[image: image31.png]Command Menu

Routine Calls,

Routine Callers,

Partitioner.
Transformations -

call Graph.
Dep Graph.

Loops
Args/Commons.
var Definition,
Global vars,
Masks,

Comms.
Directives.
List 3

APPENDIX: Parameters for CAPO

APPENDIX

Contents

54A1.
Parameters for CAPO

54A1.1.
General

54A1.2.
The Parameter File

54A1.3.
Parameter Keys and Possible Values

57A1.4.
Parameters for Debugging Purpose

57A1.5.
Sample Parameter File

59A2.
Messages and Symbols in the Log File

59A2.1.
Classification of Loops

60A2.2.
Construction and Optimization of Parallel Regions

63A2.3.
Insertion of Directives in Routines

65A2.4.
Debug Information

68A3.
CAPO Graphical User Interface

68A3.1.
CAPTools Main Window

69A3.2.
Directives Browser Main Window

70A3.3.
Loop Filters and Sub-filters

72A3.3.1.
Loop Variable Filter Window

73A3.4.
WhyDirectives Window

78A3.5.
Routine Duplication Browser

79A3.6.
Parameter Setting Window

81A3.7.
User Loop Type Window

81A3.8.
Reduction Operator Dialog

82A3.9.
Updating Directives Dialog

82A3.10.
Variable Removal Confirmation Dialog

83A3.11.
Data Graph Window

84A3.12.
Hookups to CAPTools

87A4.
CAPO Command Interface

87A4.1.
Commands for the Command Interface

89A4.2.
Other CAPTools Commands Useful for CAPO

89A4.3.
An Example of "capo_run.cmd"

A1. Parameter XE "Parameter" s for CAPO

The following describes parameters available in Version 1.1.

A1.1. General

Parameters are referring to inputs that user can supply to control the behavior of directive generation in CAPO. There are default settings for all the parameters (see Section A1.3). Parameters can be defined from a file, environment variables, or the Setting box in the Directives Browser. Values from the parameter file or environment variables supersede any defaults. Values from the parameter file supersede environment variables. Changes from the Setting box (Section A3.6) in the Directives Browser are applied at last. Parameter setting can also be done from the CAPO command interface. See Section A4 for details.

A1.2. The Parameter File XE "parameter:file"
The parameter filename can be defined via the environment variable CAPO_PAR XE "CAPO_PAR" . The default filename is "capo-inp.par" in the current directory. An example of this file is given in Section A1.5.

Format of the parameter file:

'#'

the sign starts a comment
'key value'

the pair defines an entry
A1.3. Parameter Keys and Possible Values

 ENV_VARIABLE
KEY DEFAULT POSSIBLE VALUES

 CAPO_PAR

capo-inp.par

 CAPO_LOG

log-file on (off on stdout)

 CAPO_LOGNAME
log-file-name codeoutput.log

 CAPO_LOGINFO
log-info std (min std more debug)

 CAPO_PLOOP

loop-granularity 6 (0 1 2 ...)

 CAPO_TYPE

directive-type omp (omp sgi sgix no)

 CAPO_REGION
region-type default (loop bloop one join full)

 CAPO_OPTIMIZE
optimize-type o2 (off on o2 o3)

 CAPO_USERLOOP
user-loop-file user-loop.par

 CAPO_DIRCLEAR
directive-clear default-list (off on filename)

 CAPO_TPRIV

tpriv-directive on (off on)

 CAPO_COMMENT
comment-type f90 (f77 f90)

 CAPO_USEPARTI
use-parti-loop no (no yes)

 CAPO_RDUPTYPE
rdup-type region (loop region)

 CAPO_UNKSIZE
allow-unksize false (false true)

 CAPO_PIO

allow-pio

no

 (no incall write noread

 any)

Description of the parameters:

· “log-file” type is one of

off
 (Logging to file is off, only minimum messages are printed on screen

on
 (Information are logged to the log-file

stdout (Information are printed to stdout (screen)

· “log-file-name” defines the name for a log file. If no name is defined, CAPO will use the output filename from the code generation to form a log filename. Contents of the log file are described in Section A2.

· “log-info” type is one of

min
(Only minimum information are logged or printed

std
(Print standard set of log information

more
(Print more detailed log information, including region and loop numbers in the final Fortran file

debug
(Print debugging information, probably more than you want, including region and loop numbers in the final Fortran file

· The loop granularity is based only on the loop iterations at this point. Future extension to include profile information can easily be added.

· Currently supported directive types are

omp
(Produce OpenMP directives (default)

sgi
(Produce SGI native directives

sgix
(Produce OpenMP directives with SGI extensions. Currently, only the 'NEST’ directive is supported

no
(Do not insert directives in code generation (useful for comparison).

· Different region types

loop
(consider only one loop for one region (no pipeline)

bloop
(consider one block + one loop for one region (no pipeline)

one
(consider one region (region not joined, no pipeline)

join
(consider joined region (outer loop nesting, no pipeline)

full
(consider full region (region joined and possible pipeline)

For SGI directives, only "loop" is allowed for the region type (region-type). The default region-type is "loop" for SGI and "full" for OMP.

· Optimization type is intended for possible improvements to be applied, such as loop granularity check, synchronization overhead reduction, and loop transformation. Currently an attempt to reduce synchronization at end-of-loop is implemented. Other optimizations are less defined and/or tested.

off
(Do not do any optimization

on
(Try to reduce synchronization at end-of-loop

o2
(Use logical disprove (slow sometime) for affinity comparison

o3
(Perform additional optimization (such as loop transformation) before loop analysis and directive insertion.

· User-defined loop types are read from a file that can be defined via environment variable CAPO_USERLOOP or "user-loop-file" entry in the parameter file. If a "userloop.par" file exists in the current working directory, this file will be taken if the other two methods are not used. The format of this file is:

starts comment

#RoutineName LoopNumber NewType

routine_name loop_count S|P|R|B[options]

Entries are specified line-by-line. “Routine_name” is case insensitive. For a program without the main-routine name defined, “MAIN” can be used to indicate the main routine.

"loop_count" is the loop number counted from the beginning of a given routine. A negative "loop_count" indicates the loop (defined by -loop_count) will not be considered for automatic loop transformation.

Currently the following new loop types are supported:

"S"
for serial

"P"
for parallel

"R"
for reduction

"B"
for break-type (e.g. so that a parallel region won't be formed around this loop).

The "R" type can optionally be attached with

 "[OPR:VAR]" or "[OPR:VAR()]" list

to indicate the reduction operator and the reduction variable, no space in-between. The second form indicates an array reduction.

· List of directives to be cleared can be read from a file or taken from the default list. The default list contains the following:

"cdir$", /* Cray vector directive */

"cmic$", /* Cray autotasking directive */

"c$par", /* PCF (Parallel Computing Forum) directive */

"c$doacross", "c$&", /* SGI multiprocessing directive */

"c$ ", "c$\t",

"c$omp", /* OMP directive */

"c$sgi" /* SGI OMP extension */

The default setting is to use the above list. The 'clearing' action may be turned off by setting CAPO_DIRCLEAR to 'off'. Additional directives may be added to the default list by prefixing a '+' in front of the filename for CAPO_DIRCLEAR.

A dirclear-list file contains simply a list of directives (keywords) to be considered. A keyword should lead with one of ['C', '!', '*']. A '-' sign can be added to the front of a keyword to indicate the corresponding directive should not be cleared (i.e. keep its original form), otherwise, the directive will be commented out (cleared).

· The THREADPRIVATE directive will be generated by default. If the option is turned off via CAPO_TPRIV (=off), CAPO will use an alternative method to treat private variables used in a common block.

off
(Use an alternative method to handle private variables

on
(Try to produce THREADPRIVATE directives

· The comment type refers to the leading character to be used for directives. The 'C' character is for the f77 type and the '!' character is for the f90 type. Default is '!'.

· By default, if a loop is partitioned in a message-passing program, the loop will not be considered for directives (CAPO_USEPARTI=no). This is equivalent to a two-level parallelization. If a partitioned loop is intended for directives as well, CAPO_USEPARTI can be set to 'yes'. This would be a one-level parallelization with mixed type. The option is only meaningful when CAPTools is first used to generate message-passing program and CAPO is then applied to insert directives.

· Two types of routine duplication (RDUP) can be selected:

loop
(as the type for RDUP if a routine is used both inside and outside parallel loop(s).

region
(as the (default) type for RDUP if a routine is used inside a parallel loop and inside parallel region but outside parallel loop.

The first option removes any nesting of parallel regions. The second option allows nested parallel regions in such a form that a parallel region can be nested inside a parallel loop but not inside a non-worksharing section of a parallel region.

