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Outline
• Optical properties (defect production)

–Effect of defect mobility on observed behavior

• Electrical conductivity
• Dielectric properties
• Thermal conductivity



Key physical property changes of irradiated metals
vs. ceramic insulators and semiconductors

• Behavior in metals is dominated by free electrons
–Radiation-induced changes in electrical (σe) and thermal conductivity

(Kth) are useful for monitoring defects (electron-defect scattering)
•  σe and Kth are related by Lorentz ratio (Wiedemann-Franz law, Kth/ σe =LT)

• Ceramic insulators and semiconductors have low free
electron densities (10-12 to 10-6 per atom)
–Ionization-induced increases in conduction electron density can cause

large transient increases in electrical conductivity of insulators
• Postirradiation σe properties are more strongly affected by impurity effects (n-
or p- doping) than by radiation-induced vacancies and interstitials

–Thermal conductivity is determined by phonon-defect scattering events,
and can be a sensitive monitor of vacancies and interstitial defects
• Wiedemann-Franz law is not valid for nonmetals

–Optical properties are very sensitive monitors of radiation-induced
defects (cf. lectures by Popov, Kotomin, etc.)

–Dielectric properties (loss tangent) are also sensitive to defect
concentrations in ceramic insulators



Optical absorption of neutron-irradiated SiO2
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Determination of interstitial migration energies in ceramics

• Solve steady state rate eqns:
Di

d2 Ci

dx 2
−αCiCv − DiCiCs + P = 0

Dv
d2C v

dx 2 −αCiCv −DvC vCs + P = 0

• For sink-dominant conditions (CS>1014/m2),
the defect-free zone width is related to the
diffusivity (Di) and damage rate (P) by:

Di =
L P

Ci
crit Cs

Defect-free zones in ion-
irradiated MgAl2O4

Defect-free grain boundary
zones in ion-irradiated Al2O3
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Temperature dependence of measured
F center defect production
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Analysis of SiC Amorphization
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3 recovery substages are 
observed below 320 K

Analysis of flux dependence shows recovery 
substages are not associated with long range 
point defect migration (F<0.5 up to 380 K)

       Implies that both vacancies and interstitials are
immobile in SiC up to 100˚C (interstitials are mobile

in many other ceramics at room temperature)



Total defect production efficiency
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Defect Production Efficiency in Ceramics

• MD results for SiC are in general agreement with surviving
defect efficiency of low-mass metals (e.g., Al)
–Does subcascade formation occur above 10 keV in SiC?

• Al2O3 and MgO experimental results are suspect due to
neglect of point defect migration & recovery
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DEFECT PRODUCTION IN CERAMICS

• Transition from linear to square root defect accumulation
behavior is a characteristic feature of any pure material
irradiated at temperatures where point defects are mobile
–Location of transition is dependent on purity and recombination

cross-section



DEFECT PRODUCTION IN CERAMICS
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Ionizing Radiation can induce myriad effects in ceramics

•Defect annealing and coalescence (ionization-
induced diffusion)
–Athermal defect migration is possible in some

materials

•Defect production
–Radiolysis (SiO2, alkali halides)
–Ion track damage (“swift heavy ions”)



Conventional ions produce electronic stopping
powers up to a few keV/nm in ceramics
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IONIZATION INDUCED DIFFUSION IN CERAMICS

• Energy release mechanism
– electron-hole recombination on a defect site provides thermal energy

• “Normal ionization enhanced diffusion”
– an ionized defect charge state may have a lower Em compared to nonionized

defect
• Bourgoin-Corbett (bistable defect) mechanism

– possible iff stable site for ionized state corresponds to the migration saddle
point for the non-ionized defect charge state (and vice versa)

(cf. Bourgoin & Corbett, Rad. Effects 36 (1978) 157)



Simplified Rate Equations for Ionized Frenkel Defects
(assume only one sublattice, low hole mobility, etc. for simplicity)

dCv
dt

= (1 − εion)P −GehCv − αi ,vCv[Ci + Ci
+ ] − KsCvCs + αe ,v

+ Cv
+ne + ...

  FD production FD ioniz.     recombination         sinks           eln. capture
by beam

dCv
+

dt
= (εion)P +GehCv − αi,v

+ Cv
+[Ci + Ci

+] − KsCv
+Cs − αe ,v

+ Cv
+ne + ...

dCi
dt

= (1 − εion)P −GehCi − αi, vCi[Cv + Cv
+] − KsCiCs + αe ,i

+ Ci
+np + ...

dCi
+

dt
= (εion)P +GehCi − αi, v

+ Ci
+[Cv + Cv

+] − KsCi
+Cs − αe ,i

+ Ci
+np + ...

dne
dt

= Geh − K1nenp − K2neCv
+ − ...

dnp
dt

= Geh − K1nenp − K3npCv − ...

