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1 Introduction 
FPGA application has been very popular in high-energy/nuclear physics experiment apparatus.  The 
functionalities of the FPGA devices range from merely glue logic to full data acquisition and processing. 

Like any computing options, FPGA computing also consumes resources.  The direct resource consumption 
is essentially in terms of silicon area that translates to cost of the FPGA devices.  As a result of direct 
silicon resource consumption, indirect cost must also be paid in terms of FPGA recompile time, printed 
circuit board complexity, power usage, cooling issues etc. 

Sometimes, we hear saying that FPGA is cheap.  Actual prices of several FPGA device families taken from 
website of a distributor (Digikey, June 1, 2006) are plotted in Figure 1.1.  Each device may have various 
speed grades and packages that change the price in a large range.  The lowest price for each device is 
chosen for our plots. 
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Figure 1.1 

FPGA Price of Several Device Families (June, 2006) 

It can be seen that FPGA devices are not so cheap.  In terms of absolute pricing, there are devices below 
$100 and there are also devices more than $1000.  While compared within a family, lower middle size 
devices have lowest price per logic cell. 

The FPGA cost can be studied by comparing number of transistors needed to implement certain functions 
in FPGA and non-FPGA IC chips, such as in micro-processors.  Several commonly used digital processing 
functions are compared in Table 1-1. 
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Number of 
Transistors Notes 

4-in NAND gate 8 Same for 4-in NOR 
Full Adder 24-28  
Static RAM bit 6 Bit storage cell only 
FPGA Look Up Table (LUT) >96 16 storage cells only 

Table 1-1 
Number of Transistors Needed for Various Functions 

Combinational logic functions are implemented with 4-input LUT in FPGA.  The contents of a LUT may 
be programmed so that it represent a function as simple as a 4-input NAND/NOR or as complicate as a full 
adder bit (with carry supports).  In both cases, FPGA uses far more transistors than non-FPGA IC chips.  
This is the cost paid for flexibility in FPGA.  On the other hand, this comparison tells us that eliminating 
unnecessary functions in FPGA saves more transistors than in non-FPGA chip such as ASIC design. 

Another fact must be mentioned here is that the FPGA design is not a “program”, even the design can be in 
format of “code” of languages like VHDL.  The FPGA design is a description of a circuit that are 
configured and interconnected for certain functions.  A line of the code usually occupies some logic 
elements no matter how rarely it is used.  This is in contrary with the software program in which a passage 
of the program does not take execution time unless it is used and the storage of the excessive program is 
relatively cheap. 

Code reusing is an almost certain trend in FPGA computing just as in its counterpart of micro-processor 
computing.  Designers should keep in mind that a functional block designed today might be reused 
thousands times in the future.  Today’s design could become our library or intellectual property.  If the 
block is designed slightly too big than it should be, it will be too big in thousands of occurrences in the 
future projects.   

What’s even worse is that we may gain wrong experiences from these too-big-blocks.  The fear that the 
firmware won’t fit causes the planners to reserve excessive costly FPGA resources on printed circuit 
boards.  It is also possible that functions can be mistakenly considered too hard to be implemented in FPGA 
and resulting in decisions either to degrade the system performances or to increase complexities in system 
architecture. 

Resource awareness practices in FPGA design is the primary topic of this document.  The materials are 
organized into several chapters: 

• Understanding FPGA resources. 

• Several principles and methods. 

• Several examples from applications in HEP detectors and accelerators. 

It is not my attempt to identify several design rules that will be surely “good” for saving silicon resources.  
Instead, the purpose of this document is to call the designers to pay attentions to resource usage at both 
planning and designing stages of an FPGA application.  Based on my experience, resource awareness 
considerations may slightly add to the load of designers’ brain work and sometimes may slightly slow 
down the development pace, but its saving in silicon resource and therefore direct and indirect cost is 
significant. 

2 Understanding FPGA Resources 
In this chapter, we use Altera Cyclone II family and Xilinx Spartan-3 family as our primary examples.  We 
break the FPGA resources into several categories, i.e., general purpose resources like logic elements and 
RAM blocks, special purpose ones like multipliers, high speed serial communication and micro-processors 
and family or company specific resources like distributed RAM, MUX, CAM etc.   
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2.1 General Purpose Resources 
Nearly all main stream FPGA devices contain logic elements (logic cells) and memory blocks. 

2.1.1 Logic Elements 

The logic elements (LE) are the essential building blocks in FPGA devices.  A logic element normally 
consists of a 4-input look up table (LUT) for combinational logic and a flip-flop (FF) for sequential 
operation.  The Cyclone II logic element is shown in Figure 2.1. 

Figure 2.1 
Cyclone II Logic Element, Left: Normal Mode, Right: Arithmetic Mode (Taken from the Data Book, 

to get permit) 

Typically, logic elements are organized in arrays and chained interconnections are provided.  Perhaps the 
most common chain support is the carry chain that allows the LE to be used as a bit in an adder or a 
counter. 

The LUT itself is a small 16x1-bit RAM with contents pre-loaded at the configuration stage.  Clearly any 
combinational logic with 4 input signals can be implemented which is the primary reason of flexibility of 
FPGA devices.  But when there are more than 4 signals to participate the logic function, more layers of 
LUT are normally necessary.  For example, if we need a 7-input AND gate, it can be implemented with two 
cascaded look up tables. 

The output of the combinational signals is often registered by the FF to implement sequential functions 
such as accumulator, counter or any pipelined processing stage.   

The FF in the logic element can be bypassed so that the combinational output is sent out directly to other 
logic elements to form logic functions that need more than 4 inputs.  In this case, the FF itself can be used 
as “packed register”, i.e., a register without the LUT. 

Just as in any digital circuit design, for a given logic function, the more pipeline stages, the less 
combinational propagation delay between the registers of the stages, the faster the system clock can 
operate.  Unlike in ASIC, adding pipeline stages in FPGA normally won’t increase logic element usage too 
much, since the FF exists already in each logic element.  In practice, however, the number of pipeline 
stages or the maximum operating frequency is not designed to the maximum, but rather to a value with 
balanced considerations in various aspects. 

The logic elements are typically designed to support carry chain so that a full adder can be implemented 
with one logic element (otherwise it needs two).  Counters and accumulators are implemented with a full 
adder feeding a register. 

2.1.2 RAM Blocks 

RAM blocks are provided in nearly all FPGA devices.  In most families, the address, data and control ports 
of RAM blocks are registered for synchronous operation so that the RAM blocks can run at higher speed.  
It is very common that the RAM blocks provided in FPGA are true dual-port RAM blocks. 

If a RAM block is pre-loaded with initial contents and not be overwritten by the users, it becomes a ROM.  
It is more economical to implement ROM using RAM block if relatively large amount of words are to be 
stored.  To implement ROM with less than 16 words, use LUT. 
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The input and output data ports can have different widths.  This feature allows the user to buffer parallel 
data and send out data serially or to store data from a serial port and readout entire word later. 

2.2 Special Purpose Resources 
In principle, almost all digital logic circuits can be built with logic elements.  However, as pointed earlier, 
logic elements use more transistors to implement logic functions, which is a trade off of flexibility.  In 
FPGA devices, certain special purpose resources are provided so that functions can be implemented with 
reasonable amount of resources.  In timing domain, specially designed high speed serial transceivers are 
provided in some FPGA families for fast communications. 

2.2.1 Multipliers 

Multipliers become popular in today’s FPGA families.  Typical multipliers use O(N2) full adders where N 
is number of bits of the two operands, which would use too many transistors and consume too much power 
if implemented with logic cells.  Therefore, it is recommended to use dedicated multipliers rather than 
building them from logic cells when the multiplication operations are needed. 

However, multiplications are resource and power consuming operations intrinsically.  If multiplications can 
be eliminated, reduced or replaced, it is recommended to do so. 

2.2.2 Micro-Processors 

The PowerPC blocks are found in Xilinx Virtex-II Pro family.  Generally speaking, dedicated micro-
processor blocks use less transistors comparing implementing the processors with soft cores that use logic 
elements. 

Using micro-processors, either dedicated blocks or soft cores needs to be carefully considered in planning 
stage since it is a relatively large investment. 

2.2.3 High Speed Serial Transceivers 

High speed serial transceivers are found in both Altera and Xilinx FPGA families.  These transceivers 
operate at multi- Gb/s data rate and popular encoding schemes like 8B/10B and 64B/66B are usually 
supported.  The usefulness of the high speed serial data links is obvious. 

The only reminder for the designers is that the data rate of multi- Gb/s is too high for many typical data 
communication links in daily projects.  If in a project, 500 Mb/s or lower data rate is sufficient, it is not 
recommended to get the “free” “safety factor” to go multi- Gb/s.  In addition to the device cost and power 
consumption, the connectors and cables for multi- Gb/s links require more careful selection and design, 
while for low rate links, low cost twist pair cables usually work well. 

2.3 The Company or Family Specific Resources 
Several useful resources can be found in certain FPGA families. 

2.3.1 Distributed RAM and Shift Registers 

The LUTs in FPGA are typically 16x1-bit RAMs.  However, the LUTs are normally written in FPGA 
configuration stage and the contents can not be modified by user during the operating stage.  In several 
families of Xilinx FPGA, the LUT can be configured as RAM or shift register so that the user can use it to 
store information.  Please read the application notes [XAPP464] and [XAP465] for detail. 

The distributed RAMs can be used to implement register files.  In this case, a logic element stores 16 bits 
data rather than 1 bit in typical implementation. 

With the user-writeable support, the applications of the distributed RAM and shift register are far broader 
than just storing information.  An example of the distributed RAM application can be found in our paper 
[TTF_paper05_vMar06.pdf].  Another example given in the application note [XAPP194] shows the 
application of the shift register. 
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2.3.2 MUX 

In some families of Xilinx FPGA, dedicated multiplexers are designed in addition to the regular 
combinational LUT logic.  A 2:1 multiplexer can certainly be implemented with a regular LUT using 3 
inputs, but a dedicated MUX uses a lot less transistors. 