· The environment variable CAPO_UNKSIZE controls how unknown-size private variable (USPV) is treated. A unknown-size variable has its last dimension declared as "*" or "1" in a subroutine and is in the routine argument list. By default, if an USPV is encountered, CAPO will take effort to adjust the size of the unknown dimension. If the size cannot be adjusted, the corresponding loop will be made serial. If CAPO_UNKSIZE is set to "true", the loop with USPV will not be made serial, instead, a warning will be printed so that the user can make manual change later on.

· By default I/O statements are not allowed in the dynamic extent of parallel loops. However, one can exploit certain degrees of parallel I/O with CAPO_PIO.

no
(no I/O statements in the dynamic extent of a loop (default).

incall
(no I/O in the current scope of a loop, but allowed inside subroutine calls.

write
(allow "WRITE(*,*)", i.e. write to the standard output.

noread
(no READ, but allow any WRITE.

any
(allow any type of I/O statements.

A1.4. Parameters for Debugging Purpose

The following parameters are only available from the Setting box (Section A3.6) in the Directives browser. By default, all these parameters are enabled. The Setting box can be used to disable them for debugging purpose.

Generate-NOWAIT

(enable/disable the NOWAIT directive
Transform-Induction-Loop
(enable/disable induction loop treatment
Handle-Array-Reduction
(enable/disable array reduction
Remove-Old-Directives
(enable/disable removing old directives
Apply-UserLoop-Type

(enable/disable applying userloop types
Setup-Pipeline-Loop

(enable/disable pipeline loop
A1.5. Sample Parameter File

env: CAPO_PAR

Parameters for CAPTools-based Parallelizer with OpenMP (CAPO)

They apply to version 1.1

env: CAPO_LOG

defines if log-information is wanted

log-file on (off on stdout)

env: CAPO_LOGNAME

defines log-file name when log-file = on

log-file-name (default: codeoutput.log)

env: CAPO_LOGINFO

defines type of information to be logged

log-info std (min std more debug)

env: CAPO_PLOOP

defines granularity (min. no. of iters.) for parallel loops

loop-granularity 6 (0 1 2 ...)

env: CAPO_TYPE

defines type of directives to be produced

directive-type omp (omp sgi sgix no)

env: CAPO_REGION

defines type of parallel regions to be considered

region-type full (loop bloop one join full)

env: CAPO_OPTIMIZE

defines optimization type for parallel regions

optimize-type o2 (off on o2 o3)

env: CAPO_USERLOOP

defines the file name for user-defined loop types

user-loop-file (default: user-loop.par)

env: CAPO_DIRCLEAR

defines the file name for directives to be cleared

directive-clear Default (off on filename)

env: CAPO_TPRIV

switches on/off the generation of THREADPRIVATE

tpriv-directive on (off on)

env: CAPO_COMMENT

chooses a comment type for directives

comment-type f90 (f77 f90)

env: CAPO_USEPARTI

uses partitioned loops for directives

use-parti-loop no (no yes)

env: CAPO_RDUPTYPE

defines routine duplication type

rdup-type region (loop region)

env: CAPO_UNKSIZE

allows unknown-size variables

allow-unksize false (false true)

env: CAPO_PIO

allows parallel I/O

allow-pio no (no incall write noread any)

A2. Messages and Symbols in the Log File

By default, the process of automatic insertion of directives is logged to the log-file "code-output.log". Information in this file may be examined after directives are added. There are three main sections in the log file, as outlined in the following subsections. Depending on the log-info type as described in Section A1, different levels of information details may be logged. In general, the log-info type controls:

1) min
(only minimum amount of information, such as WARNING and INFO messages,

2) std
(information from min, plus summary for each routine and each region,

3) more
(information from std, plus more detailed results for each loop and each region,

4) debug
(information from more, plus additional debug information that are probably too much for an ordinary user.

In the case of "more" and "debug", additional labels (region# and loop#) are added as comments for parallel loops in the generated parallel code. Regions and loops are labeled within a given routine, sequentially.

A2.1. Classification of Loops

The first section lists the analysis of loops in all routines from the dependence information. For a given routine a loop is labeled with its sequence number, the group number and the loop-nesting level. The group number is defined as a sequence number for a loop-nest group at a given nesting level. Loops are classified as parallel, serial, or possible pipeline. For a parallel loop, it is further tested for granularity and is indicated if a parallel directive is to be added, provided the loop is not nested inside another parallel loop. For a serial loop, the reason of serialization as well as the first variable that causes the loop to be serialized is given. The causes of loop serialization include loop-carried dependences (true, anti and output), I/O statement inside, and breaking out of the loop. A pipeline loop is a serial loop with only loop-carried true dependences and determinable dependence vectors (see Section 2.4 for definition). The basic information for loops is as the following:

Routine: ROUTINE_NAME

 Loop # (loop_variable), group #, level #: parallel/serial

 TYPE? Reason for serial...

"TYPE?" is one of types from the loop type list:

 "REDU", "NPAR", "PAR", "IO", "LVAR", "SER", "ANTI", "PIPE",

 "BRK", "UPIPE", "PAREG", "INDU", "INPLP", "RDINP", "GRAN", "PARTI"

As an example, part of the analysis for three routines in NPB-LU is given here (with log_info set to MORE).

Routine: BUTS

 Loop 1 (J), group 1, level 1: parallel, granularity - ok

 PAR-> directives to be added for the loop <1,1>

 Loop 2 (I), group 1, level 2: parallel, granularity - ok

 INPLP? no directive, loop inside a parallel loop

 Loop 3 (M), group 1, level 3: parallel, granularity - no

 Loop 4 (J), group 2, level 1: serial

 PIPE? true dependence, pipeline loop? dvector: V[0,0,-1,0]

 Loop 5 (I), group 2, level 2: serial

 PIPE? true dependence, pipeline loop? dvector: V[0,-1,0,0]

 Loop 6 (M), group 2, level 3: parallel, granularity - no

 Loop 7 (M), group 2, level 3: parallel, granularity - no

 *** Total number of loops: 7, parallel: 5, serial: 2, directive: 1

Routine: JACU

 Loop 1 (J), group 1, level 1: parallel, granularity - ok

 PAR-> directives to be added for the loop <1,1>

 Loop 2 (I), group 1, level 2: parallel, granularity - ok

 INPLP? no directive, loop inside a parallel loop

 *** Total number of loops: 2, parallel: 2, serial: 0, directive: 1

...

Routine: SSOR

 Loop 1 (I), group 1, level 1: serial

 ANTI? loop carried output or non-exact anti dependence: ELAPSED

 Loop 2 (I), group 2, level 1: serial

 ANTI? loop carried output or non-exact anti dependence: ELAPSED

 Loop 3 (ISTEP), group 3, level 1: serial

 BRK? break out of the loop or comm-call inside the loop

 Loop 4 (K), group 3, level 2: parallel, granularity - ok

 PAR-> directives to be added for the loop <2,1>

 Loop 5 (J), group 3, level 3: parallel, granularity - ok

 INPLP? no directive, loop inside a parallel loop

 Loop 6 (I), group 3, level 4: parallel, granularity - ok

 INPLP? no directive, loop inside a parallel loop

 Loop 7 (M), group 3, level 5: parallel, granularity - no

 Loop 8 (K), group 3, level 2: serial

 SER? loop carried true dependence: ELAPSED

 Loop 9 (K), group 3, level 2: serial

 SER? loop carried true dependence: ELAPSED

 Loop 10 (K), group 3, level 2: parallel, granularity - ok

 PAR-> directives to be added for the loop <2,2>

 Loop 11 (J), group 3, level 3: parallel, granularity - ok

 INPLP? no directive, loop inside a parallel loop

 Loop 12 (I), group 3, level 4: parallel, granularity - ok

 INPLP? no directive, loop inside a parallel loop

 Loop 13 (M), group 3, level 5: parallel, granularity - no

 *** Total number of loops: 13, parallel: 8, serial: 5, directive: 2

>>>> Grand total: num_routines 25, num_loops 157

 loops: parallel 145, serial 12, directive 30

The label for a parallel loop with directive to be added (PAR->) is given as <level,group> pairs. In the case of a serial loop only one variable is listed for the cause of serialization. For a potential pipeline loop, the dependence vector for the first related variable is given, as the case of V[0,0,-1,0] for loop 4 (J) in routine BUTS.

The user-defined loop types are applied after the loop classification. Therefore, it is user's responsibility to ensure the correctness of user-supplied loop types.

A2.2. Construction and Optimization of Parallel Regions

This section contains first the summary from the pass-two analysis of all the routines in the outer-most loop level to decide if directives need to be added in a routine. Routines are traversed on their call sequences. A <yes> or <no> flag is marked for each analyzed routine to indicate the addition of directives in the routine. A routine may need to be duplicated if it is called both inside and outside a parallel loop and will contain directives in itself.

