Defect-free Thin Film Membranes for H₂ Separation and Isolation

Tina M. Nenoff, Margaret E. Welk, Jay O. Keller, Program Manager (SNL/CA)

Sandia National Laboratories
Albuquerque, NM

DOE / H₂, Fuel Cells & Infrastructure Technologies 2004 Annual Review May 24, 2004

Objectives

Goal: Synthesis of robust microporous zeolite membranes to improve on the H₂ separation technologies of polymers and precious metals

Relevance to Hydrogen:

Need to produce H₂ reliably, at low cost Use of reforming to produce H₂

Steam Reforming: $CH_4 + 2H_2O \rightarrow 4H_2 + CO_2$

Dry Reforming (MCFC): $CH_4 + CO_2 \rightarrow 2CO + 2H_2$

Objectives

Synthesis

Defect-free Inorganic crystalline thin-film membranes: Synthesis efforts with Al/Si & Si phases Film growth on variety of supports (oxides, SS316, composite) Testing on-line at various temperatures

Permeation

Testing new membranes, RT and elevated Temps:

pure: H_2 , N_2 , CO, CO_2 , O_2 , He, H_2O , CH_4 , H_2S & SF_6 ; mixed: 50/50 CH_4/H_2 , CO_2/H_2 ; simulated reformate stream

Modeling/Simulation

Light gases through 1D ZSM-22 and compare to ZSM-5 Validation through permeation testing

Business Partners/Collaborations

Basic research "directed" toward commercialization Industry (manufacturers, end-users), University

Budget

Total FY04 funding: ≈ \$211K*

DOE: \$200K/year

\$180K to Sandia

\$20K subcontracted to NMSU (modeling)

In-kind funding (approximate: labor, samples, testing, travel):

\$ 1K Mesofuels, Inc.

\$ 5K Pall Corporation

\$ 5K G.E. Dolbear & Associates, Inc.

*(anticipated in-kind, awaiting NDA signing)

Total FY03:

DOE: \$250K

In-kind: ≈ \$6K (Mesofuels, Pall)

Technical Barriers and Targets

DOE Technical Barriers for Separation Membranes (for H₂ Production):

- A. Fuel Processor Capital Costs
- B. Operation and Maintenance (O&M)
- C. Feedstock and Water Issues
- E. Control and Safety
- G. Efficiency of Gasification, Pyrolysis, & Reforming Technology
- AB. Hydrogen Separation and Purification

DOE Technical Targets for Separation Membranes for 2010 (Pd membranes):

- Flux Rate = 200 scfh/ft²
- Cost = <\$100/ft²
- Durability = 100K hours
- Operating Temp = 300-600 °C
- Parasitic Power* = 2.8 kWh/1000 scfh
 - * recompress H₂ gas to 200psi

Approach

Development of Defect-free thin film zeolite membranes for Hydrogen Production:

- 1) Synthesize membranes with Silicate-based frameworks use supports that are industrially relevant
- 2) Model/Simulate/Validate permeation of light gases through the frameworks
- 3) Analyze flux and permeation of gases (pure, binary, mixed gas streams) at ambient and varying temperatures/pressures
- 4) Optimize membranes' flux, permeation and durability
- 5) Foster industrial contacts for membrane stream and pilot-scale testing, and future commercialization partnerships

Project Safety

- H₂ separate from O₂ & other gases by plumbing
- Entire permeation unit is located inside a fume hood
- H₂S and CO sensors set according to OSHA limits (tested yearly)

- Thorough analysis of gas, equipment specs, process & pressure testing to ensure safety AND to pass Sandia's corporate ES&H regulations (SOPs, PHS, PSDP)
- All operators in compliance with required corporate training policies

Project Timeline

- Phase I: Membrane synthesis and characterization
 - 1. Membrane composition
 - 2. Permeation unit construction
 - 3. Pure Gas testing
- Phase II: Membrane Optimization
 - 4. Various substrates for membranes
 - 5. Mixed gas testing
 - 6. Variable temperature testing
- Phase III: Applied to commercialization
 - 7. Optimize membrane support
 - 8. Industrial Gas Streams (Industry involvement; Lab & pilot-scale)
 - 9. Scale up
 - 10. Commercialization Processes

Tina M. Nenoff, FY04, Defect-free Thin Film Membranes...

status

Technical Accomplishments/Progress

- Permeation Unit: testing mixed gases (RT & higher), received H₂S testing approval
- Defect-free Silicalite and ZSM-5 (Al/Si) membranes synthesized & permeation tested
 50/50, mixed gases (initial: amended reforming stream)
- At various temperatures (RT, 90°C, 120°C), silicalite membranes maintain good selectivity for H₂ in both binary and mixed gas streams
 Selectivities between 10-100
- Comparison between defect-free vs. defect "filled" data indicates selective H₂ separation for both, but improved results with >Knudsen diffusion (defect-free)
- Initial Studies on stream contaminants at RT: membranes are not selective for H₂S
- Utilizing ceramic membrane supports: Inoceramic Alumina disks/tubes
 Oxide-coated SS316 (TiO₂; SiO₂/Al₂O₃; ZrO₂ coatings)
 Pall Corp. ZrO₂ coated SS316 tubes

Technical Accomplishments/Progress

ZSM-5 $\approx 10^{-6}$ mole/(m² Pa sec)

RT, Pure Gases

$$H_2/N_2 \ge 61$$

$$H_2/CH_4 = 7$$

$$He/N_2 \ge 7$$

$$CH_4/N_2 \ge 1.4$$

$$H_2/CO_2 \ge 80$$

$$H_2/O_2 \ge 11$$

$$CH_4/CO_2 \ge 11$$

$$H_2/CO \approx 70*$$

re-dehydrated membrane

Silicalite $\approx 10^{-6}$ - 10^{-7} mole/(m² Pa sec)