When a relatively wide MUX is needed, using dedicated MUX in Xilinx FPGA saves resource comparing 
purely using LUT.  The application note [XAPP466] is a good source on this topic. 

2.3.3 Content Addressable Memory (CAM) 

Content addressable memory is a device that provides address where the stored content matches the input 
data.  The CAM is useful for backward searching operation.  The Altera APEX II family provides 
embedded system blocks (ESBs) that can be used as either a dual-port RAM or a CAM.  This is a fairly 
efficient CAM implementation in FPGA devices. 

In other FPGA families, normally there is no resource that can be used as a CAM directly.  In principle, the 
CAM function can be implemented with logic elements.  However, it is not recommended to build CAM 
with wide data port using logic elements since it takes large amount of resources.  Alternatives like “Hash 
Sorters” for backward searching functions are more resource friendly. 

3 Several Principles and Methods of Resource Usage Control 

3.1 Reusing Silicon Resources by Process Sequencing 
Assuming there are total N computations to be done, each taking one clock cycle in an processing unit 
(PU), then the N computations can be done in T = N clock cycles with one PU.  If is also possible to share 
the computations among M PUs so that the computation can be done in shorter time, i.e., T = N/M clock 
cycles.  If M=N PUs are designed, then all the computation can be done in one clock cycle.  This simple 
resource-time trading off principle is probably one of the most useful methods for resource usage control in 
digital circuit design. 

A microprocessor is an example that contains one processing unit which is normally called arithmetic logic 
unit (ALU).  The ALU performs a very simple operation each clock cycle.  But within many clock cycles, 
many operations are performed in the same ALU and a very complex function can be achieved. 

On the other hand, many FPGA functions tend to have “flat” design, i.e., having multiple processing units 
and performing multiple operations each clock cycle.  The flat design allows fast processing but uses more 
logic elements.  If there are several clock cycles in the FPGA between two input data, one may consider 
using less processing units and let each unit to perform several operations sequentially. 

Coincident Unit

Coincident 
Unit

Figure 3.1 
An Example of Process Sequencing 
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Consider an example of finding coincidence between to detector planes as shown in Figure 3.1.  A flat 
design would need implementing coincident logics for all detector elements.  Assuming the detector 
element sampling rate is 40 MHz and FPGA can run at a clock of 160 MHz, then only 1/4 of silicon 
resource for coincident unit would be needed.  The coincident between 1/4 of the detector planes can be 
performed in each clock cycle and the entire plane is processed in 4 clock cycles. 

In modern HEP DAQ/trigger systems, digitized detector data are typically sent out from the front-end in 
serial data links and the availability of the data is already sequential.  It would be both convenient and 
resource saving to process the data in sequential manner. 

3.2 Finding Algorithms with Less Computations 
Process sequencing mentioned above reduces silicon resource usage at a cost of lower throughput rate 
when the total number of computations is a constant.  When the data throughput rate is known to be low, 
reducing logic element consumption is the good direction.  However, the most fundamental means of 
resource saving is to reduce the total computations required for a given processing function. 

As an example, consider fitting a curved track with hits in several detector planes.  To calculate all 
parameters of a curved track projection, at least 3 points are needed.  With more than 3 hit points, the user 
may take advantage of redundant measurements to perform track fitting to reduce errors of the calculated 
parameters.  The track fitting generally needs additions, subtractions, multiplications and divisions.  
However, by carefully choosing coefficients in the fitting matrix, it is possible to eliminate divisions and 
full multiplications, leaving only additions, subtractions and bit-shifts.  In our paper [TrkFit_paper06.pdf], 
this fitting method is discussed. 

Another example is the Tiny Triplet Finder (TTF) which groups three or more hits to form a track segment 
with two free parameters.  The processes like this need three nested loops if implemented in software using 
O(n3) executing time, where n is number of hits in an event.  It is possible to build FPGA track segment 
finder with execution time reduced to O(n), essentially to find one track segment in each operation.  
However, typically the track segment finders consume O(N2) logic elements where N is number of bins that 
the detector plane is divided into.  The TTF we developed consumes only O(N*log N) logic elements, 
which is significantly smaller than O(N2) when N is large. 

Since the number of clock cycles for execution and silicon resource is more or less interchangeable, fast 
algorithms developed for sequential computing software usually can be “ported” to the FPGA world 
resulting in resource saving. 

3.3 Using Dedicated Resources 
In FPGA, logic element “can do anything”.  However, more transistors are needed to support the ultra-
flexibility of the logic elements.  In today’s FPGA families, resources for dedicated functions with more 
efficient usage of transistors are provided.  Appropriately utilizing these resources helps users to design 
compact FPGA functions. 

Each logic element contains a flip-flop that can be used to store one bit of data.  If many words are stored in 
logic elements, the entire FPGA can be filled up very quickly.  Large amount of not-so-frequently-used 
data should be stored in RAM blocks.  Frequently used data can be stored in logic elements which are 
equivalent to registers in micro-processors. 

When the data is to be accessed by I/O ports, micro-controller buses, etc., the RAM blocks are more 
suitable.  Since the data are distributed to and merged from storage cells inside the RAM blocks, which 
would account for large amount of resources had it implemented outside. 

The RAM blocks can also be used other than data storage.  For example, very complex multi-inputs/outputs 
logic functions can be implemented with RAM blocks. 

For fast calculation of square, square root, logarithm etc. of a variable, it is often convenient to use a RAM 
block as a look up table. 
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The RAM blocks in many FPGA families are dual-port and the users are allowed to specify different data 
width for the two ports.  Sometimes, the data width of a port is specified to be 1-bit that allows the user to 
make a handy serial-to-parallel or parallel-to-serial conversions. 

As mentioned earlier, a CMOS full adder uses 24-28 transistors while an LE in FPGA takes more than 96 
transistors.  To implement functions like counters or accumulators using LE, the inefficiency problem of 
transistor usage is not very serious.  For example, a 32-bit accumulator uses 33-35 logic elements which are 
relatively small fraction of typical FPGA devices.  To implement a 32-bit multiplier, on the other hand, at 
least 512 full adders are needed which become a concern in applications when many multiplications are 
anticipated.  Therefore, many today’s FPGA families provide multipliers. 

Generally speaking, when a multiplication is absolutely needed, use a dedicated multiplier rather than 
implementing the multiplier with logic elements. 

However, there are a finite number of multipliers in a given FPGA device.  Multiplication is intrinsically a 
power consuming operation, despite relatively efficient transistor usage in dedicated multipliers.  Avoiding 
multiplication or substituting it with other operations like shifting and addition is still a good practice. 

3.4 Minimizing Supporting Resources 
Sometimes, silicon resources are designed not to perform the necessary process, but just to support other 
functional blocks so that they can process data more “efficiently”.  In this situation, the supporting logic 
may occupy too much resource so that less efficient implementation might be more preferable. 
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Figure 3.2 
An Example for Minimizing Supporting Resources 

Consider an example as shown in Figure 3.2, in which data from 4 input channels are to be accumulated to 
4 registers A, B C and D, respectively.  The block diagram shown in left has one adder with data fed by 
multiplexers that merge 4 channels of sources each.  The logic operates sequentially adding one channel per 
clock cycle and clearly the adder in the left diagram is utilized very “efficiently”.  However, the 4-to-1 
multiplexer typically uses 3 logic elements per bit in FPGA while the full adder uses only 1 LE per bit.  So 
an alternative diagram shown in the middle actually uses less logic elements than the left diagram (Left 
diagram: 11 LEs/bit, middle diagram: 4 LEs/bit), although the adders in the middle diagram are utilized 
less efficiently. 

Therefore, the principle of process sequencing discussed earlier should not be pushed too far.  In actual 
design, choice of parallel or sequential design should be balanced with the resource usage of supporting 
logic.  In the case as shown in the right of Figure 3.2, for example, when the accumulated results are to be 
stored in RAM block, sequential design become preferable again. 

3.5 Remain Control on the Compliers 
In today’s FPGA CAD tools, there are many switches, options that the users may control.  A suitable 
control on these options is a complicate topic and is beyond the scope of this document.  However, it is 
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recommended that the designers to frequently read the compilation reports to monitor the compiler 
operation and the outcomes. 

Among many items being reported, perhaps the resource usage and maximum operating frequency of the 
compiled project are the most interesting ones.  When the resource usage is unusually bigger than hand 
estimate, poor design or compiler options can be traced.  Excessive resource usage sometime is coupled 
with drop of maximum operating frequency. 

3.6 Using Good Libraries 
There are intellectual property (IP) cores or other reusable codes available for FPGA designers.  The 
quality of them varies in a very big range.  Before blending them into the users’ projects, it is recommended 
to evaluate them in a test project.  Comparing resource usages of the compiled result and the hand estimate 
gives various hints on the internal implementation and helps the designers to understand the library items 
better. 

4 Several Examples for Front End Electronics 

4.1 TDC in FPGA 
Many time measurement functions in high-energy/nuclear physics experiments can be implemented in 
FPGA directly.  There are two types of practical TDC structures one may choose from as shown in Figure 
4.1. 
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Figure 4.1 

TDC structures in FPGA 

The first structure shown in left uses chain structure like carry chain found in FPGA devices.  The position 
of the input signal being registered represents the relative time difference between the input signal and the 
reference clock.  The structure is commonly used in TDC ASIC chips except in ASIC chips the delay chain 
is adjusted by a control voltage that is derived by a feedback loop, so that the delay of each tap is a known 
constant.  In FPGA, the delay of the delay chain is not controlled and it changes as the temperature and 
power supply voltage vary. 

Instead of making compensation as in ASIC, the propagation delay of the delay chain is measured in real 
time.  The delay line is designed to be longer than the clock period so that some input signals can be 
registered twice by two clock cycles.  From clock period and the number of taps between the two registered 
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positions, the delay value of each tap can be estimated.  Using this delay value, the actual arrival time of the 
signal can be found either offline or online inside the FPGA using a lookup table. 