Routine: ROUTINE_NAME <yes/no/inploop/noploop>

<yes>

(routine is added with directives for parallel loops
<no>

(routine has no directives
<inploop>
(routine is called inside a parallel loop
<noploop>
(routine has no parallel loop, but may contain potential pipeline loops

A sample result from the analysis of NPB-LU looks like the following.

Routine: APPLU <yes>

Routine: READ_INPUT <no>

Routine: DOMAIN <no>

Routine: SETCOEFF <no>

Routine: SETBV <yes>

Routine: SETIV <yes>

Routine: ERHS <yes>

Routine: SSOR <yes>

Routine: TIMER_CLEAR <no>

Routine: JACLD <yes>

Routine: BLTS <yes>

Routine: JACU <yes>

Routine: BUTS <yes>

Routine: RHS <yes>

Routine: TIMER_START <no>

Routine: L2NORM <yes>

Routine: TIMER_STOP <no>

Routine: ELAPSED_TIME <no>

Routine: WTIME <no>

Routine: ERROR <yes>

Routine: EXACT <no>

Routine: PINTGR <yes>

Routine: VERIFY <no>

Routine: PRINT_RESULTS <no>

Routine: TIMER_READ <no>

>>> Total routines: 25, checked: 24, with directives: 13

 in/outside ploop: 0, in/with ploop: 0, no ploop: 12

 Total directive loops: 30, effective: 30, in ploop: 0

The last line of the statistics indicates how many loops can be put with directives, how many of them are really added with directives, and how many of them are nested inside other loops with directives.

Next is to construct parallel regions based on the loop information. A parallel region includes at least one parallel loop or pipeline loop with possible basic blocks in the beginning of the loop. No nested parallel loops are considered at this point. Two neighboring regions can be joined together if no codes other than comments or nops (such as continue) exist between the two regions. Individual regions are labeled sequentially within a routine. For each region a number is included in () to indicate the end (or last) region of a joined area of regions. For disjointed regions, the end region is the same as the region itself. Additional information included for a region are: loops in the region and type of the region. Regions are also summarized for a routine as “region-type-summary.”

Region-type:

 one ploop (containing exactly one parallel loop (no pipeline)
 +prev-block (one parallel loop plus any preceded basic blocks
 sub ploop (one or more parallel loops nested at different levels
 pipeline (potential pipeline
 <default> (region with joined neighbors
Region-type-summary:

 DEFAULT (routine contains normal parallel regions
 PIPE (routine is part of a pipeline region
 UPIPE (routine contains potential pipeline regions

Sample outputs from the analysis of NPB-LU:

Region-in-Routine: BUTS

 region-type-summary: UPIPE

 Parallel region 1 (2): loops [1-3]

 Parallel region 2 (2): loops [4-7]

 *** Total number of regions: 2, joined regions: 1

Region-in-Routine: JACU

 region-type-summary: DEFAULT

 Parallel region 1 (1): loops [1-2] one ploop

 *** Total number of regions: 1, joined regions: 1

Region-in-Routine: SSOR

 region-type-summary: DEFAULT

 Parallel region 1 (1): loops [4-7] one ploop

 Parallel region 2 (2): loops [10-13] one ploop

 *** Total number of regions: 2, joined regions: 2

Once the initial regions are determined, routines are then checked for possible pipeline regions across routines. If such a region is identified, the pipeline-loop limit is checked against all other parallel loops in the same pipeline region for alignment. If a discrepancy is found, a message will be printed out as either “not the same limit” or “low-high limit swapped.” In the first case, the suggested pipeline operation may produce incorrect run-time result and further check of this generated code is needed. In the second case CAPO automatically swaps the loop limit to ensure the consistence. If pipeline loops are not desirable, set the environment variable CAPO_REGION to “join.”

For LU, routines BUTS and JACU were identified to be part of a pipeline region in routine SSOR and information was generated as follows.

Region-in-Routine: BUTS

 region-type-summary: PIPE

 pipeloop: DO J=JEND,JST,-1 (BUTS)

 thisloop: DO J=JEND,JST,-1 (BUTS)

 same limit

Region-in-Routine: JACU

 region-type-summary: PIPE

 pipeloop: DO J=JEND,JST,-1 (BUTS)

 thisloop: DO J=JST,JEND,1 (JACU)

 low-high limit swapped!

Region-in-Routine: SSOR

 region-type-summary: DEFAULT

 Parallel region 1 (1): loops [4-7] one ploop

 Parallel region 2 (2): loops [8-8] pipeline

 Parallel region 3 (3): loops [9-9] pipeline

 Parallel region 4 (4): loops [10-13] one ploop

 *** Total number of regions: 4, joined regions: 4

>>>> Grand total: routines 25, regions 34, joined regions 26

Parallel regions are further optimized for removal of end-of-loop synchronization (use the 'NOWAIT' construct). Although more conservative approach is taken, careful examination of NOWAIT is still needed. For example, one should pay attention to the WARNING messages on “EndLoop-Sync required/re-enforced.” If any problem occurs, one can always switch the optimization off (setenv CAPO_OPTIMIZE off).

For LU, this is the summary after region optimization:

>>>> Total number of syncs removed: 7, in 4 routines (13 checked)

A2.3. Insertion of Directives in Routines

There are four functions performed in this stage:

· clearing any old directives if CAPO_DIRCLEAR is not off (Section A1.3),

· searching for threadprivate common blocks and inserting the THREADPRIVATE directive if CAPO_TPRIV is not off,

· duplicating routines if needed, and

· inserting region/loop-level directives.

Information resulted from these four actions are not fed back to the Directives Browser except for presented as directives in the source code. Thus, once directives are inserted, the Directives Browser should not be used to do further changes.

A threadprivate common block is the one that have all its variables used as private (including copyin) for all the parallel regions in the whole program. It means even a single instance of a non-private usage of a variable can prevent the common block from becoming threadprivate. In the debug mode, causes of a common block being determined as threadprivate or shared can be examined (see Section A2.4 for details). Normally messages are printed for identified threadprivate common blocks and routines that contain them. An example is given here.

T_PRIV common blocks:

 -/WORK_1D/-18: SP SET_CONSTANTS EXACT_RHS INITIALIZE ADI TXINVR X_SOLVE

 NINVR Y_SOLVE PINVR Z_SOLVE LHSINIT TZETAR ADD VERIFY ERROR_NORM

 COMPUTE_RHS RHS_NORM

 -/WORK_LHS/-18: SP SET_CONSTANTS EXACT_RHS INITIALIZE ADI TXINVR X_SOLVE

 NINVR Y_SOLVE PINVR Z_SOLVE LHSINIT TZETAR ADD VERIFY ERROR_NORM

 COMPUTE_RHS RHS_NORM

>>> THREADPRIVATE directive added for 2 common blocks in 18 routines

Warnings may be printed for those common blocks that may potentially be threadprivate:

WARNING! SSOR... region 4, loop 8

/CJAC/ Type conflict: old SHARED, new PRIV - use SHARED

It indicates that in routine SSOR all variables in common block /CJAC/ are used as private in region 4, but the common block is shared in other places. One can trace further for where the common block is shared in the debug mode.

Directives are added by annotating the call graph and using the parallel region information obtained in A2.2. The call paths are printed as the insertion is progressing. Any routine is only visited one time.

Routine: APPLU

Routine: APPLU->SETCOEFF

Routine: APPLU

Routine: APPLU->SETBV

Routine: APPLU

Routine: APPLU->SETIV

Routine: APPLU

Routine: APPLU->ERHS

Routine: APPLU

Routine: APPLU->SSOR

Routine: APPLU->SSOR->RHS

Routine: APPLU->SSOR->RHS->TIMER_START

Routine: APPLU->SSOR->RHS->TIMER_START->ELAPSED_TIME

Routine: APPLU->SSOR->RHS->TIMER_START->ELAPSED_TIME->WTIME

Routine: APPLU->SSOR->RHS->TIMER_START->ELAPSED_TIME

Routine: APPLU->SSOR->RHS->TIMER_START

Routine: APPLU->SSOR->RHS

Routine: APPLU->SSOR->RHS->TIMER_STOP

Routine: APPLU->SSOR->RHS

Routine: APPLU->SSOR

Routine: APPLU->SSOR->L2NORM

INFO! Array reduction variable replaced with local critical in region 1 -

 SUM() --> SUM_CAP1()

Routine: APPLU->SSOR

Routine: APPLU->SSOR->JACLD

Routine: APPLU->SSOR

Routine: APPLU->SSOR->BLTS

Routine: APPLU->SSOR

WARNING! Potential memory conflict for shared variable in region <2,1> - ELAPSED

Routine: APPLU->SSOR->JACU

Routine: APPLU->SSOR

Routine: APPLU->SSOR->BUTS

Routine: APPLU->SSOR

WARNING! Potential memory conflict for shared variable in region <3,1> - ELAPSED

Routine: APPLU

Routine: APPLU->ERROR

INFO! Array reduction variable replaced with local critical in region 1 -

 ERRNM() --> ERRNM_CAP1()

Routine: APPLU

Routine: APPLU->PINTGR

Routine: APPLU

Routine: APPLU->VERIFY

Routine: APPLU

WARNINGs for “...variable used after a parallel region,” “potential memory conflict,” and INFOs on the changes made to routine arguments should be examined carefully. These are just warnings, may or may not cause any programming errors. The warnings are the cases where CAPO are uncertain of decision making and user needs to inspect the generated code at the pointed places for verification. The parallel region is labeled as <region_number, parallel_loop_number> pairs in the call path right preceding the warning message.

