage in the method.  Hence the original equation (23) in P.1812 is retained with a change of parameter name and two new equations are inserted following equations (19) and (22) respectively:

A new equation (19a) is defined:
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A new equation (22a) is defined:
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Equation (23) becomes
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Further testing on the effect of these changes using the synthetic path profiles has been deferred until after the CG Meeting, in the interests of making the method available to the group for independent testing in time for the March CG 3K-1 Workshop in London.

5 Conclusion

A detailed attempt has been made to understand the fundamental issues causing the 3-edge Deygout diffraction method to over predict the loss in mountainous terrain compared to the simpler Bullington method.  The proximity of the three Deygout edges in rugged terrain was shown to be a major factor in determining this loss.  A series of controlled Monte Carlo simulations using synthetic terrain profiles has been used to identify the complex relationships that exist between the height of the terrain and the maximum extent of the earth curvature as the path length increases.  A single parameter, the separation between the horizon distances, was shown to neatly encapsulate the transition from smooth earth profiles to more mountainous conditions.  A technique to exploit the parameter to control an interpolation function to switch between the Bullington and Deygout methods was shown.  This new approach removes the need to find an ever more complicated distance correction for the Bullington method which may be an unrealistic goal given the variety of terrain types around the globe.

The relationship between the principal Deygout edge and the Bullington virtual edge was examined.  Because these were shown to be almost equal in the region of operation of the interpolation function, a procedure to switch out the Deygout secondary edges was shown to achieve virtually identical results.  This obviates the need to calculate both the Deygout and Bullington approach.  Whilst this basic approach was shown to work well for Deygout edges that coincide with terrain profile ‘string points’, losses caused by Deygout sub path edges were switched out.  A modified technique using the relative positions of the horizon distances and secondary Deygout edges was shown to predict cases where the sub path losses should be retained.

The susceptibility of the Deygout, Bullington and the two new methods to changes in resolution of the profile spacing in mountainous terrain was made.  The high but unwanted sensitivity of the current Deygout method to the profile spacing was demonstrated.  The new methods were shown to reduce this susceptibility to the profile step size to the level seen when using the Bullington method whilst retaining the more desirable aspects of the Deygout method.

The gross insensitivity of the Bullington method to reflect changes to the diffraction loss in response to large variations in terrain profiles provides an elegant reason for why the Bullington and (FSL+x) dB methods appear to give very similar results when averaged over many measured paths.  However, it is clear from the results that to switch completely to the Bullington method would be, at best, a major simplification and, at worst, equivalent to using a very coarse terrain profile spacing.

Although the basic approach has been described there is still further work required before the model can replace the current method.  No consideration has been given to time percentages other than median.  The current method fixes the Deygout edges at 50% time and reuses these same edges at % time before interpolating a result for p% time.  Given the reliance upon these edge positions in the new method, it is open to question as to whether the edges may need to be re-calculated at % time.  Further work is in progress to assess this issue.

Once the assessment of how best to treat the % time case has been made, testing of the method within the full context of the full ITU-R P.1812 can be undertaken.  It is too early to take this decision at this stage.

The new method is readily tuneable with only a small number of constants.  These need to be tuned against measurements.  It is conceivable that these constants may themselves need to be made functions of other specific terrain related features.  The distance over which edges need to be treated as a single obstacle could be dependent upon whether the obstacles are well worn rounded hills or jagged mountain peaks.  Since the model development has been approached from a geometric standpoint, no frequency dependency has been studied.  Again, the constants may need some frequency tuning.

The method described has to be viewed as a pragmatic engineering response to a real world problem of attempting to model complex diffraction losses over a wide range of terrain types using less than perfect models.  It has the advantage of being simple to implement using intermediate parameters that are already required within the overall P.1812 model.  A unified diffraction model incorporating all of the many methods described within ITU-R P.526 may eventually be required but the new method may prove useful as a stopgap measure.

Although the salient features of real terrain profiles were simulated, there is no substitute for testing the model against real terrain profiles for which measured data exists.  It is hoped that other members of the CG can implement the method and undertake a much more rigorous test than has been possible to date.  As such, the document should be viewed as a draft input to the CG, which will need further work prior to any submission to a 3K Block Meeting.
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