The second structure uses multi-phase clocks to register multiple samples of the input signal.  If 4 phases of 
250 MHz clocks are used, the input signal is sampled every 1 ns, which forms a TDC with 1 ns bin size 
(0.29 ns RMS).  Note that the sampling interval is 1 ns but each register operates at 250 MHz, rather than 1 
GHz.  The clocks can be easily generated inside FPGA using internal phase look loop (PLL) blocks.  The 
position of the input signal edge being sampled represents the arrival time and is encoded as lower two bits, 
T0 and T1 of the time value plus a data valid signal DV.  The higher bits TS are generated with a coarse 
time counter.  The coarse time, fine time and data valid signal is sent to later stages for further zero-
suppression, buffering and packing operations. 

The obvious advantage of the second structure is low resource usage and relatively low sensitivity on 
temperature. 

4.2 Zero-Suppression and Time Stamp Assignment 
Sending raw TDC or ADC data out of FPGA would normally require too big bandwidth.  In fact, the ADC 
or TDC channel is not hit every clock cycle.  Therefore, it is possible to suppress clock slot that contain no 
hit data. 
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Figure 4.2 

Zero-Suppression for Non-Trigger Front End 

Consider a front-end digitizer without trigger as shown in Figure 4.2 in which all hits are sent to later 
stages.  In the zero-suppression process, a time stamp (TS) must be attached to the hit data to identify 
which clock cycle the hit data is generated.  In case of TDC, the TS bits are those of coarse time counter.  
The width of the TS is always a debate in nearly every experiment.  A time stamp of k bits can represent up 
to 2k clock cycles.  If the TS is too short, the counter rolls over resulting in ambiguity of hit time in integer 
multiple of 2k clock cycles.  This is the similar problem as the Y2K bug.  We will call the time period of 2k

clock cycles as a “centenary”. 

Increasing k is a possibility but it costs data link bandwidth.  For example, a 32-bit time stamp can 
represent a time period of 85 seconds with 50 MHz clock.  However, every hit must be attached with a 32-
bit number while the hit data itself may be just a few bits. 

Another possibility is to use shorter TS and send a “centenary mark” (CM) when the counter rolls over.  
For example, an 8-bit time stamp can be used with the TS counter counting from 0 to 254.  The value 255 
is reserved as the centenary mark.  When the TS counter reaches 254, the FPGA insert a fake hit data in the 
data stream with time stamp value 255 if there is no real hit at this clock cycle.  (If there is a real hit at TS = 
254, the time stamp value is 254 to indicate that it is a real hit data.)  The receiving devices use the 
centenary marks to increment the upper bits of the TS counter. 

In this scheme, the total number of bits sent out the FPGA in T clock cycles can be written: 

TfkkTN k +=
2

The parameter f is the hit rate, defined as number of hits per clock cycle.  The results are plotted in Figure 
4.3 for hit rates f = 0.005, 0.01 0.02 and 0.05 hits/clock cycle. 
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Figure 4.3 

Data Output Rate from the FPGA 

It can be seen that with hit rate of around 1%, the FPGA output rate is minimum when the number of bits 
used for time stamp is 8-12.  Long time stamp is only reasonable when the hit rate is extremely low. 

The choice of the time stamp also depends on other factors like time needed for the accelerator turn.  For 
example, an accelerator turn in Fermilab Tevtron is 159 clock cycles at clock period 132ns.  It is more 
convenient to choose mod 3, mod 53 or mod 159 counters for corresponding bits of the TS counters. 

4.3 Pipeline vs. FIFO 
Pipeline and FIFO buffers are two popular types of memory organization methods utilized in high energy 
physics trigger and DAQ systems.  The names may not reflect the actual properties of the two buffer types.  
In fact, the data stored in and retrieved out of a pipeline is also in the first-in-first-out fashion.  In this 
document, we use pipeline to refer a buffer with constant store to retrieve steps, which can be visualized as 
a serial-in-serial-out shift register.  A FIFO buffer is a storage which data can be pushed into and popped 
out with same data orders for push and pop operations.  The pipeline and FIFO buffers are shown in Figure 
4.4. 
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Figure 4.4 

Pipeline and FIFO Buffers 

In a FIFO buffer, the write address (WA) and read address (RA) are kept with two counters.  The write 
enable (WE) signal is derived from the PUSH signal which also increases the WA counter.  In the output 
side, the read enable (RE) signal is derived from the POP signal that also increases the RA counter.  Some 
varieties of the FIFO may have logic to check for empty (i.e., WA=RA) or full (i.e., WA-RA= number of 
RAM words -1) conditions.  Sometime, additional logics are added to prevent outside circuit from pushing 
into a full or popping out an empty FIFO. 
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The pipeline buffers can be viewed as shift registers but actually they are rarely implemented with shift 
registers chained up with flip-flops.  The flip-flops are not efficient to store data not only in FPGA, but also 
in ASIC chips.  Implementing long pipeline buffers with shift registers unnecessarily consumes large 
amount of silicon resource.  Also, when data are clocked through flip-flops, transistors are turned on and 
off in all steps causing large power consumption. 

The actual implementation of pipeline buffer is implemented similar as FIFO except the read address RA is 
derived from write address WA with WA-RA = L where L is the length of the pipeline.  The RAM cell 
uses a lot less transistors than the flip-flop.  After a data is stored in RAM, the transistors of the storage cell 
keep the on or off states unchanged until next time being overwritten, instead of changing every clock cycle 
as in flip-flops. 

In high energy physics trigger and DAQ systems, pipelines are often used to store detector data for a fix 
number of clock cycles waiting for L1 trigger.  The FIFO buffers, on the other hand, are used when the 
instantaneous data rate is considerably different from the average data rate such as in the zero-suppression 
process.  A possible triggered front-end design that uses both pipeline and FIFO buffers is shown in Figure 
4.5. 
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Figure 4.5 

A Trigger Front-End 

In this model front-end FPGA, the arrival times of the detector hits digitized in the TDC block with DV 
signal indicating that a valid hit is detected at the given clock cycle.  The bits of T representing the arrival 
time of the detector hits along with the DV signal are written into the pipeline buffer every clock cycle, 
regardless these is a hit or not, and the time stamp TS is used as the write address WA.  The immediate hit 
information, perhaps, just the DV signals of all channels are sent into the output data stream as trigger 
primitives.   

Of course, the trigger primitives can also be more complicate.  For example, the mean time of the arrival 
times of two adjacent channels can be used which represents the particle track hit time or event time (plus a 
constant delay) in drift chamber cases. 

The trigger primitives are collected by the trigger/DAQ system and are used to generate a global level 1 
trigger L1. 

The L1 returns back to the front-end at the time when the hits from the trigger event are about to reach the 
end of the pipeline.  Conducted by the L1 finite state-machine (FSM), non-empty data are pushed into the 
FIFO buffer.  Now DV signal is used to derive the PUSH signal so that only non-empty data are pushed.  
However, additional bits must be included into the hit data.  Usually, a trigger number TN or something 
similar is put into the trigger packet data header.  For every hit, several bits of the read address RA that 
represent the coarse time must be added.  The hit data pushed into the FIFO are sent out to the trigger/DAQ 
system when the output channel is not used to send the trigger primitives. 

Also, it is not necessary to require the L1 return latency to be constant.  The L1 trigger can be a multi-bit 
command and several bits in the command can be assigned as starting time stamp of the L1 window.  The 
L1 FSM generates the corresponding read address RA that will ensure the hit data in correct timing window 
are collected.  This scheme can be used in trigger systems when variable L1 trigger latency is necessary. 

We shift our attention to comparison of the pipeline and the FIFO buffers.  In the pipeline shown in 
previous example, many time slots contain no valid hits.  It seems that zero-suppression should be done 
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right after the TDC, rather than after receiving the L1 trigger.  In other words, it appears to be more 
economical to replace the pipeline in Figure 4.5 with FIFO. 

However, several factors must be considered while choosing zero-suppression stage.  First, zero-
suppression process increases data word width since the time stamp must be added, while in pipeline 
buffer, the read address RA itself is the time stamp.  Second, in the FIFO used for zero-suppression, a WA 
and a RA counter must be kept for every channel, while in pipeline buffer the WA and RA are common for 
all channels.   

It is certainly possible to implement the fix latency pipeline with zero-suppression using FIFO.  A block 
diagram is shown in Figure 4.6.  When the hit data is pushed into the FIFO, the time stamp TS is also 
stored along with fine time T.  At the output side, the TS value of the last hit is compared with the current 
TS.  When the last hit is older than the predefined pipeline length, the POP operation is performed so that 
the RA in the FIFO points to the next newer hit. 
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Figure 4.6 
Implementation of Pipeline Using FIFO 

It must be point out that the FIFO full is an error source in addition to other possible error sources in the 
entire front-end and trigger/DAQ system.  In system with low hit rate, a sufficiently deep FIFO can reduce 
the probability of FIFO full error to nearly impossible.  However, as long as the probability is not zero, an 
error code and all corresponding error handling processes must be implemented.  To completely eliminate 
the possibility of the FIFO full error, the FIFO depth should be bigger than the pipeline length.  If so, the 
FIFO uses more memory space than the plain pipeline without zero-suppression and therefore, there is no 
advantage to do zero-suppression at all in this situation. 

4.4 Clock-Command Combined Carrier Coding (C5) 
The FPGA TDC and commercial ADC allow the designers to place digitization functions in close 
proximity of the detector.  When the digitization is done near the detector, delicate analog or timing signals 
will not need to be sent over long cables.  However, necessary supports must be appropriately planned for 
the front-end digitization devices. 

Obviously, the digitization FPGA must be clocked.  At the beginning of a run, there may be some registers 
or parameters to be set in the FPGA that requires a means of command transmission.  Before data taking, 
the first clock cycle needs to be marked so that the time stamp counter can be properly started.  During 
normal operation, trigger acceptance commands that start data downloading are to be sent to the front-end 
for triggered experiments. 