Meanings of keywords in the WARNING message:

"variable"
(a variable used in the current routine scope

"common-variable"
(a variable used outside the current scope, e.g. through COMMON blocks or SAVE statements in a subroutine

"Shared"
(variable shared in the current region

"Plocal"
(potential private variable in the current region

"Control"
(variable with multiple control paths, i.e. variable could be updated either inside or outside the current region

"I/O statement"
(routine called inside a parallel region contains i/o (OPEN,READ,WRITE,CLOSE) statements

"STOP statement"
(routine called inside a parallel region contains STOP/PAUSE statements

"Potential memory conflict" (for shared variable that can cause memory conflict in a parallel region

If a private variable in a parallel region is updated via a COMMON block in a subroutine, CAPO tries to privatize such a variable by adding it to the subroutine's argument list and renaming the original variable in the COMMON block of the subroutine. CAPO will generate the following INFO messages in this process:

 New argument () added to CALL OTHER_ROUTINE():# in ROUTINE_NAME

 New symbol () added to the argument list of ROUTINE_NAME

 Common block /cblk/ duplicated for ROUTINE_NAME

CAPO performs a code transformation automatically for a reduction variable that is an array element. The corresponding message is like:

Array reduction variable replaced with scalar in region # -

 OLD_ARRAY_ELEMENT --> NEW_SCALAR_VARIABLE

A2.4. Debug Information

More information will be logged if CAPO_LOGINFO is set to “debug.” These are useful for debugging CAPO. Some of the information are included here for reference only.

· UserLoop information for user-defined loop types

Userloop: Defined loop # in routine ROUTINENAME - newtype

“newtype” is one of (S, P, R, B) as mentioned in Section A1.3.

· List of old directives to be cleared

· Summary of loop type with list of all dependence vector deltas for pipeline loops

· Three tests during region formation

Mem-Conflict check for region #R, loops #L-#L...
 Conflict variables: <var,var...>
Shared-Array check for region #R, loops #L-#L...Assigned <Symbol>
IO-Statement check for region #R, loops #L-#L...
 I/O or Reduction in routine <RoutineName>
· List of symbols and types in each region

TYPE

 Private (Local (privatizable) variable
 Reduction (Scalar reduction variable
 ArrayReduction (Array reduction variable
 Shared (Shared variable
 LastPrivate (Usage in and after the region
 FirstPrivate (Usage in and before the region
 CopyInOut (Shared but no or no proof of loop-variable dependence
 ThreadPrivate (Used in a threadprivate common block
 UnknownType
 (Type not defined yet
CONTROL

 No-Control (Symbol not in a control dependence
 Control-Dep (Symbol in a control dependence
SCOPE

 In-Scope (Symbol defined in the current routine
 Not-in-Scope (Symbol not defined in the current routine (defined via common block or save statement)

 Not-in-Use (Symbol passed into a subroutine but not used in the subroutine

DTYPE:DEPTH (printed in [.:.])
 IO -1, Routine Input/Output

 NT 0, Non-exact True

 NA 1, Non-exact Anti

 NO 2, Non-exact Output

 ET 3, Exact True

 EA 4, Exact Anti

 EO 5, Exact Output

 CT 6, Control

 UN 7, Unknown type

 Depth = 0 for loop-independent dependence
· List of routine call types, indicating the usage of a routine inside/outside parallel regions/loops. Five bits are used:

bit1 [0x01] called outside parallel region
bit2 [0x02] called inside paregion but outside parallel loop
bit3 [0x04] called inside parallel loop

bit4 [0x08] called outside parallel loop (= bit1 | bit2)
bit5 [0x10] called inside parallel region
· Information on updating duplicated routines

 Replace call to DROUTINE with CAP_DROUTINE in ROUTINE

 Removed ROUTINE from the calledby list of DROUTINE

 Added ROUTINE to the calledby list of CAP_DROUTINE

· List of symbols and affine expressions for testing loop limits (such as in the removal of end-of-loop synchronizations)

HOME (LOOP-VAR-EXPR, #hits) Low <EXPR> High <EXPR> [A1:INDX,A2:INDX..]

 (LOOP-VAR-EXPR, #hits) Low <EXPR> High <EXPR> [B1:INDX,B2:INDX..]

OTHER (NONLOOP-EXPR, #hits) [C1:INDX,C2:INDX..]

 (NONLOOP-EXPR, #hits) [D1:INDX,D2:INDX..]

Here <EXPR> is a symbolic expression, A,B,C,D are array names, INDX is the relevant array index. The lists are for both source and sink.

· Summary of fields associated with the ploopinfo data struct, mainly for development purpose.

 Loop Lvar D/L Type G WP IP Nest Flag

Routine: ROUTINE_NAME

 # var ?/? TYPE? ? ? ? n/cn [321]

'Loop' (the loop number in a routine
'Lvar' (the loop variable name
'D' (the nesting level of the outermost DO loop containing this loop
'L' (the nesting level of the loop
'Type' (one of type strings given in Section A2.1
'G' (the loop granularity flag (internal info only)
'WP' ('1' containing parallel loop, '0' without parallel loop
'IP' ('1' inside parallel loop, '0' not inside parallel loop
'n' (this loop nest flag (containing nested parallel loop)
'cn' (child loop nest flag (part of nested parallel loops)
'Flag' (three bits for internal usage only
· Symbols and their types in common blocks (for testing threadprivate). Meanings of symbol types:

[U] (Unset

[P] (Private

[R] (Reduction

[A] (ArrayReduction

[S] (Shared (RW)

[s] (Shared (Readonly)

[L] (LastPrivate

[F] (FirstPrivate

[C] (CopyInOut

· Methods used in determining the declaration size of unknown-size variables

[NOT]IDENTICAL SIZE, method 1 (caller declaration) used
MAX(e1,...), MIN(e1,...), method 2|3 (access range in routine) used
NO method - variable NOT safe - <var>

A3. CAPO Graphical User Interface

CAPO is currently integrated into CAPTools as a component to generate OpenMP directives. For CAPO-enabled CAPTools, additional items have been added to the File, View and Edit menus of the CAPTools main window to access the CAPO graphical user interface (GUI).

The CAPO GUI is also referred to as the Directives Browser. It provides an easy way for user to access information generated during the directives analysis and insertion. The browser consists of several information windows and dialog boxes as given in the following sections. It also provides hookups to the CAPTools GUI tools, such as DepGraph browser, Variable Definition browser, etc., so that one can easily navigate and interact with the parallelization process.

A3.1. CAPTools Main Window

This is the main GUI window the user will see after CAPO/CAPTools is started. The CAPO GUI (the Directives Browser) is started from the View (Directives) menu after a source file or a database file is loaded from the File menu. A summary of CAPO hookups to CAPTools is given in Section A3.12.

[image: image1.png]= CAPTools: 2.1 Beta—Pre—Release (024)

]

File ©) Wiew ©) EditT) Links©) Analyser.) Barsithuec v Properties..) Help.

This copy of GAPTocls is Licenced £o NASA Ames
Licence expires on Wednesday October 31 2001

Welcone to Computer Aided Parallelisation Tools (CAPTools) ()
() Copyright 1992-2000 Parallel Software Products Ltd

Rights of use

This is a Beta version of CAPTools. You should not transmit or copy this program
in any form to any other company or individual without the consent of the

owners of the code. Your right to use this Beta version of CAPTools ends on

the Licence expiry date or with the first release of a comnercial product, which
ever is earlier

Using CAPTools

The user manual provides you with a full introduction to all the concepts used
by CAPTools and includes several tutorials. Use the on-line help to ohtain help
in using each window.