Typical conditions for 1 µA/cm2 ion beam (~1
MGy/s) in insulators: Ne~10-12/atom;
Geh~0.01/atom-s  =>direct ionization by ion
beam dominates point defect ionization

typically εionP>>GehCv => uniform ionization in
dual ion beam irradiations should have a weak
effect on  production



Investigation of ionization-induced diffusion in ceramics
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Square root fluence dependence of defect accumulation is an
indication of uncorrelated point defect recombination

• Ionizing radiation may induce athermal point defect
recombination in some ceramics
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Physical Properties Below Crystallization Temperature
- Amorphized Morton CVD SiC -
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•  Temperature dependence follows T-1/4 dependence indicating hopping conduction.

•  Reducing the density of states increases the conductivity up to the point of crystallization.

Snead & Zinkle, Nucl. Instr. Meth. B 191 (2002) 497



Physical Properties of amorph. SiC Below Recrystallization Temperature
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Continual variation in the properties of amorphous SiC occurs prior to recrystallization
Numerous short-range ordered configurations can exist in amorphous material

•  Local strain is reduced upon annealing, leading to lower phonon scattering

Snead & Zinkle, Nucl. Instr. Meth. B 191 (2002) 497



Physical Properties Below Crystallization Temperature
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•  Amorphous structural relaxation occurs from irradiation temperature 
    to ~875°C yielding ~4.8% increase in density.
•  Explosive crystallization occurs at 875-885°C, reaching near theoretical
   density by 950°C.

Snead & Zinkle, Nucl. Instr. Meth. B 191 (2002) 497

Amorphous SiC



Highly ionizing radiation (dEioniz./dx > 7 keV/nm) introduces new
damage production mechanisms

Swift heavy ions induce surface
protrusions and amorphizationIon tracks produce displacement

damage via inelastic atomic events

430 MeV Kr 430 MeV Kr ––>MgAl>MgAl22OO44

430 MeV Kr 430 MeV Kr ––>MgAl>MgAl22OO44

710 MeV Bi 710 MeV Bi ––>Al>Al22OO33

710 MeV Bi 710 MeV Bi ––>Si>Si33NN44

3.5 nm 3.5 nm diamdiam..
amorphous coreamorphous core



Overview of radiation damage parameters of
importance in irradiated semiconductors and insulators

•  deposited energy:  Grays
–  (1 Gy=100 rads; typical chest X-ray ~1mGy)

•  lattice damage:  displacements per atom (dpa)
–  (complicated for ceramics due to multiple sublattices and ion masses)

•  gaseous transmutations (H, He)
–  14 MeV neutrons: ~100 appm/dpa
–  fission neutrons:  ~ 1 appm/dpa



•  Insulators, Semiconductors and Metals (electron energy bands)
– insulator:  ρe > 104 Ω-m  (typical joule heating limit)

•  Ionizing Radiation Causes Increase in Electrical Conductivity
– prompt effects (radiation induced conductivity)

– permanent effects (radiation induced electrical degradation)

•  Measurements Must be Made In-Situ
– RIC recovers quickly (typically prompt lifetime ~ ns)

– RIED requires an applied electric field while displacement damage is
occurring

•  Impact of RIC and RIED
– possible decalibration of diagnostics or failure of ceramic insulators

in nuclear or accelerator systems



• NECESSARY CONDITIONS FOR RIED

• 1) Ionizing radiation (RIC)

• 2) Displacement damage

• 3) Applied electric field (E>100 V/mm)

• 4) Intermediate irradiation temperature (300-600˚C)

• PHYSICAL MECHANISM ????

• 1) Localized thermoelectric breakdown

• 2) Colloid formation

• 3) Experimental artifact (surface contamination / microcracking)
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Radiation Induced Conductivity in Insulators
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RIC behavior is qualitatively similar in all wide band
gap ceramic insulators



The “Radiation-Induced Electrical Degradation”
Controversy

• Observed in several electron irradiation studies
–Mechanism associated with formation of metallic colloids?
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Schematic of fission reactor irradiation capsule for in-
situ electrical conductivity measurements
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The phenomenon of Radiation Induced Electrical
Degradation does not appear to be of concern for ITER

• Several recent high-dose fission reactor studies have not
observed RIED
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Effect of irradiation on loss tangent

• Power dissipation in dielectrics is proportional to the loss
tangent





Loss Tangent in Al2O3 Irradiated Near Room
Temperature
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For most materials tested increase in loss tangent
is proportional to the ionizing dose rate

• Example shows overlayed profiles of Δtanδ  and ionizing dose rate for Al998 (both normalized to 1) 

• Indicates τtrapping << pulse rise and fall times
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Analysis of Results

• Measured in-situ Al2O3 loss tangent results are consistent with published
radiation induced conductivity data assuming increased tanδ  is due to
increased σDC ,  where

tanδ =
σDC

ωε ' +
χ

ε ' /εo

• Neutron displacement damage effects are insignificant due to low accumulated
damage in the reactor pulse (<10-8 dpa)