The “Clock-Command Combined Carrier Coding” (C5) scheme was developed to send commands 
especially synchronized ones like the first clock cycle marker with clock signal using a single link.  In the 
C5 scheme, all leading edges of the pulses are separated with an equal distance as a regular clock signal 
while the data are encoded into the pulse width as shown in Figure 4.7.  Please see [C5_IEEE.pdf] for 
details. 
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Figure 4.7 

The C5 Pulse Trains 

When cabling is limited, it is economical to combine commands which otherwise need separate links, into 
the clock channel. 

It is a natural fear that carrying information in clock may cause jitters.  In fact, the PLL block in the FPGA 
permits the different duty cycles used in the C5 scheme.  Experiments show that there is no visible 
instability caused by carrying information in the input clock to the FPGA.  As long as the potential jitter is 
lower than what required by application, it should not be an issue.  For example, when a 1-ns bin size TDC 
is implemented in the FPGA, the RMS contributions to the measurement error for jitters up to 100 ps are 
practically negligible. 

Also, commands for register setting and parameter loading are typically used at beginning of each run.  The 
marker of first clock is only sent once before real data taking.  The only possible commands being sent 
during data taking are triggers, which always happen after the event of interesting being stored in the 
pipeline. 
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Data Output Rate from the FPGA 

Since the front-end support is discussed, we briefly describe a possible scheme of supporting a front-end 
circuit via a 4-pair cable, although it is out of the scope of this document.  In this scheme, a pair in cable is 
reserved to supply power to the front-end circuit board.  In normal operation, a differential pair CC carries 
clock and commands using C5 scheme while the remaining two pairs are used to send trigger or DAQ data 
out.  On power up, the FPGA is to be configured which is supported with a LVDS to TTL converter 
DS90C32B or similar device.  Before the FPGA is configured, the converter is enabled and the FPGA pins 
are tri-stated that allows signals for configuration being sent via the differential pairs of CC and 
TRIG/DATA.  After the FPGA is configured, the DS90C32B is disabled and all the differential pairs 
resume normal definitions. 

4.5 Parasitic Event Building 
Event building is a necessary process in all DAQ systems as well as many trigger systems in high-energy 
physics experiments. Event building is to merge data of the same event from several different sub-detectors 



CompactFPGAdesign.doc 17  8/15/2006

together.  When the operation rate of a detector increases, it is often necessary to distribute data of different 
events to different post-processors. 

In today’s trigger/DAQ systems, event building is done primarily utilizing data switches to perform the 
merging and distributing functions.  However, it is possible to spread the event building functions 
parasitically into pre-processing stages or even simple electronics modules like optical receiver or fan-out 
units.  This way, a dedicated data switch can be eliminated.  An example of parasitic event building 
architecture is given in [EvtBld_paper05_vMar06.pdf]. 
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Figure 4.9 
The Parasitic Event Building in an FPGA 

As an example, the time stamp ordering FPGA for the BTeV level 1 pixel trigger system is shown in Figure 
4.9.  The inputs are 3 channels of serial links at 2.5 Gb/s which are de-serialized into parallel data.  The 
input data are stored in two zero turn-around (ZBT) synchronous RAM devices and waited until data from 
a beam cross over (BCO) are believed to have all arrived.  Then the data from a BCO are read back into 
FPGA and sent into one of the 8 output channels.  Data for next BCO are given to next channel and so on. 

The primary function of the FPGA is to perform the given pre-processing function, while it is also serve as 
a data merger and distributor.  In other words, it performs a switch fabric function parasitically. 

4.6 Digital Phase Follower 
Serial communication is a popular data transmission scheme since the communication channel is simply a 
twist-pair of a cable.  There are serial transceivers available in several FPGA families with operating bit 
rate higher than 1 Gb/s.  However, the costs of FPGA with build-in transceivers are normally higher than 
the comparable devices without transceivers.  There are applications of serial communications to be 
implemented in low-cost FPGA families where there are no dedicated transceivers, but relatively lower bit 
rates are sufficient.  The Digital Phase Follower (DPF) is developed to fill this gap. 

The transmitter of serial data is relatively simple which is a parallel to serial converter implemented either 
with a shift register or dual-port memory with single-bit output port.  The receiver is more complicate since 
the cable delay causes the data to arrive at any possible phases.  When temperature of the cable varies, the 
phase of the serial data may drift away from the original phase.  If the clocks of the sender and the receiver 
are not derived from the same source, a continuous and indefinite phase drift is expected. 

The DPF uses multiple samples of the data stream to detect and to keep track of the input data phase.  In 
each bit time, the input data is sampled 4 times at 0, 90 180 and 270 degrees.  The 4 clocks (or 0 and 90 
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degrees plus their inverted versions) can be generated with a PLL block now available in most low-cost 
FPGA families.  The block diagram of the DPF is shown in Figure 4.10. 
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Figure 4.10 

The Multi-sampling and Digital Phase Follower 

The multi-sampling part is the same as in FPGA TDC discussed before.  In fact, the operation of the DPF is 
based on the transition time of the input data stream.  After multi-sampling, the sampled pattern is first 
converted to the 0 degree clock domain.  Then 7 samples, QD to Q3 are sent to the transition detection 
logic to find the relative phase of the input data as shown in Figure 4.11.  Note that the sample pattern 
jumps up 4 bits every clock cycles, i.e., QD jumps to Q1, QE to Q2 and QF to Q3 which is obvious from 
the pipeline structure shown in Figure 4.10. 
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The Transition Detection in the Digital Phase Follower 

The designers may choose to detect both 0-to-1 and 1-to-0 transitions, but detecting only one transition is 
recommended since the raising and falling time of the input circuit may be different.  Once the first 
transition is seen, the location of it is registered and the data sample sufficiently far away from the 
transition points is selected as an input of the shift register in the later stage.  For example, when a 0-to-1 
transition is seen between QF and QE, i.e., (QF==0)&&(QE==1), the sample Q0 is selected, and so on. 

When the phase of the input data drifts away from the original point, the transition at different location is 
detected.  The sample point being selected follows the change of the transition location change accordingly.  

As mentioned earlier, the input data phase may drift indefinitely if the clocks of the sender and receiver 
have very close but slightly different frequencies.  Even in the systems with same clock source for the 
sender and receiver, the phase drift due to cable temperature variation may also be bigger than a bit time. 
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We can assume that the phase drift rate is not too high so that position of the current transition is either the 
same as what previously detected, or +1 or -1 from the previous position.  Under this assumption, there are 
two possible cases for the bit phase drifting out of one bit time.  The two cases: “was-0-is-3” and “was-3-is-
0” are shown in Figure 4.12. 
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Figure 4.12 

The Digital Phase Following Processes 

The first case is finding the transition between Q2 and Q1 requesting that the sample Q3 being selected in 
current clock cycle while the previously registered selection was Q0.  This was-0-is-3 case indicates that 
the input data clock is slower than the local clock.  The selection point is actually drifted from Q0 to QF.  
However, to prevent the sampling point from drifting down indefinitely, it is wrapped over to Q3 instead of 
QF.  Since the current sample at Q3 has been shifted into the shift-register in previous clock cycle (which 
was Q0), the shift register stops shifting for one clock cycle to compensate for the slower input data clock. 

The second case is finding the transition between QF and QE requesting that the sample Q0 being selected 
in current clock cycle while the previously registered selection was Q3.  This was-3-is-0 case indicates that 
the input data clock is faster than the local clock.  The selection point is actually drifted from Q3 to Q4 
(which is not implemented).  However, to prevent the sampling point from drifting up indefinitely, it is 
wrapped over to Q0.  In this situation, two sample points, i.e., Q3 and Q0 must be pushed into the shift 
register causing it shift by 2 bits in the current clock cycle to compensate for the faster input data. 

The shift register normally shifts by 1 and it shifts by 0 or by 2 in the “was-0-is-3” or “was-3-is-0” cases, 
respectively, which is why it is called “tri-speed shift register”.  Typical de-serialization circuits, either in 
FPGA or single IC chip, recover the receiving clock using either PLL or clock swapping schemes.  The 
digital phase follower is a pure digital circuit and the clock recovery is avoided. 

4.7 Multi-channel De-serialization 
Typical serial-to-parallel conversion uses shift register plus hold register scheme as shown in left of Figure 
4.13.  For data concentration applications where many serial channels are to be converted to parallel words 
and merged together, relatively large amount of logic cells may be needed.  Use BTeV pixel readout system 
as an example where each channel outputs bit stream representing 24-bit words and up to 72 channels are 
to be merged together. 

If the data channels are driven by the same clock source and cable delay variation is expected less than 
several bit time, a de-serialization scheme, delay-shift-delay scheme as shown in the right of Figure 4.13 
with relatively small resource usage can be applied. 

The delay-shift-delay scheme takes advantage of SRL16 primitives found in Xilinx FPGA devices.  The 
SRL16 primitive is actually the 16x1-bit RAM used for the 4-input look-up table in each logic cell.  The 
RAM can be configured as a 16-step serial-in-serial-out shift register that can be used as a delay line which 
would need 16 logic cells if implemented otherwise. See [XAPP465] for detail description of SRL16. 