More infornation on CAPTools can be obtained from

Parallel Processing Research Group
University of Greenwich

Queen Anne Building

Maritine Greenwich Campus

30 Pazk Row

Greenvich Tel : +44-20-8331-8731/8655_ Web : hetp: //captools. gre.ac. vk
London SE10 OLS Fax : +44-20-8331-8665 Enail : captoolstgre.ac.uk

To report bugs and get user support please email: captool-supportsgre.ac.uk

]

Directives Browser Main Window

The main window of the Directives browser is activated by View–>Directives… from the CAPTools main window (see Sections A3.1 and A3.12) after a source or database is loaded in. It presents information from the first two phases of the directives analysis (before directives are added). It is organized around loop types and is an entry point for other browser windows, such as WhyDirectives and RoutineDuplication. Once directives are generated (via Save OpenMP Directives Code), the Directives browser should not be used to do further changes.

[image: image2.png]= CAPO: Directives Browser

=)

Scope: 26 Routines: 4 Totally serial loops (i.e. not within or containing parallel loops):

lllioutines “ | [blts:1/1/35: do n=l,np, 1 J
. | bute:1/1/35: do n=

Looplii(teE S ub: T | eseriazseseat: a0 =

izl el f il ss0r:13/2/253: do l=lend, lst, -1

Covered Serial | True Recursion

Falsely Serfal | 1/0 or Exit o

Reductions No Granularity

Pipeling User Defined

Chosen

e More Filter. 1 1

Show Parallel 1/0: [Ves No| RoutineDup..) Why..) Update Directives..) Setting..)

Current Routine: blts 9sar Laap: Dismiss) Help..)

B TOURLE_PRECISTON v(5, Lawe/2 2+, Tany /2927 L, ¥), £v (5, Lo/ 2eL, Tany) , 182 (5, &, Lo/ 2oL, Tany) , 18y (5., Lo/ 277

+1, 1ny) , 14x(5, 5, Ldnoc/252+1, Ldny) , 4(5, 5, Lanic/252+1, Lany)
% e

27 ic local varisbles

28

29 integer 1,3,k mn

a0 DOVBLE PREGISION tmp, tupl

3 DOVELE PRECISION twat(5,5)

32

3

34

£v(n,1,3) = (n, 1,3, k) ~omega* (Lz (n, 1, 1,3) *v (L 1,3, k1) +Ldz (n, 2,1,) *v (2,1, k-1) +Ldz (n,
4,4, 9)*0 (4, 1 9 k-1) + 132 (8, 1. §) v (8, 1,9, k-1))

Tk +Lx(n, 1,33
i-1,3,k) rLdy (n, FSIENSTSE
1,3) v

(1, 3-1, 3, k) +1dy (m, 2, 3, 1) v
(0 4,1,3) (4,1, 3-1 1) +1a

i

Scope [setting]: selects one routine or all routines for loop listing.

Routines [list]: a list of routines that can be selected for loop listing.

Loops [list]: a list of loops under the selected routine/loop filters. To activate the WhyDirectives window through the Why… button, a loop needs to be selected.

Loop Filter [list]: provides a way to focus on a particular type of loops, mainly serial or parallel, as described in details in Section A3.3.

Sub [list]: sub-loop filter to be combined with the loop filter to provide finer control of loop selection.

More Filter [button]: activates the Loop Variable Filter window to perform even finer loop selection (Section A3.3.1).

Show Parallel I/O [setting]: controls the way that a loop with I/O statements inside is displayed. By default (Yes), loops with potential parallel I/O are classified as parallel although parallel I/O with directives is not supported at this point.

RoutDup [button]: activates the RoutineDuplication window (Section A3.5).

Why [button]: activates the WhyDirectives window (Section A3.4) after a loop is selected.

Update Directives [button]: activates the Update dialog box (Section A3.9) to re-perform the directives analysis, usually after settings are changed.

Setting [button]: activates the Setting window (Section A3.6) to reset parameters for CAPO. The window may also be launched from Edit–>Directives Setting… in the CAPTools main window.

Current Routine [textpane]: displays the source of a selected routine or a routine in which a selected loop is located. The selected loop nest is highlighted.

How a loop or a statement is labeled:

[image: image32.png]Loop Menu

Routine Calls,

Routine Callers,

Partitioner.
Transformations -

call Graph.
Dep Graph.

Loops
Args/Commons.
var Definition,
Global vars,
Masks,

Comms.
Directives.
List 3

[image: image33.png]Routine Calls,

Routine Callers,

Partitioner.
Transformations -

call Graph.
Dep Graph.

Loops
Args/Commons.
var Definition,
Global vars,
Masks,

Comms.
Directives.
List 3

[image: image34.png]variable Menu

Transformations -

call Graph.
Dep Graph.

Loops
Args/Commons.
var Definition,
Global vars,

Masks,

Comms.

Directives.

List 3

[image: image35.png]

[image: image36.png]Load F77 Source,

Load Database,

About CAPTools,
Exit

[image: image37.png]s

Save OpenMP Directives Code,
Save Partition Annotation.
Load Knowledge.

About CAPTools,

Exit

 Loop:
[image: image3.png]RLHS:1/1/83: DO 100 L=LS,LE,1

Statement: [image: image4.png]RLHS:110:CALL RLHSL (NQTT, JPER, JS

[image: image38.png]Save Parallel Code,

Save Database.

Save AIMS Instrumented Code.
Save OpenMP Directives Code,
Save Partition Annotation.
Load Knowledge.

About CAPTools,

Exit

[image: image39.png]Transformations -
Partitioner.
Code Generator.

Knowledge Base.
READ Knowle dge.
User Knowledge.

value Profiler.
Directives Setting.

[image: image40.png]

[image: image41.png]i

[image: image42.png]Call Graph.

Dep Graph.

Loops
Args/Commons.
var Definition,
Global vars,
Masks,

Comms.
Directives.

[image: image43.png]i Full (+Pipeline)
Gne Loon

PBIk + One Loop
One Region

Joined Region

Full G+Pipeling)

A3.2. Loop Filters and Sub-filters

Definitions of basic loop types:

Serial loop — a loop with loop-carried TRUE dependence from data flow, ANTI/OUTPUT dependence from non-privatizable variables, I/O statements, and/or exit statements.

Parallel loop — a loop without loop-carried TRUE dependence from data flow, ANTI/OUTPUT dependence from non-privatizable variables, I/O statements, and exit statements. Such a loop can be executed in parallel.

Reduction loop — a loop, other than one or more reduction operations, that can be executed in parallel.

Pipeline loop — a loop that contains loop-carried TRUE dependences with determinable, non-negative dependence vectors (see definition in Section 2.4). The loop can potentially be used to set up a parallel pipeline with an outer loop.

Distributed loop — one of Parallel loop, Reduction loop or Pipeline loop.

[image: image5.png]Loop Filter: Sub:

Totally Serial | All

Covered serial | True Recursion
Falsely Serial | 1/0 or Exit
Reductions No Granularity
Pipeline User Defined
Chosen

Not Chosen

Loop Filter: Totally Serial —

serial loop with loop-carried TRUE dependence, containing no distributed loop and not nested inside other distributed loop. The code section in the loop will be executed sequentially.

Sub-filter: True Recursion
— no I/O or exit statements

I/O or Exit
— with I/O and/or exit statements

No Granularity
— one or no iteration

User Defined
— user-defined serial loop

[image: image6.png]Loop Filter: Sub:

Totally Serial | [All

Covered Serial True Recursion
Falsely Serial | 1/ or Exit
Reductions Inside Parallel
Pipeline User Defined
Chosen

Not Chosen

Loop Filter: Covered Serial —

serial loop with loop-carried TRUE dependence, containing distributed loop or nested inside other distributed loop. The code section in the loop will partially or completely be executed in parallel.

Sub-filter: True Recursion
— no I/O or exit statements

I/O or Exit
— with I/O and/or exit statements

Inside Parallel
— inside other parallel loops

User Defined
— user-defined serial loop

[image: image7.png]Loop Filter: Sub:

Totally Serial | [All

Covered serial | Privatization
Falsely Serial /O Statement
Reductions No Granularity
Pipeline User Defined
Chosen

Not Chosen

Loop Filter: Falsely Serial —

serial loop without loop-carried TRUE dependence, but containing ANTI/OUTPUT dependence from non-privatizable variables. Loop may contain distributed loops for parallel execution.

Sub-filter: Privatization
— due to non-privatizable variables

I/O Statement
— with I/O statements but no nested

 parallel loops

No Granularity
— no granularity and no nested parallel

 loops

User Defined
— user-defined serial loop

[image: image8.png]Loop Filter: Sub:

Totally Serial | [All

Covered serial

Falsely Serial

Reductions
Pipeline User Defined
Chosen

Not Chosen

Loop Filter: Reductions —

loop with one or more reduction operations which can be executed as parallel reductions.