Δ tanδ )dpa =
n(Zea)2 (ε∞' + 2)2

18εokTε∞'
< 10−5



Pressure effects

•  Gamma flux ionizes residual gas in the cavity,
•  Causes spurious losses and frequency shifts which cannot be distinguished from changes in the dielectric properties of the
ceramic
•  Consistent with a model of the ionized gas as a dielectric with permittivity

ε = ε 0 −
nee2

m ν 2 + ω 2( )
− j nee2ν

ωm ν 2 +ω 2( )

ne = electron density, ω = applied frequency, ν = collision frequency

•  Maximum effect seen experimentally at p ~ 0.1 torr, little effect for p≤ 10-4 torr
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Example of Degradation of Thermal Conductivity with Irradiation
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Adopting Thermal Defect Resistance

Thermal defect resistance

The main motivation for using thermal defect resistance is that radiation-induced defects,
such as vacancies and clusters, have resistances proportional  (or square root
dependent) to their concentration and are additive.  This gives an easy way to compare
stability of ceramics under irradiation.
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Adopting Thermal Defect Resistance

Thermal defect resistance

The main motivation for using thermal defect resistance is that radiation-induced defects,
such as vacancies and clusters, have resistances proportional  (or square root
dependence) to their concentration and are additive.  This gives an easy way to compare
stability of ceramics under irradiation.

Thermal defect resistance due
to high vacancy production
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Irradiation-induced Thermal Defect Resistance in Silicon Carbide

Thermal defect resistance normalized to
irradiation-induced swelling is constant
independent of irradiation temperature
(200-800°C) suggesting single defect type
controlling phonon scattering



Neutron irradiation-Induced Thermal Defect Resistance of SiC

Hexoloy contains boron, which disrupts
grain boundary under irradiation.  GE SiC
and CVD SiC are both high-purity SiC.

     CVD SiC   GE SiC
Kunirr-Kirr  2.35 0.7
% Kunirr 6% 22%
Defect Resistance 2.8 2.9
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Annealing of Radiation-Induced Defects in Oxides and Nitrides
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More complex defects formed during higher
dose irradiation are more thermally stable.
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•  The susceptibility of the ceramics to thermal conductivity degradation during
neutron irradiation at 60°C can be roughly correlated with the available data on
observed critical interstitial mobility temperature, where materials with higher
interstitial mobility have lower radiation-induced thermal defect resistance and
a lower defect resistance accumulation rate Δ(1/Krd)/ΔΦ.  
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•  The defect resistance of all specimens exhibited sublinear dose dependence
•  Theoretical analysis for the added thermal defect resistance clearly shows that
1/Krd is directly proportional to defect density.  Both of these observations
indicate that at least some point defects (presumably interstitial type) are mobile
in all of these ceramics at the irradiation temperature of 60˚C.
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Insight into Thermal and Defect Processes

•  Resistance is sublinear with dose;  
    --> 1/Krd increases by 2.5 times as dose is increased by 10 times

•  Defects are more difficult to anneal as dose is increased.
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Insight into Thermal and Defect Processes : Alumina

•  1/Krd can be broken into vacancy, loop (and void) terms.

•  Following this analysis, maximum vacancy concentration can be calculated
   and compared with optical F-center measurements. 

Vacancy (vppm)
Concentration

   0.001 dpa 0.01 dpa

     From  1/Krd 1000 2000

 From  F+ Center
(Atobe-87)

9 26

•  analysis indicates that majority of thermal conductivity degradation in alumina (Tirr =
60°C) is due to phonon scattering by loops.  This is reinforced by increased
   difficulty in annealing of defects at higher doses.
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Defect resistance for PAN and Pitch fibers is identical, despite initial higher
unirradiated thermal conductivity of Pitch fibers



Thermal Defect Resistance for Predicting Conductivity
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•  Maximum thermal conductivity can be estimated for any material based on
   1/Krd measured from an “ideal” material.

•  Maximum irradiated thermal conductivity for SiC is estimated to be ~ 10 W/m-K
    at 500°C, ~37 W/m-K at 700°C.
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Summary and Conclusions

• Ionizing radiation can cause large prompt increases in the
electrical conductivity of semiconductors and insulators
–The largest effect occurs in wide band gap insulators
–Electrical conductivity returns to preirradiation value shortly after

irradiation is stopped
–Radiation induced conductivity (RIC) is a sensitive monitor of ionizing

radiation flux, but is not very sensitive to lattice defects

• Many physical properties are sensitive to short range order
details (amorphous materials) as well as lattice defects
(crystalline materials)

• Changes in thermal conductivity and dielectric properties are
sensitive to lattice defects (vacancies and interstitials)
–Use thermal resistivity to analyze radiation-induced component
–High unirradiated Kth is rapidly reduced during low temperature neutron

irradiation
• In many cases, there is little practical value in using high thermal conductivity
ceramics in neutron irradiation environments