The delay-shift-delay scheme is developed based on [XAPP194] with modifications.  All serial inputs are 
checked for the transition phase using schemes like the digital phase follower as described earlier.  The 
clocks driven all channels are derived from the same source so the phases of inputs will not drift 
indefinitely and the variation of the cable delay is expected to be less than certain number of bit times.  
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Therefore, the wrap-over and tri-speed shifting processes in DPF will not be necessary with extended 
sample pattern.  The input frame, i.e., the first bit of the first word when a data transfer is started is 
detected. 
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Figure 4.13 
The Multi-channel De-serialization Schemes 

The delay-shift-delay scheme is explained in Figure 4.14 and we use converting 8 channels of 8-bit word as 
the example for clarity.  The input stream with the first bit known for each channel is fed into a delay line 
implemented with SRL16 primitives.  The lengths of the delay lines for different channels are adjusted so 
that the channel 0 has shortest length and channel 7 has longest with 1-step different between adjacent 
channels.  The bit streams of inputs to and outputs from the first delay line stage are as shown in the top 
row of Figure 4.14. 
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Figure 4.14 
The Delay-Shift-Delay Multi-channel De-serialization Scheme 

The bit streams then are sent into a logarithmic shifter stage.  The shifter rotates the bit pattern in each 
clock cycle by 7, 6, 5 … 0 bits and the outputs are as shown.  After the shifter, all the bits are at the correct 
output streams but the bits of the same word, i.e., data from a channel are at different clock cycles. 

The second delay line stage is used to adjust the output streams.  The delay line for bit 7 has the shortest 
length while the bit 0 longest with 1-step difference between two adjacent bit-streams.  The final output 
streams have correctly aligned parallel data words from channel 0 to channel 7, one channel per clock 
cycle. 
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5 Several Examples for Daily Design Jobs 

5.1 Temperature Digitization of TMP03/04 Devices 
The TMP03/TMP04 is a monolithic temperature detector that generates a modulated serial digital output 
that varies in direct proportion to the temperature of the device.  The output of the device is a square wave 
of approximately 35 Hz.  The pulse high time T1 is approximately 10 ms and is less sensitive to the 
temperature, while the pulse low time T2 varies from about 15 ms to 44 ms depending on the temperature. 

The formula between the temperature and the duty cycle can be written: 

Temperature (o C) = 235 – 400*T1/T2 

The time intervals T1 and T2 can be measured fairly easily with counters.  However, a division, a 
multiplication and a subtraction is necessary to calculate the temperature.  Perhaps, the simplest 
implementation is to keep two counters for the two time intervals and to read the values of the two counters 
into a micro-processor.  The arithmetic operations necessary in calculating the temperature can be done in 
the micro-processor. 

If the temperature is to be calculated in the FPGA, not only time interval measurement, but also arithmetic 
operations must be carefully planned.  Surely, there are divider and multiplier macro function libraries but 
they are normally for large amount of fast computations and occupies large amount of silicon resources.  In 
temperature measurement, many clock cycles are to be spent counting the lengths of the time intervals T1 
and T2, so smaller (although slower) arithmetic functions would be ideal. 

Here, we discuss a counter-based circuit as shown in Figure 5.1.  In this scheme, the arithmetic operations 
are performed during counting time intervals T2 and T1.  This may not be the best circuit for all 
applications, but we will use it as an example to illustrate alternative approaches when arithmetic 
operations are needed in FPGA. 
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Figure 5.1 

The Temperature Digitization Circuit 

The temperature output from the circuit above is an integer with LSB being 1/16 (o C).  The equation above 
for this case can be written: 

T16C (1/16 o C) = 16*235 - 16*400*T1/T2 = 3760 - 25*T1/(T2/256) = 3760 - 25*T1/(T2N>>8) 

The modulated square wave IN signal is sent to the control finite state-machine (Control FSM).  The FSM 
first generates a clear signal SCLR to reset all counters.  Then, during the first IN = low time interval, 
signal T2EN is active which enables a 24-bit counter (Counter24) to count the length of T2 and the result is 
a 24-bit integer T2N.  With 50 MHz system clock, T2N may have 22 non-zero bits.  The shift right 
operation is simply ignoring the lower 8 bits and taking only the top 16 bits. 

The next 16-bit counter (Counter16) uses the (T2N>>8) input as mod divisor.  It outputs a pulse every 
(T2N>>8) clock cycles.  The output then enables a 12-bit counter (Counter12) to increase by 1 each time.  
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The Counter16 is enabled by the signal T1x25EN which is active during the input IN becomes high for 25 
such intervals.  The output of the Counter12 then represents the integer value 25*T1/(T2N>>8). 

After 25 T1 intervals are counted, the FSM generates a data valid signal DV which enables the output 
register to update the new temperature value.  The output of Counter12 flows through an adder that subtract 
25*T1/(T2N>>8) from a constant 3760.  The registered result T16C is an integer in unit of 1/16 (o C).  It is 
refreshed every 25 T1 intervals or about 0.7 sec which is sufficient for most applications. 

The division in this scheme is absorbed into the counting of Counter16 and Counter12.  The multiplication 
of 16*400 is split into factors 25 and 256 and is done by counting 25 T1 intervals and by bit shifting on 
T2N, respectively. 

5.2 Silicon Serial Number (DS2401) Readout 
The DS2401 is a 1-Wire bus device that provides a unique 64-bit registration number (which contains 8-bit 
family code + 48-bit serial number + 8-bit CRC tester).  The 1-Wire bus devices have only two connected 
pins, a ground and a data (DQ).  The DQ pin is pulled up through a resister and all I/O accesses are through 
the DQ pin. (Probably the device obtains power from the DQ pin also.) 

It takes three operations to read out the number from the DS2401 device.  During the first step, the master 
FPGA or micro-processor drives the DQ line low for more than 480 µs to initialize the DS2401 device.   

In the second step, the master writes an 8-bit command 0Fh (or 33h) to the DS2401 indicating that the 
device is to be read.  To write a bit with value 1, the master drives the DQ wire low for a short period of 
time (1 to 15 µs) and releases it.  The DS2401 senses the DQ wire level to be 1 in the sampling window 
since DQ is pulled up by the resistor.  To write a bit with value 0, the master drives the DQ wire low for a 
longer period of time (60 to 120 µs) that covers the sampling window of the DS2401, resulting in a 0 level 
being detected.  Once the 8-bit sequence 1,1,1,1,0,0,0,0 (0Fh, LSB first) or 1,1,0,0,1,1,0,0 (33h, LSB first) 
is written into the DS2401, it is ready to output its contents. 

The master reads out 64 bits in the third step.  To read each bit, the master drives the DQ wire low for short 
time and releases it.  The master then senses the DQ wire to determine if the output from the DS2401 is low 
or high.  The reading sequence is also LSB first. 

There could be many schemes to generate necessary pulsing sequence to read out the serial number.  A 
circuit using ROM for sequencing and dual-port RAM for de-serialization is shown in Figure 5.2. 
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Figure 5.2 
The Silicon Serial Number Readout Circuit 

In the example above, a 45 MHz clock drives a 26-bit counter continuously to flash an LED as a clock 
indicator.  The middle bits of the counter C[18..9] are taken to generate the sequence for serial number 
readout.  The lower 3 bits C[11..9] are defined as “pulse time” PT[2..0] = 0 to 7, with 11.4 µs each step.  
Every 8 pulse time steps are grouped as a bit time slot, which is indexed by 3 bits C[14..12].  The higher 4 
bits of the counter C[18..15] are used as byte index.  To read out 64 bits from DS2401 takes 8 bytes.  
Before reading, the device must be initialized and fed with a read command.  So 16 bytes are reserved in 
the byte index. 

A ROM is used to generate the pulsing sequence on signals DQ, the 1-Wire bus pin and signal WE, the 
write enable input of the RAM.  The ROM contains 2048 bits which can be implemented with a block 
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memory in FPGA.  In fact, there are many unchanging and repeating sections in the sequence so that the 
whole ROM can also be composed with a few small sub-ROM pieces which can be implemented with the 
LUT resources in the logic elements. 

The initiation uses entire time at byte time 5, i.e., C[18..15]=5, which is 728 µs long, followed by another 
728 µs device recover time during byte time 6.  The byte time 7 is used to feed read command to the 
DS2401, which contains 4 Write-1 and 4 Write-0 bit time slots.  The read sequence uses byte times 8-15, 
during which the WE become active at PT=2 in each bit time slot so that the data from the DS2401 can be 
written into the RAM. 

The write and read ports of the RAM are 1-bit and 16-bit wide, respectively.  Data are written into the 
RAM bit by bit and read out as a 16-bit word.  The write address are simply derived from the counter bits 
C[17..12].  Note that the bit, byte or word order can be reversed to fit requests of different applications.  For 
example, to maintain bit order and reverse the order of all 8 bytes, let WA[2..0]=C[14..12] but 
WA[5..3]=!C[17..15]. 

The RAM block in our example has 4096 memory bits, while the silicon serial number uses only 64.  The 
higher bits of the WA are set as a constant so that the 64-bit silicon serial number is placed in the pre-
defined location. 

Clearly, it is also possible to use a shift register to convert serial stream into parallel words and indeed it is 
a more classical approach.  In our example, the contents of the RAM block are initialized into ASCII 
characters so that it is read out as an ID block and the silicon serial number of the module is embedded into 
the ID block automatically.  If using shift register, the ID block and the shift register are two data sources 
and they have to be merged together into the readout data path with a multiplexer.  Also, other 
miscellaneous serial data such as temperature, power supply voltages can also be merged into the RAM 
block that provides a one-stop ID/status block for system diagnostic process. 

6 Several Examples for Advanced Trigger Systems 

6.1 Trigger Primitive Creation 
The flexibilities that FPGA devices provide make it possible to build trigger systems that produce advanced 
event identification abilities only available in software trigger or offline analysis stage in traditional 
experiments.  We use a time-of-flight (TOF) detector shown in Figure 6.1 as an example, assuming the 
discriminated logic level signals from photo multiplier tubes (PMT) are sent to an FPGA. 
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Figure 6.1 
Time-of Flight (TOF) Detector and Trigger Primitives 

At a first look, there is not much can be done in the FPGA.  In time domain, the signal arrival time depends 
on velocity of the particle and the position of the hit on the TOF counter.  In space, the hits of particles 
from the two-body decay are not separated 180o “back-to-back”.  The separation angle depends on the 
decay momentum and polar angle of the tracks. 