Loop Filter: Pipeline —

A pipeline loop as part of a parallel pipeline working with an outer loop.

Sub-filter: All
— all loops with reductions/pipeline

User Defined
— user-defined reduction loop

[image: image9.png]Loop Filter: Sub:

Totally Serial | [All

Covered serial | Normal

Falsely Serial | Copyln/out
Reductions Ordered
Pipeline User Defined
Chosen

Not Chosen

Loop Filter: Chosen (Parallel) —

parallel loop chosen for distribution with directives. The code section in the loop will be executed in parallel.

Sub-filter: Normal
— regular parallel loop

CopyIn/Out
— with copyin/copyout variables

Ordered
— with ordered code section

User Defined
— user-defined parallel loop

[image: image10.png]Loop Filter: Sub:

Totally Serial | [All

Covered serial | Inside Parallel
Falsely Serial | 1/ Statement
Reductions No Granularity
Pipeline User Defined
Chosen

Not Chosen

Loop Filter: Not Chosen (Parallel) —

parallel loop not chosen due to other parallel loop(s) already been chosen. The loop is either inside other distributed loop or contains distributed loops.

Sub-filter: Inside Parallel
— inside other parallel loops

I/O Statement
— with I/O statements

No Granularity
— parallel but no granularity

User Defined
— user-defined parallel loop

A3.2.1. Loop Variable Filter Window

The Loop Variable Filter Window controls even finer selection of loops in conjunction with the main loop filter and sub filter. The filter applies to variables used in loop heads.

[image: image11.png]CAPO:

Loop Variable Filter

variable List:

iend
isizl
isiz2
ist
istep
itnax
i
jend
jat.
k

Add

Reset

Routine: ssor
I Scope: Choice:

Loop Variable | [Inclusion

Exclusion

Loop Limit
Either

Filter: [Enabled Disabled

ble(s)

ik
Apply) Dismiss) Help,

Choice [setting]: controls the filtering effect.

Inclusion
— show loops when variables appear

Exclusion
— show loops when variables do not appear

Filter [setting]: disables or enables the loop variable filter.

Variable(s) [textfield]: contains a list of the currently filtered variables.

Add [button]: adds the selected variables in the Variable List to the filtered variable list.

Reset [button]: resets variable selection.

Apply [button]: applies the current filter to the display.

A3.3. WhyDirectives Window

The WhyDirectives window is displayed for a selected loop after the Why… button is clicked in the Directives main window. It presents detailed information for the selected loop, in particular, reasons and hints on why the loop was classified as serial or parallel. The window can be used to remove false dependences identified by the user and to redefine the loop type. Depending on the current loop type, the three variable lists may show different types of variables and the two loop lists may present different information. The displayed window is for a loop of the Covered Serial type.

[image: image12.png]CAPO: why Directives ?]
Loop: ssor:7/L/204: do istep=1,itmax,1 Reason: I/O or Exit containing parallel loops
e — New Type,) True-dep.variables Anti-dep. variables ~Output-dep. variables

]

i

inte: rotm J J rotm
Contains 7 parallel loops A | choi - T | rhos
11 varisbles vith loop-carried || | 4 @
true dependencies (Level-1) a elapsed
6 variables vith loop-carried c tarray
output dependencies (level=l) b
2 T0/Exit statements inside a
Select All) Select All) Select All)
1 sty
Dismiss) _Help
10/Exit statements: Contains 7 parallel loops: Inside parallel loops:
210:write (ONIT=* | 4| | ssor:8/2/219: do ke2,nz-1,1 4|
342:return < | ssors14/2/281: do ke2na-1,1 -
12norm:2/1/29: do k=2,nzl-1,1
rhs:1/1/158: do kel nz, 1
ths:5/1/176: do k=2,nz-1,1
rho:16/1/242: do k=2,nz-1,1

—>

The following items are common for All Loop Types.

Loop [textfield]: currently selected loop with routine name and loop labels (see the end of Section A3.3).

Type [textfield]: loop type as described in Section A3.3.

Reason [textfield]: one sentence summarizing why the loop was classified to its type.

Hints [textarea]: more detailed summary of the usage of the relevant variables in the loop and whether the loop contains I/O statements, exit statements, etc.

New Type [button]: activates the New Loop Type dialog box (Section A3.7).

Select All [button]: selects all variables in the corresponding variable list.

Reset [button]: deselects all variables in the variable lists.

Remove [button]: activates the Variable Removal dialog box (Section A3.10) for the selected variables.

IO/Exit statements [list]: list of I/O and exit statements in the selected loop nest.

The following list is common for Totally Serial and Covered Serial.

True-dep. variables [list]: list of variables causing loop-carried TRUE dependences, removable. An "[x]" followed a variable indicates the dependence vector length for this variable.

The following lists are common for Totally Serial, Covered Serial and Falsely Serial.

Anti-dep. variables [list]: list of variables causing loop-carried ANTI dependences and the variables cannot be privatized, removable.

Output-dep. variables [list]: list of variables causing loop-carried OUTPUT dependences and the variables cannot be privatized, removable.

Contains parallel loops [list]: list of parallel loops that are nested inside the current loop.

Inside parallel loops [list]: list of parallel loops that contain the current loop.

[image: image13.png]CAPO: Why Directives 7

Loop: jacld:1/1/160: do n=1,mp,1 Reason: antifoutput dependencies, variable not privatizable
Type: Falssly Serial New Type,,) Anti-dep. variables Output-dep. variables - Infout-dep. variables
Hints: o e Al = B
= 3| E = 2 5]
4 variables with loop-carried | 4| a »a
output dependencies (evel-l) | a >d
and non-privatizable, due to
usage from outoide the loop
4 output-dep () variables
Select All) Select All) Select All)
Reset) Remove..)a, b, c, d

Disrniss) Help,

10/Exit statements: Contains parallel loops: Inside parallel loops:

L
L
L

[—L
[—L
[—L

The above window is for a Falsely Serial loop.

The following list is for Falsely Serial.

In/out-dep. variables [list]: list of variables that have TRUE data dependences from the outside the loop, removable. A “<” sign in front of a variable indicates loop entry dependence on this variable, while a “>” sign indicates loop exit dependence on this variable.

The following lists are common for Reductions, Pipeline, Chosen, and Not Chosen.

Private variables [list]: list of privatizable variables in the loop nest, not removable.

Shared variables [list]: list of shared variables in the loop nest, not removable.

Nested parallel loops [list]: list of secondary parallel loops that are nested inside the current loop.

Inside parallel loops [list]: list of parallel loops that contain the current loop (except for Pipeline).

The following list is only for Reduction Loop.

Reduction variables [list]: list of variables for reductions in the loop nest, not removable. Reduction variables are preceded with labels indicating reduction operators or intrinsic functions. A “()” after a variable indicates an array reduction.

[image: image14.png]CAPO: Why Directives 7

Loop: 12norm:2/1/29: do k=2,nz0-1,1 Reason: Loop involving reductions
s el New Typs,,) Private variables Shared variables Reduction variables
- n J v J o) J
= | = of | dse - -
Loop with 1 reductions DR iend
4 private varisbles s jot.
6 shared varisbles Jend
nz0
Select All) Select All) Select All)
Reset)

10/Exit statements:

1 Nested parallel loop:

Disrniss) Help,

Inside parallel loops:

i

—>

12n0m:3/2/30: do j=jst, jend,1

L
L

[—L
[—L

The above window is for a Reduction loop with reduction array variable “sum().” A reduction operator or intrinsic is one of those defined in Section A3.8 or IMAX/IMIN (MAX/MIN expressed with an IF statement block).

The following lists are only for Pipeline Loop.

Inside parent loops [list]: list of loops that are nested above the current pipeline loop to form pipelines. Appropriate synchronization directives and statements will be inserted at the code generation. A parent loop is usually a serial loop without I/O and exit statement inside.

Other variables [list]: list of variables other than private and shared, such as CopyIn/CopyOut variables, not removeable.

[image: image15.png]CAPO: Why Directives 7

Loop: blts:4/1/43: do j=jst,jend,1 Reason: Loop as part of pipelines
s Gl New Type,) Private variables Shared variables _ Other variables
Hints: bl Sl B B
| e o | e - -
Pipeline loop A | tmat 1dy
6 private varishles <m v
11 shared varishles i w
i Kk
onega
ist
Select All) Select All) Select All)
Reset)
Dismiss) _Help
10/Exit statements: Nested parallel loops: Inside 1 parent loop:

4| | [ssor:8/2/213: do k=2, ma-1,1

[—L
[—L
[—L

The above window is for a Pipeline loop with the parent loop highlighted.