RT, Pure Gases

$$H_2/N_2 = 1.4$$

$$H_2/CH_4 = 0.625$$

$$He/N_2 = 1.1$$

$$CH_4/N_2 = 2.28$$

$$H_2/CO_2 \ge 0.34$$

$$H_2/O_2 = 1.7$$

$$CH_4/CO_2 = 0.54$$

$$H_2/CO = 1.43$$

ZSM-5, Silicalite

ZSM-5 on Oxide Coated SS Good intercrystalline growth ≈ 7microns thick

1.0 Micron

1.0 Micron

Technical Accomplishments/Progress (con't)

Silicalite Membrane, RT

Amended MesoFuel Inc. reforming stream composition (water removed for initial studies):

76% H₂ 13.6% CO₂ 6.8% CO 3.4 % CH₄

Silicalite, variable temperatures

	23°C	90°C	120°C
H ₂ /CO ₂ (50/50)	21.51	29.29	19.57
H ₂ /CH ₄ (50/50)	23.87	68.20	
Reformate, H/All	16.82	40.00	

ZSM-5, RT

	Defect Filled	Defect Free
H ₂ /CO ₂ (50/50)	26.76	60.11
H ₂ /CH ₄ (50/50)	16.67	39.43
Reformate, H/Al	16.60	58.74*

*need to replicate

Technical Accomplishments/Progress (con't)

Initial Studies with caustic elements. Showed membrane survives (at room temp). Further Study Required!

• H₂S (≈ 200ppm) in N₂ stream

H₂S does not permeate thru defect-free ZSM-5 membrane. No short term damage

Wet Stream

50/50 H₂/CH₄ flowing thru defect free Silicalite "Zoom in" on H₂O partial pressure

Interactions & Collaborations

Presentations:

- T. M. Nenoff, M. E. Welk, "Defect-Free Thin Film Membranes for H₂ Purification" Poster, Fuel Cell Symposium, Miami, FL, 11/6/03
- T. M. Nenoff, M. E. Welk, "Defect-Free Thin Film Membranes for H₂ Separation and Isolation", 14th International Zeolite Conference, Cape Town, South Africa, 4/26/2004
- 2x M.E. Welk, Nenoff, T. M., "Zeolite Membranes for H₂ Purification"
 8th International Inorganic Membrane Conference, Cincinnati, OH, 7/18/04
 3rd International Zeolite Membrane Conference, Breckenridge, CO, 7/25/04

Publications:

- Bonhomme, F.; Welk, M. E.; Nenoff, T. M. "CO₂ Selectivity and Lifetimes of Silicalite Membranes". *Micro. & Meso. Materials*, **2003**, *66*, 181.
- Mitchell, M.; Gallo, M.; Nenoff, T. M. "Molecular dynamics simulations of binary mixtures of methane and hydrogen in titanosilicates", *J. Phys. Chem.*, **2004**, in press.
- Welk, M. E., Nenoff, T. M. "Mixed Gas Permeation Studies Through Defect Free ZSM-5 and Silicalite Zeolite Membranes.", *J. Membrane Science*, **2004**, in press.

Symposium:

"Modeling and Simulation in Surface and Colloid Science"; Tina M. Nenoff, Martha Mitchell, Marcus Martin, *Co-Organizers* ACS National Fall Meeting, NYC, NY Sept 7-13, 2003

Interactions & Collaborations (con't)

Industrial Partners:

- Mesofuels, Inc., Anand Chellappa: Reforming Gas Steam Composition
- Pall Corporation, Jim Acquaviva: Membrane Supports, Visits to both facilities
- G.E. Dolbear & Associates, Inc.: Non-disclosure Agreement in process, testing our membranes at elevated temps

Academic Partner:

 New Mexico State University, Martha Mitchell, Dept. of Chemical Engineering: modeling and simulation

DOE Workshops:

Workshop Panel participant for H₂ Production:

US DOE/Italy Joint Workshop on H₂ Research, Sacramento, CA, 9/15/03 US DOE/UK Joint Workshop on H₂ Research, Albuquerque, NM, 10/8/03

Responses to Previous Year Reviewer's Comments

Reviewers Comments are all helpful in guiding our project!

1) Too many materials:

We have focused on MFI Al/Si and Si versions of membranes on various substrates. Using for mixed gas & variable temperature studies

Secondary research into Si/Ti membranes for comparison studies, on-going

2) Improved Permeation Rates to Match H₂ delivery Demands:

With improving membranes (synthesis techniques) we are improving our separations values

research direction: increased temperatures and pressures
compare mixed gas results to other supports
new reformate streams

Responses to Previous Year Reviewer's Comments (con't)

3) Membranes tested under realistic conditions:

We have concentrated on mixed gas studies including initial results on

- binary gases (50/50 H₂ with CO₂, CH₄)
- multicomponent mixed gas (76%H₂, 13.6%CO₂, 6.8%CO, 3.4 %CH₄)
- industrial streams; including H₂O, H₂S and N₂
 (we now have ES&H approval for H₂S in our system!)

We will focus on expanding this field

Future Work

Remainder of FY04:

Temperature: continue to increase on Mesofuel simulated stream H₂O: simulated reforming stream with H₂O and begin testing Begin mixed gas testing on MFIs w/various substrates

• FY05:

Reconfigure permeation unit for high temperatures (>300°C) Testing on different reforming stream compositions
Testing with industrial on-line hydrogen purification

- G.E. Dolbear & Associates
- Mesofuels Inc.

Investigate H₂S scrubbing with membrane catalytic coatings*