Traditionally, input hit signals are stretched to cover latest arrivals.  Using the stretched signals, some 
approximate coincidence, probably covering a wide range of azimuth angle can formed. 

However, if the arrival times of the input signals are digitized using TDC schemes presented before to the 
precision of about 0.5 ns, interesting features of the events in several aspects can be extracted.  (Note that 
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the TDC in FPGA normally is not precise enough for offline data analysis so separate TDC devices for 
DAQ system are still needed.  The TDC in FPGA here is for trigger purposes only.) 

Assuming the PMT signal arrival times from both ends of a counter are TA and TB, respectively.  Then the 
time of charged particle hitting the counter TH and the hit position ZH can be approximately found by 
simply adding and subtracting two arrival times: 
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The parameter TC and C are known constants for given size of the TOF counter.  The z-measurement can be 
good to about 10 cm with TDC of 0.5 ns precision or better.  With z-positions of charged particle hits, the 
3-D feature of the event is available allowing the user to identify the type of the event and provide 
advanced trigger primitives to the global trigger. 
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Figure 6.2 
The Time-of Flight (TOF) as Function of Hit Position 

In Figure 6.2, the times-of-flight as functions of hit position Z in a TOF detector with radius 0.8 m and half-
length 1.2m for different β values are plotted.  With time measurements good to 0.5 ns, one should be able 
to distinguish a slow and a fast particle hit.   

Some background like collision of beam particle with residual gas comes earlier than fast particle which 
can be easily identified. 

The z-position of the hit itself is very useful also.  It is possible the check back-to-back condition in not 
only x-y projection, but also r-z projection.  For example, in a two-body decay event with two opposite 
charged particles, once the polar angle of the decay tracks is known, decay momentum can be estimated 
from the separation of hits in azimuth dimension.  Combining the fast/slow particle identification, the types 
of the event can be classified fairly well. 

The hit positions can also be checked with other detectors in global trigger stage. 

6.2 Unrolling Nested-Loops, Doublet Finding 
In HEP trigger systems, sometimes data items from two sets are to be paired up.  Consider an example 
shown in Figure 6.3 with two (or more) detector planes detecting tracks come from a known interaction 
point chosen as the origin.  Magnetic field is in y-direction so that the x-z is the bend view and the y-z is 
the non-band view.  To reconstruct tracks, hits on different detector planes generated by the same track are 
to be paired up. 

In the non-bend view, a constraint, i.e., a necessary condition for two hits to belong to a track exists.  
Clearly, the y-coordinates of two hits from same track must satisfy the following condition: 
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The parameters Z1 and Z3 are known constants, representing the distances of the two detector planes to the 
interaction point. 

In practice, the constraint is an inequality to allow errors from either coordinate measurement or the model 
itself: 
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Figure 6.3 

A Hit Pairing Problem 

In software, pairing up two data items is implemented with two layers nested loops, assuming in an event, 
there are n1 and n3 hits on the two detector planes: 
for(i1=0; i1<n1; i1++){ 
 for(i3=0; i3<n3; i3++){ 
 CheckCondition(y1[i1], y3[i3]); 
 } 
}

The execution time of the process is O(n2) where n is number of hits on the two planes in an event. 

In an online trigger system, the process time must cope with the data fetching time which is proportional to 
the number of hits on a detector plane, i.e., O(n).  It is then necessary to reduce the execution time of the 
process by “unrolling” a layer of the nested loops. 

6.2.1 Functional Block Arrays 

In principle, it is possible to implement multiple copies of a function in the FPGA so that multiple 
operations of a given function can be performed in each clock cycle.  Since multiple copies are created, the 
functional block array consumes silicon resource rapidly.  To reduce silicon usage, the function should be 
analyzed and operations that can be done outside the array should be extracted as much as possible. 

In the hit matching process, for example, hit coordinates from two different detector planes are to be paired 
up.  It is possible to design a functional block array as shown in Figure 6.4.  The hit coordinates from one 
plane are first loaded in to the array and are stored in u1, u2, etc. (corresponding to y3i, y3j etc.).  Then the hit 
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coordinate x (corresponding to y1i, y1j etc.) from another plane for each hit is fetched in and all functional 
blocks check the matching conditions with pre-stored values u1, u2, etc. simultaneously.  The process 
repeats for next hit coordinate x until all hits are looped through. 
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Figure 6.4 

A Functional Block Array for Range Cutting 

It is possible to extract the operations common for all blocks, leaving two comparison operations in each 
functional block.  The hit coordinates from one plane are first scaled and stored in u1, u2, etc.  The 
coordinates from another plane are then added and subtracted with two constants: a and b representing 
errors in the hit matching constraint.  For each x, the pre-stored values u1, u2, etc. are compared with the 
upper and lower boundaries (x + a) and (x - b), respectively.  If a pre-stored value falls inside the boundary, 
two hits possibly form a track are paired up together. 

If there are m and n hits/event in each detector plane, then the execution time for the whole process takes 
about (m + n) clock cycles, if m<M where M is number of blocks implemented in the array.  The execution 
time of the process is then reduced from O(n2) to O(n) at the cost of multiple copies of the comparator 
blocks. 

The functional block array above is significantly smaller than that if the addition and subtraction operations 
are performed in each array element.  The acceptance map has relatively smooth upper and lower 
boundaries if sufficient bits are implemented in the comparators. 
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Figure 6.5 

A Functional Block Array of Multi-Equality 

It is possible to further replace magnitude comparators with equality comparators as shown in Figure 6.5.  
If implemented with FPGA logic elements, the equality comparator is about half the size of the magnitude 
comparator of same number of bits.  The trade of is, however, the boundaries in the acceptance map 
become a relative rough saw-teeth shape. 
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A functional block array with M block checks up to M pairs of data simultaneously.  It “unrolls” the inner 
most loop if the number of hits m in the inner most loop is <M.  If m>M, multiple passes of operation will 
be needed. 

6.2.2 Contents Addressable Memory (CAM) 

The contents addressable memory (CAM) can be viewed as a functional block array checking single 
equality as shown in Figure 6.6.  The real CAM uses only two additional transistors per memory cell so it is 
very resource conserving given the complexity of the function that CAM performs. 
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Figure 6.6 
The Contents Addressable Memory as a Single Equality Functional Block Array 

In FPGA, however, not so many families have the real CAM resources and it takes large amount silicon 
resources if “implemented” with logic elements.  If large amount of data items with large word width are to 
be checked, external CAM device can be considered as an option. 

The CAM checks single equality between the input data and the pre-stored data.  An obvious issue is the 
missing boundary area in the acceptance map.  To cover the missing boundary, one may consider using two 
CAM devices to check for double-equality.  If there are several clock cycles available for each write and/or 
read operation, several slightly varied data can be stored into the CAM, or several comparisons can be 
performed during read to cover the missing boundary areas. 

Typically, the CAM devices are designed to make single match like finding unique IP address in network 
equipments.  Special cares must be taken to handle multiple matching situations which are very common in 
HEP applications. 

6.2.3 Hash Sorter 

The Hash Sorter is better suited in HEP applications in terms of silicon resource usage, multiple data items 
handling etc. for data item matching processes.  The hash sorter is implemented using block RAM and 
logic element resources found in any FPGA.  Please read [hashsNIM04.pdf] and [HashSorter03.pdf] for 
details.   

Figure 6.7 
The Hash Sorter 
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The hash sorter can be viewed as memories organized into bins that are indexed by a key number K as 
shown in Figure 6.7.  The data items with a particular key number are stored in the particular bin.  The data 
items can be retrieved quickly later. 

Use the track recognition in non-bend view as an example.  The detector plane is divided into, e.g., 256 
bins.  The hit data in one plane are first stored into the hash sorter with the upper 8 bits of the coordinates 
as the key (bin) number K.  Then the hits in another plane are looped over.  For each hit in second plane, 
the coordinate is scales as the bin number and is used to address the hash sorter.  The addressed bin 
contains the candidate hit in the first plane that forms a valid track with the hit in second plane. 

In hash sorter, multiple data items can be stored in a bin.  If the memory were equally divided into bins, 
there would be an upper limit of number of data items can be stored in a bin.  In real implementation, the 
data items in each event are stored in link list structure and therefore there is no a pre-defined limit per bin.  
The only limit is that the total number of data items in all bins must be smaller than the size of the memory. 

The hash sorter rearranges the data items based on the key number K.  The processing time for n data items 
is O(n), more precisely, n clock cycles to store them, n clock cycles to read them out, plus one clock cycle 
to refresh the hash sorter for next event.  The hash sorting should not be confused with regular sorting 
which uses O(n*log(n)) process time with arbitrary precision on the key number K.  The precision of the 
key number, K in hash sorter is typically 8-14 bits, which is limited by how many bins can be implemented 
in the hash sorter, typically several hundreds to several thousands.  The data items stored in same bin are 
not ordered, which usually is not a problem in many HEP applications.  The simplicity and higher speed 
outweighs the doesn’t-matter-disadvantage that hash sorter does less than regular sorters. 

In [hashsNIM04.pdf], how to refresh functional blocks using RAM for new event is described.  This is a 
useful design practice one may need in many other applications. 

6.3 Unrolling Nested-Loops, Triplet Finding 
In HEP experiments, objects with two free parameters are very common.  Several examples are shown in 
Figure 6.8.  The track segment in the non-bend view contains offset and slope as the two free parameters.  
A circular track segment normally has three free parameters.  But if the collision point (beam axis) is 
known, two free parameters such as initial angle and curvature are sufficient to describe a circular track.  A 
hit on a multi-wire chamber plane are specified with two coordinates and track passing a MICROMEGAS 
based time projection chamber (TPC) pair in drift direction is described with x coordinate and track hit time 
t0.
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Figure 6.8 
Examples of Triplet Finding 

To recognize a possible candidate of the object with two free parameters, at least three measurements must 
be considered simultaneously.  Therefore, the objects with two free parameters are also called triplets.  
From three independent measurements, the two parameters can be evaluated while an extra constraint as a 
necessary condition that the triplet must satisfy is established.  The triplet finding process uses the 
constraint to group up three data items that form a possible triplet. 