The following lists are only for Chosen Parallel Loop.

Copyin/out variables [list]: list of variables that will be declared as CopyIn (FIRSTPRIVATE, marked by “<”) and/or CopyOut (LASTPRIVATE, marked by “>”) due to potential conflict in updating the same memory location and the variable(s) having usage outside the loop. It might arise, for example, from an induction variable that is assigned before the loop and used after the loop. It could also indicate a programming bug.

Controlled variables [list]: list of variables that will be placed inside an “ORDERED” code section. These variables are usually inside IF conditional statements and the corresponding assignments need to be executed in a designated order as is in sequential.

[image: image16.png]CAPO: Why Directives 7

]|

Loop: BODTIR:2/1/39: Do 300

Type: Chosen

Shared variables

_NQ,1 Reason: Parallel loop exploited with copyin/out variables

Copyin/out variables

New Type..| Private variables

inte: 0 } ToLa } sy }
| e son
Parallel loop A | T | mR - -
12 private varisbles 13 oM
16 shared varishles T | om0 LPER
1 copyout (5) variables L nswo0
3z 1
33 m
Select All) Select All) Select All)
1 sty b

Disrniss) Help,

10/Exit statements: & Nested parallel loops: Inside parallel loops:
| | BooTIK:3/2/106: D0 30 3=35, I, 1 g
BOOTIK:5/2/116: DO 40 L-LS,LE,1
T | zERo:1/1/10: Do 10 T-1,1EN,1 .
BOOTIK:8/3/120: D0 110 L-LS,LE,1
BOOTIK:10/3/145: Do 120 1-35,JE,1
BOOTIK:12/3/161: D0 130 L-LS,LE,1

i

—>

The above windows is for Chosen parallel loop with Copyin/out variables.

[image: image17.png]CAPO: why Directives ?]
Loop: STMOHK:7/1/179: DO Reason: Parallel loop exploited with ordered assignments
o New Typs,.) Private variables Shared variables Controlled variables
- R J z J (ERROR] J
| v o o o
Parallel loop 4| oz oL
10 private varishles o | or xe
9 shared varisbles DroL X
1 other varisbles 2 x
L
x m
Select All) Select All) Select All)
1 Reset)
Dismiss) _Help.
10/Exit statements: 1 Nested parallel loop: Inside parallel loops:
| | svmorx:8/2/180: Do 3-1,30,1 4| 4|

The above window is for Chosen parallel loop with Controlled variables.

A3.4. Routine Duplication Browser

The RoutineDuplication window is used for browsing routines that are to be or were duplicated to avoid usage conflict of directives. The window is activated from the RoutDup… button in the Directives browser main window.

[image: image18.png]CAPO: Directives RoutineDup Browser.

]

Orig. Rouf Dup. Routines: 2 calls Inside Parallel Loop: 3 calls Outside Parallel Loop:

L1 oap 1171 [RLS: 138 CALL FLAST (NGLT, JPER, 35 J [BEILE: 316 GALL VETRIE (15, 78,55,
»2s cap_p23 1 RLHS 95 CALL RLSI (NGIT, JBER, 35, BONNKE 319.CALL VETRIE (35, JE, LS,
POK AP_P2K_1 T | Bowmie:319:carr verrie ks, ke, LS,
ViTRL CAB_VITRI 1

ViTRIR caB_VITRIP 1

vemRL | eaelvemr 1 :

feme ||| [cevemmi
2R S| | car_zeno <

Number of Duplicated Routines: 24

Inside Call in Routine: RLES

Inside Loop: RLES:3/1/126: D0 300 LeLs,LE,1

el |

Dismiss) Help,

Outside Call in Routine: BCHLR

7 ¢ SEE

118 ELSE 306 :IS0MP PARALLEL DO DEFAULT (SHARED) PRIVATE (J,K)
118 ¢ 307 :1S0MP& SHARED (35, JE, KS, KE)

120 :C Loop through Jk-planes 308 Do 220 RS, KE, 1

121 ¢ 309 Do 220 3-35,7E,1

122 NTE2-zn+14 310 ©(3,K)

123 :150MP PARALLEL DO DEFAULT (SHARED) PRIVATE (TiP2, TTP2,L)| | 311 A3 K)=-B(3,K)

124 :1S0NPS _SHARED (KSRG, LPER, KPER, LD, KD, 0, CFLTRB, TF0S0, REY| | | 312 : 220 CONTINUE

 JPER, NOTT, JSRC, 313 :130MP END PARBLLEL DO

125 :1S0MP& KE,KS, JE, IS, NTUP2, LE, LS) 314 CONTINGE

1% D0 300 LeLs,LE, 1 35 ¢

127 CALL GETARX (WINP2, THP2, TTHP2) 316 :C solve periodic or nonperiodic tridiagonal system
128 ¢ 7 ¢

120 :c J-direction 318 IF (JPER) THER

130 ¢

131 GALL RLHSJ (NQTT, JPER, IS, JE, KPER, KS, KE, LPER, L, | | | 320 ELSE

FEY, TF0S0, OFLTRE, JSRC, 0, VGAMMA, OT, S, TSCAL, VUL, VMU, DAXP1, DAl | 321 GALL V2TRI(JS, JE, KS, KE, &, G, B, RES, J0, KD)
P2, TWALL, VORT, TRANS, RTV, TBLANK, TiP2 (TTWP2, 1), T2 (12, 2), | | | 322 ENmIE

TI? (ITWR2, 3), W2 (ITHWRZ, 4), VO, XX, XY, X2, ¥X, Y¥, Y2, 2%, 27, 22, %| 4 | 323 ENDIE

T, YT, 2T, T2 (ITWP2, 5, JD, KD, LD) 324 ¢

132 ¢ 325 :C Update houndaries for given topology.

133 :c K-direction 3% ¢

134 ¢ 327 :c J-direction

135 GALL RLHSK(NQTT, JPER, JS, JE, KPER, KS, KE, LPER, L, | | 328 :C

FEY, TFOSO, GFLTRB, KSRC, , VGAIAA, T, S, TSCAL, VIUL, WUT, DAYp1, A | | 323

IF (JPER) THEN

Orig. Routines [list]: list of original routines to be duplicated.

Dup. Routines [list]: list of duplicated routines. Before code generation, this list will be empty. After code generation, the list is filled with new routines that have one-to-one correspondence to the original routines. The matched (original, duplicated) routine pairs are selected concurrently.

Number of Duplicated Routines [numeric]: as it says.

Calls Inside Parallel Loop [list]: list of call statements (to a selected original routine) that are inside parallel loop(s).

Calls Outside Parallel Loop [list]: list of call statements (to a selected duplicated routine) that are outside any parallel loop.

Inside Loop [textfield]: the loop that contains the selected call statement to an original routine.

Inside Call in Routine [textpane]: the source for the corresponding loop for Inside Loop. The textpane is also used for displaying source code for the selected original routine.

Outside Call in Routine [textpane]: the source around the selected call statement from the Call Outside Parallel Loop list. The textpane is also used for displaying source code for the selected duplicated routine.

A3.5. Parameter Setting Window

A default setup for the Parameter Setting window is displayed on the left. It is launched from either the Setting… button in the Directives main window or the Edit (Directives Setting… in CAPTools main window. The window is used to reset parameters for CAPO to control the directives analysis and generation. The available parameters and their values are described in Section A1.

[image: image19.png]CAPO: Parameter Setting

CAPO Version: Log Information: +| Standard
1.1.01

Directive Type: ©| OpenMp
Date Built: ye: 2| on

30-Jan-01 Region Type: | Full (+Pipeline)

Loop Granularity: 5, /|7
: 7| 02

Routine Duplication: | Region Usage

Others: «f Process THREADPRIVATE o Generate NOWAIT
o Transform Induction Loop «f Handle Array Reduction
Remove Od Directives o Apply User Loop Type

set up Pipeline Loop | Use f77 Comment Style

L & &

Allow Unknown=Size Array | Use Partitioned Loop

To update directives with new settings, use

Apply) Dismiss) Heln

Update

CAPO Version: the current version number of CAPO.

Date Built: date on which the current version of CAPO was built.

Update [button]: re-performs direc-tives analysis with the current parameters.

Apply [button]: applies the current parameter setting without perfor-ming the directives analysis.

Loop Granularity [numeric]: the minimum number of iterations in a loop for the consideration as a distributed loop. If the number is 0 or if the number of iterations cannot be evaluated, there will be no check on the granularity for the loop.

For detailed information on settings and checks, see Section A1.3 and Section A2. The following briefly describes each setting and check box in the window.

