Defect Related Switching Field Reduction in Small Magnetic Particle Arrays

Michael J. Donahue NIST, Gaithersburg, Maryland, USA

Gabor Vértesy Hungarian Academy of Sciences, Budapest, Hungary

Martha Pardavi-Horvath The George Washington University, Washington D.C., USA

Sample system

SEM photo: Zofia Vértesy, HAS, Budapest, Hungary

- Single crystal Y₃Fe₅O₁₂/Gd₃Ga₅O₁₂
- 42 μm × 42 μm × 3 μm particles,
 12 μm grooves, 1 cm² chips
- Strong uniaxial anisotropy, stable axis \perp to surface

Material parameters

- $M_{\rm s}$ = 12.7 kA/m ($4\pi M_{\rm s}$ = 160 G)
- $H_{\rm u}$ = 170 kA/m (2100 Oe)
- $\sqrt{A/(0.5\mu_0 M_s^2)} = 170$ nm

•
$$\sqrt{A/K} = 47 \text{ nm}$$

Pixel magnetization curves

H, Oe

Defects decorated by AC field Particles' H_{sw} marked, in Oe

Switching fields

Geometry	Stoner-Wohlfarth	Micromagnetic
(nm)	(mT)	(mT)
1000 x 1000 x 31.25	177.7	[175,180]
4000 x 4000 x 125	177.7	[175,180]
8000 x 1000 x 250	179.9	[175,180]
1000 x 1000 x 250	183.5	[182,184]
2000 x 2000 x 500	183.5	[180,185]
2000 x 1000 x 1000	187.5	[180,185]

Magnetization reversal

Transient state Plate geometry 4 μ m × 4 μ m × 125 nm

Reversal nucleates in center

Conclusions

Experimental:

• $\mu_0 H_{\rm sw} = 28.5 \text{ mT} \pm 8.5 \text{ mT} \ll \mu_0 H_{\rm u} = 210 \text{ mT}$

• $H_{\rm eff}$ distribution higher and broader than $H_{\rm sw}$ Simulations:

- Reversal by nucleation + propagation
- Nucleation in center for defect-free plates
- Simple defect model yields $H_{\rm sw}$ too large
- Linear defect model OK for transitions > 1 $\mu{\rm m}$