In the multi-wire chamber example, assume 2 charged particles hitting different locations that fire 2 wires 
in each view.  There are 12 intersections of fired wires if only two views are considered.  By considering all 
three views, the locations of the 2 hits can be identified as the intersections with fired wires of all three 
views. 
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In the MICROMEGAS TPC pair, the coordinate x and hit time t0 can be calculated if there is only one 
pulse within sufficient long time window in each of the two pads in opposite sides.  If multiple pulses are 
generated by multiple tracks in a pad pair, without additional measurement, the pulses may be mismatched 
resulting in ghost hits.  A possible additional measurement can be particle hit times, either derived from 
accelerator RF or measured from other detectors.  The additional measurements can also be made with 
additional TPC with different drifting directions or different drifting velocities. 

In software, triplet finding is implemented with three layers nested loops, assuming in an event, there are 
n1, n2 and n3 hits on the three detector planes: 
for(i1=0; i1<n1; i1++){ 
 for(i2=0; i2<n2; i2++){ 
 for(i3=0; i3<n3; i3++){ 
 CheckCondition(y1[i1], y2[i2], y3[i3]); 
 }

}
}

The execution time of the process is O(n3) where n is number of hits on the three planes in an event. 

In an online trigger system, the process time must cope with the data fetching time which is proportional to 
the number of hits on a detector plane, i.e., O(n).  It is then necessary to reduce the execution time of the 
process by “unrolling” two layers of the nested loops. 

Obviously it is possible to go though a doublet finding stage first and then find the triplets.  However, there 
are methods to find triplet directly without constructing doublets.  Several schemes are discussed below. 

6.3.1 The Hough Transform 

Consider the straight track segment finding problem in the non-bend view with the plane A and C being 
divided into N bins each.  A bin can be a natural detector element, or a group of the elements.  There are 
total N2 to 2N2 possible track configurations depending on how the plane B is divided.  A valid track 
configuration is called a “road”. 

The track segment is determined by two free parameters.  The method of Hough transform is to book a 
multi-dimensional histogram in the parameter space.  (The actual hits are in “image space”.)  In our 
example, there are two free parameters so the histogram is 2-dimensional.  A bin in the parameter space 
represents a set of parameters that corresponds a road.  A hit in the image space may be a part of many 
possible roads which in general is a curve in the 2-D histogram.  While processing an event, each hit causes 
a set of cells on the curve to increment by 1.  The curves of hits from different detector planes intersect at 
common cells.  After hits from all detector planes are processed, the peaks in the 2-D histogram represent 
the actual roads of the tracks.  The method is illustrated in Figure 6.9. 
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Figure 6.9 

Hough Transform for Triplet Finding 

There are many choices of parameters and the coordinates of the hits on plane A and C can be chosen as the 
two parameters for convenience.  The 2-D histogram contains N2 cells each can be visualized as a counter 
with count enable input.   
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A hit in plane A represents a curve in the parameter space which is a horizontal straight line due to our 
choice of parameters.  Each hit in the plane A enables a row of the counters so that they all increment by 1.  
Similarly, a plane C hit enables a column of the counters.  A hit in the plane B represents a diagonal 
straight line and enables corresponding counters for incrementing.  The intersection of three lines 
represents the roads of the track.  The cell is accumulated to 3 while other cells are not.  If there are more 
detector planes, the hits from different planes represent lines with different angles and they should all 
intersect at a common cell if they are created by the same charged particle track.  The cell should have a 
count equals to the number of detector planes.  With more than 3 planes, designer may use more flexible 
peak finding algorithm to accommodate detector inefficiency or boundary effect.  For example, with 5 
detector planes, a valid peak can be defined as a cell equals 4 or 5, allowing 1 missing hit. 

The obvious drawback is the large O(N2) silicon usage of the 2-D histogram.  Note that each bin or cell in 
the histogram contains a counter, count enable logic and peak recognition logic that consumes several logic 
elements in FPGA. 

6.3.2 The Tiny Triplet Finder (TTF) 

In many applications, constraint of the triplet is an invariant under shift, i.e., the constraint remain valid if 
all the measurements are added with a constant offset.  In the straight track segment finding, multi-wire 
chamber and TPC examples, their constraints are linear so they are obviously invariants under shift.  The 
constraint for circular track is not linear, but it remains valid under rotation, i.e., all measured azimuth 
angles can be added with a common offset.  If the application satisfies the shift invariant condition, the tiny 
triplet finder (TTF) is a suitable scheme for triplet finding process.  The circular track segment finding 
using TTF is shown in Figure 6.10. 
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Figure 6.10 

The Tiny Triplet Finder 

The key feature of TTF is its low O(N*logN) silicon resource usage.  The TTF uses logarithmic shifters 
with silicon resource usage O(N*logN) to shift hit patterns before feeding to a bit-wise coincident logic so 
that the coincident logic is properly reused each clock cycle.  The principle of TTF has been discussed in 
[TTF_lecc2004p-v3.pdf], [TTF_paper05_vMar06.pdf] and [TTFcurv_paper06.pdf]. 

6.4 Track Fitter 
In high-energy physics experiment detectors, track fitting is normally considered as a software task in the 
higher level trigger stage or analysis stage.  Almost all relative decent fitting algorithms require floating 
point multiplications and divisions.  Although direct porting the fitting algorithm into today’s large size 
FPGA is not impossible, the cost and power consumption quickly become concerns without careful 
resource usage control.  In fact, many silicon area and power consuming operations like multiplications and 
divisions in many algorithms can be eliminated or replaced by low resource usage operations such as shifts, 
additions and subtractions.  A process deviating from the mathematically accurate one certainly produces 
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less perfect results.  However, significant reduction in FPGA logic elements and power consumption 
overweighs small imperfectness. 

In [TrkFit_paper06.pdf], a curved track fitting as shown in Figure 6.11 algorithm that needs only shifts, 
additions and subtractions is studied.  It is modified from the least square fitting method and its fitting 
errors are only slightly increases from the mathematically perfect ones. 
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Figure 6.11 
The Curved Track Fitting 

The 5 track parameters (two offsets, two slopes at middle of the track and curvature in the bend view) of a 
track are found with the following linear combinations.   
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Usually, floating point multiplication and divisions are needed.  However, the coefficients in the linear 
combinations are modified from the least-squares fitting algorithm.  Only “weigh-two” or “two-bit” 
integers are chosen as the coefficients.  An example of choosing e[i], the coefficients for calculating 
parameter η guided by ei, the one derived from the least-squares algorithm is shown in Table 6-1. 

 
Half-length of the Track 

16 14 12 10 8 6 4
z-z0 ei e[i] ei e[i] ei e[i] ei e[i] ei e[i] ei e[i] ei e[i] 

-16 5.3 6
-14 3.3 2 7.5 8
-12 1.6 2 4.3 4 11.3 12
-10 0.1 0 1.6 2 5.6 5 17.9 18

-8 -1.1 0 -0.7 -2 1.0 1 7.2 7 31.0 31
-6 -2.0 -3 -2.4 -2 -2.6 -4 -1.2 -1 7.8 8 61.0 56
-4 -2.6 -3 -3.6 -5 -5.1 -5 -7.2 -8 -8.9 -9 0.0 12 146.3 144
-2 -3.0 -3 -4.4 -4 -6.6 -5 -10.7 -9 -18.8 -20 -36.6 -40 -73.1 -64
0 -3.2 -2 -4.6 -2 -7.2 -8 -11.9 -14 -22.2 -20 -48.8 -56 -146.3 -160
2 -3.0 -3 -4.4 -4 -6.6 -5 -10.7 -9 -18.8 -20 -36.6 -40 -73.1 -64
4 -2.6 -3 -3.6 -5 -5.1 -5 -7.2 -8 -8.9 -9 0.0 12 146.3 144
6 -2.0 -3 -2.4 -2 -2.6 -4 -1.2 -1 7.8 8 61.0 56
8 -1.1 0 -0.7 -2 1.0 1 7.2 7 31.0 31

10 0.1 0 1.6 2 5.6 5 17.9 18
12 1.6 2 4.3 4 11.3 12
14 3.3 2 7.5 8
16 5.3 6

Error 2.91 3.02 3.05 3.15 3.22 3.26 3.41 3.43 3.65 3.65 3.93 3.99 4.28 4.29
Ratio   1.04 1.03 1.01 1.00 1.00 1.02 1.00

Table 6-1 
The Coefficients of the FPGA Fitting Algorithm 

Since the coefficients are simply two-bit integers, a multiplication of the coefficient is reduced to two shift 
and accumulation operations.  Please read [TrkFit_paper06.pdf] for details. 

Since the operations of algorithm are very simple, it can be implemented into an FPGA with very low 
silicon resource usage.  The track fitting functional block calculates 5 parameters (two offsets, two slopes at 
middle of the track and curvature in the bend view) of a track while the coordinate data of the hits on the 
detector planes flow though.  The tracks are allowed to have various numbers of hits so that the advantages 
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of redundant measurements and long lever arm for tracks with more hits are fully taken.  The fitting errors 
are only increased from the one of least-squares algorithm slightly (<4%). 

It is often the case that in a computation problem, large percentage of arithmetic logic operations is spent to 
make the last a few percents of improvement.  With some care, it is possible to eliminate those excessive 
operations without significantly degrading the final results. 

7 Several Examples for FPGA Computation 

7.1 Sliding Sum, Pedestal and RMS 
The sliding sum is a very useful variable in online systems.  The sliding sum of an input stream represents 
an average in a short period of time.  The input noise is smoothed out in the sliding sum.  It can be viewed 
as a low pass filter.  The pedestal and RMS of an input stream provide commonly used characterizations of 
the signal sequence.  The block diagrams for calculations of the sliding sum, pedestal and RMS are shown 
in Figure 7.1. 
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Figure 7.1 
Sliding Sum, Pedestal and RMS Calculations 

To calculate the sliding sum, the input data are accumulated and the raw data are stored in a buffer 
organized as a fix length pipeline.  When more data points than the sum length are accumulated, the output 
from the pipeline, i.e., the tail of the sequence, is subtracted each time when a new data is added. 

At the start up when less data points than the sum length is input, the tail being subtracted should be zero.  
However, the contents in the memory buffer may not be zero since block memories usually can not be reset 
through a global command.  One may certainly initialize the buffer by writing zeros into it but the process 
takes long time.  A better way is to use an AND gate at the data path of the tail.  The AND gate first 
suppresses the tail to zero before number of input data points is reaching the pre-defined sum length.  Then 
the AND gate let the tail data though. 

The mean and the standard deviation (squared) of the input stream can be written: 
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It is convenient to choose N = 2m, i.e., 256, 512, 1024 etc. so that the division can be simply implemented 
as bit shift.  In fact, the “shift” operation in FPGA usually is just choosing corresponding bits while feeding 
the data to later stage and consumes no real silicon resource. 

The circuit of calculating standard deviation uses two accumulators, one to accumulate the raw input data 
the other to accumulate square of each input data.  After N data points are accumulated, the bits of sum of 
input data are chosen for division to produce the mean.  The mean is then squared and subtracted (with 
appropriate bit alignment) from the accumulator result that represents the sum of squared input data.  After 
the process, the squared standard deviation σ2 is presented at the output. 

To find σ itself, a square root operation can be performed.  Perhaps the simplest method for finding square 
root is to use a lookup table. 

Sometimes the pedestal is relatively large comparing the dynamic range of the noise.  For example, in 
Fermilab BLM system, the pedestal of the ADC input is typically 700 counts while the noise is only 2-3 
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counts up and down from the pedestal.  If the input is squared directly, an input of 10 bits or more would be 
needed and the result becomes 20 bits or more.  The silicon resource usage of the square operation block 
with K bits is O(K2) if the square function is implemented with a multiplier, and is O(K2K) if implemented 
using lookup table.  It is known that the standard deviation remains the same if all inputs are subtracted 
with a common offset.  So in the circuit shown above, the first input data point is chosen to be the offset 
and all the remaining input are subtracted with the offset.  The difference stream then contains data with 
relatively small absolute values and its dynamic range becomes only 3-4 bits. 

Another point should be mentioned here is that the square operation functional block is reused for both 
calculating xi

2 during the accumulation and calculating the square of the mean after the accumulation is 
done.  The square functional block consumes relatively big silicon resource so it is good idea to reuse it as 
much as possible. 

7.2 Center of Gravity Method of Pulse Time Calculation 
In detectors like calorimeters, particle hits sometimes generate relatively wide pulses and the ADC is able 
to sample the pulse to record multiple data points.  It is often necessary to determine the arrival time so that 
the pulse can be tagged with certain event.  The sampling period of the ADC is normally several times 
bigger than the required precision of pulse arrival time estimation.  For example, the sampling period of a 
40 MHz ADC is 25 ns while the required precision of the arrival time can be 2-3 ns.  Time determined by 
traditional over-threshold discrimination scheme varies depending on the pulse height and noise.  A typical 
pulse with noise is shown in Figure 7.2. 
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Figure 7.2 

The Simulated Pulse with Noise 

There are many algorithms for pulse arrival time determination that all take advantage of statistical 
properties of multiple measurements to eliminate effects of noise and pulse height.  A simplest one that can 
be implemented in FPGA with low resource usage is the center of gravity scheme as shown in Figure 7.3. 

The center of gravity of an input stream x j is defined as: 
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It is a ratio of the sum of input sequence and the sum of the input sequence weighted by the sampling time.  
Clearly the pulse height is canceled and the random noise can be averaged to a relatively lower level in the 
sums of multiple data points.  (Maybe, a pedestal is to be subtracted from the input stream first.) 
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Figure 7.3 

Center of Gravity Method for Pulse Time Estimate 

The simple scheme is able to estimate the pulse arrival time good to about 1/4 to 1/8 of the sampling time 
interval.  The estimated time becomes available shortly after the accumulation of the input sequence 
covering the pulse is done, so it is good for online coarse event time estimate in trigger system. 

The multiplier in the circuit can be replaced with a logarithmic shifter that uses lower silicon resource.  
There are usually a few clock cycles in FPGA for each input data sample since in general analog circuits in 
ADC can not be driven as fast as digital circuits in FPGA.  For example, for each sample in a 40MHz 
ADC, there are 4 clock cycles to process each sample point in an FPGA running at 160MHz.  One may 
take this advantage to use shift and accumulation to implement the multiplication.  For example, an 8-bit 
multiplication can be done by adding or subtracting a number (and its shifted versions) 4 times into an 
accumulator. 

The numerator and denominator for the divider in the last stage are the results of the accumulation of 
multiple points.  So the divider has many clock cycles to do the division since the next numerator and 
denominator are to be accumulated over long time.  A sequential divider is preferred due to its compact size 
to the single-step divider that uses large logic element resource. 

7.3 Lookup Table Usage 
The lookup table is a convenient means of implementing functions.  The lookup table is a block memory, 
usually organized as a ROM.  The variable of the function is input as the address and the pre-stored content 
at the address in the ROM is output as the function value. 

As pointed out before, the silicon resource usage of a lookup table with K bits is O(K2K) which is a very 
rapid raise.  Based on this fact, the number of bits of the input variable should be limited.  As of today, a 
reasonable width of the block memory address is around 8-12 bits in FPGA.  If we trust Moore’s Law, that 
everything doubles every 18 months, there are still about 30 years to go before we can easily implement 32-
bit lookup tables. 

In principle, the functions implemented with lookup tables can be multi-variable ones.  However, to share 
8-12 bits among several variables results in poor precisions on each variable.  So typically the lookup tables 
are used to implement single variable functions.  In certain cases, for example, to find a ratio of two 
numbers with 4-5 bits precision, the division can be implemented with lookup table.  Otherwise, to find 
Y/X, it is a common practice to use a lookup table to find 1/X first and then use a multiplier to find 
Y*(1/X).  This way, the division with 8-12 bits precision can be performed at a rate of one operation per 
clock cycle. 

7.4 The Enclosed Loop Micro-Sequencer (ELMS) 
The sequence control of the data processing resources is an important issue in FPGA design. 
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Sequence control is normally implemented using either finite state machines (FSM) or embedded micro-
processor cores.  When an input data item is to be fed through a fast and very simple process, typically 
using a few clock cycles, FSM is a suitable means of sequence control.  FSM also responds to external 
conditions promptly and accurately.  However, the sequence or program in the FSM is not easy to change 
and debug, especially when irregularities exist in the sequence.  Also, the state machines occupy logic 
elements no matter how rarely they are used.  So it is not economical to use FSM to implement the 
occasionally-used sequences such as initialization, communication channel establishment, etc. 

Embedded or external micro-processor is another option of sequence control.  Today’s main stream micro-
processors are ALU (Arithmetic Logic Unit) oriented.  The ALU, being the center piece of the micro-
processor, performs not only data processing, but also program control functions.  The ALU oriented 
architectures have two drawbacks in FPGA computation.  (1) When a micro-processor core is embedded in 
an FPGA, the ALU occupies large amount of silicon resources.  In instances where the application specific 
data processing is implemented in dedicated logic for the sake of speed, the ALU is barely utilized.  (2) The 
program loops are implemented using conditional branches, which are the primary source of the micro-
complexity of pipeline bubble, branch penalty etc. that needs to be solved with further micro-complexities 
such as branch prediction.  The micro-processor is a better choice only if a data item is to be processed with 
a very complicate program, typically using thousands of clock cycles. 

Program
Counter

ROM
128x

36bits

Reset A

C
on

tro
lS

ig
na

ls

CLK

Program
Counter

ROM
128x

36bits

Reset A

C
on

tro
lS

ig
na

ls

CLK
 

Program
Counter

ROM
128x

36bits

A

Loop & Return Logic + Stack

Conditional Branch Logic

Reset

CLK C
on

tro
lS

ig
na

ls

Program
Counter

ROM
128x

36bits

A

Loop & Return Logic + Stack

Conditional Branch Logic

Reset

CLK C
on

tro
lS

ig
na

ls

Figure 7.4 
The Micro-Sequencers 

When a data item is to be processed with a medium length program, e.g., using a few hundreds clock 
cycles, the sequence control needed is not too much more than a PC+ROM structure (Figure 7.4, left), 
which is the starting point of the Enclosed Loop Micro-Sequencer (ELMS) (Figure 7.4, right).  The primary 
difference between the ELMS and regular micro-processor is that in the ELMS there are no data processing 
resources like an ALU.  The control signals for external data processing resources turn on and off 
according to the sequence stored in the ROM as the program counter (PC) increases.  Obviously, 
supporting logic must be added to control the PC.  In addition to the conditional branch logic that also 
exists in micro-processors, loop and return logic with an internal stack are added in the ELMS, so that it 
supports “FOR” loops with constant iterations at the machine code level and is self-sufficient to run multi-
layer nested-loop programs. 

Most of program loops in micro-processors are implemented with conditional branches that are the origin 
of many micro-complexities like branch prediction.  Intrinsically, loops with pre-defined iterations need not 
use conditional branches.  The ELMS supports the “FOR” loops with constant iterations at the machine 
code level, which provides programming convenience and avoids micro-complexities from the beginning.  
The ELMS is able to run multi-layer nested-loop programs without help from external arithmetic/logic 
resources used for data processing.  Since the data processing resources are external and purely user 
defined, the ELMS is not a traditional micro-processor, which is why it is called a “micro-sequencer”.  The 
ELMS is used in the digitizer FPGA for the Fermilab Beam Loss Monitor system with expected 
performances. 

Please read [ELMS_paper06.pdf] for additional details. 