[image: image20.png]i Standard
Minimum

Standard

More

Debug

Log Information [setting]:

Minimum
— minimum log information, such as warning and info messages,

Standard
— “Minimum” information plus statistics for loops and regions,

More
— “Standard” information plus more detailed loop and region

information,

Debug
— “More” information plus much more for debugging purpose.

For both More and Debug, loop and region labels are inserted in the generated source code.

[image: image21.png]t OpenMP
Gpenti
sai

SGlxtension

No Directive

Directive Type [setting]:

OpenMP
— generate OpenMP directives (default),

SGI
— generate SGI native directives,

SGIxtension— generate OpenMP directives with SGI extensions,

No Directive— create source file without directives.

Region Type [setting]:

One Loop

— only one loop for one region,

Pblk + One Loop
— one pre-block plus one loop for one region,

One Region
— regions are not joined,

Joined Region
— regions are joined, no pipeline consideration,

Full Region

— consider joined region and possible pipeline (default).

[image: image22.png]T 02
Off

on

oz

o3

Optimization [setting]:

Off
 — do not do any optimization,

On
 — try to reduce synchronization at end-of-loop,

O2
 — use logical disprove (slow sometime) for affinity comparison,

O3
 — enable additional optimization (such as automatic loop transformation)

before directive insertion.

[image: image23.png]i Region Usage

Loop Usage

Region Usage

Routine Duplication [setting]:

Loop Usage — routine duplicated if it is used both inside and outside parallel

Loops (no nested parallel region),

Region Usage — routine duplicated if it is used inside a parallel loop and inside

parallel region but outside parallel loop (allow nested parallel region).

Others [checkbox]:

Process THREADPRIVATE

(enable/disable the THREADPRIVATE directive
Generate NOWAIT

(enable/disable the NOWAIT directive
Transform Induction Loop
(enable/disable induction loop treatment
Handle Array Reduction

(enable/disable array reduction
Remove Old Directives

(enable/disable removing old directives
Apply UserLoop Type

(enable/disable applying userloop types
Setup Pipeline Loop

(enable/disable pipeline loop
Use f77 Comment Style

(use f77 (not checked) or f90 (checked) comment style
Allow Unknown-Size Array
(enable/disable the use unknown-size array in PRIVATE
Use Partitioned Loop

(enable/disable partitioned loop for directives
User Loop Type Window

The loop type window is used to redefine a loop type manually. It is displayed for a selected loop by clicking on the New Type button in the WhyDirectives window.

[image: image24.png]CAPO: Loop Type

Current Type: Parallel

New Type:
Parallel [Serial Reduction | Break | original |

To update directives with new loop types,

use —> _Update
_pegly) Dismiss) _Help

Loop [textfield]: print of the selected loop.

Current Type [textfield]: the current loop type.

Update [button]: saves the newly defined loop type to the userloop.par file and re-performs the directives analysis with the new setting.

Apply [button]: saves the newly defined loop type to the userloop.par file but does not re-perform the directives analysis.

New Type [setting]: one of the selectable types.

Parallel
– a parallel loop

Serial
– a serial loop

Reduction
– a parallel loop with reduction. The Reduction setting may activate an additional dialog box: Reduction Operator (See Section A3.8).

Break
– a serial loop excluded from any parallel region

Original
– the type originally set by CAPO.

An un-selectable type indicates a type that cannot be converted to from the current type.

A3.6. Reduction Operator Dialog

This is a dialog box to select an option (or options) for user-defined reduction loop type. The option specifies reduction operators/intrinsics and variables as part of the entry in the userloop.par file. See Section A1.3 for the description of the userloop.par file.

[image: image25.png]CAPO: Reduction Operator

Variables: Operator/Intril
—|d |
: F =
s T * MIN

EQY. IEOR

SelectAll | Reset) MAX:rrom

Apply) Dismiss) Help.

The dialog box is activated only if the Reduction setting in the LoopType window is selected and there exist potential reducible variables detected in the loop by CAPO.

Loop [textfield]: print of the selected loop.

Variables [list]: list of variables that can potentially be selected as reduction variables, selectable.

Operator/Intrinsic [setting]: one of the defined reduction operators or intrinsic functions.

Select All [button]: selects all the variables in the variable list.

Reset [setting]: resets any previous selection. The textfield on the right lists the selected Operator/ Intrinsic and variables.

Apply [button]: creates an [operator/intrinsic:variables] combination and add to the option list for the currently selected loop. The option and user-loop type are only stored to the userloop.par file when the Apply or Update button in the LoopType window is pressed.

A3.7. Updating Directives Dialog

This is a dialog box for confirming the analysis of directives with new settings. It is popped up after the Update button in the Directives browser main window is pushed.

[image: image26.png]CAPO: Update Directives ?

Update Directives with new settings ?

Upgate) Dismiss) el

Update [button]: performs the directives analysis, including loop and region level analysis, without generating directives. The dialog will be disabled after the OpenMP directives code is generated.

A3.8. Variable Removal Confirmation Dialog

The dialog is used for confirming the removal of dependences for selected variables and types. The variables and types are determined in the WhyDirectives window and the dialog box is activated by pushing the Remove button. This box provides a shortcut to the DepGraph for quickly deleting false dependences.

[image: image27.png]CAPO: VarList Removal

Really Remove Relevant Dependences
for the Following Variables ?

Selected Vars: tv, v, v, v

rgly) Dismiss) _Help

Selected Vars [textfield]: list of selected variables from the WhyDirectives window (Section A3.4). A variable listed multiple times indicates it is selected from multiple variable lists in the WhyDirectives window.

Apply [button]: applies the removal action.

Data Graph Window

The Data Graph window is used to create graphs for development purpose. It may have little use to a typical user, but is included for reference. The window is activated from View(Data Graph in the CAPTools main window. If the “Data Graph” menu item is not present, try to start CAPO with the [-capodg] option.

[image: image28.png]= CAPO: Data Graphs)
Scop 26 Routines: 94 Blocks:
AllRoutines applu (lu.£) 4| | subroutine erhs |4
Graph Type: blts (blts £) < | 6ok o
Call Graph buts (buts. £) 162:d0 §
calenp (calenp. £) 163:d0 1
DatallowlCraph donain (domain. £) 164:d0 m
Data Flow Parent | | elapsed_tine (../common/tiners.) 165:£rct =
Frodemiims [exhs (erhs. £) 167:enddo
o o] | error (error.) 168:enddo
[Akizcomlciz N ey 169: enddo
Postdom Graph jacld (jacld £) 170:d0 k
Jacu (jacu.) 171:zeta
Intrinsics: 4 4
Exclude Include | order: | Alphabetic Strict | Reversed Strict

Create) Dismiss) Heln

DOUBLE PRECISION u2lk,u3lk, udIk, uTk 5
DOVELE PRECISION u2lind, udlinl, wdlind, uSlinl
DOVELE PRECISION u2ljnl, u3ljnl, uljnd, uSlind
DOVBLE PRECISION u2lind, witkad, udlkad, uStkal
do keLnz, 1
do -Lng,1
o itL, 1
161
Ert(n i, 3,5)-0. 04400
enddo
enddo
enddo
cnido
kolnz 1
zeta=(dble (k-1)) /(nz-1)
do 3-Lng. 1
shle (1)) /m50-1)
(dble (i-1)) / (nx0-1)
15,1
ced(n 1, 3,1 =ce (n, 1)+ (ce (n, 2)+ co (n, §) + (ce (n, B) vce (n, 11) #ci) #ci) oci)
*xi+(ce(m, 3)+(ce(m, 6)+(ce(m 9)+ce(m, 12) *eta) *eta) *eta) *etar (ce (m, 4) + (ce (m, T) + (ce (m, 10) +

4o

Scope [setting]: defines the scope of the routine list.

Graph Type [setting]: chooses from one of the predefined graph types.

Intrinsics [setting]: excludes or includes intrinsic functions in the routine list and in the graph.

Routines [list]: list of routines (name of the file containing a routine).

Order [setting]: defines the way routines are listed (Alphabetic, Strict, Reversed Strict).

Blocks [list]: list of basic program blocks in the selected routine.

Create [button]: creates a graph for the selected routine and/or block (currently xvcg is used to display the graph).

A3.9. Hookups to CAPTools

For CAPO-enabled CAPTools, additional items are added to the File (Save OpenMP Directives Code), View (Directives) and Edit (Directives Setting) menus in the CAPTools main window (Section A3.1). The menu items that are relevant to directives generation are summarized here.

Before source is loaded

After source is loaded

After communication is generated

The File menu:

[image: image29.png]= CAPTools: Save DataBase

Directory: /u/wk/hiin/capo/tests/npb/lu_ns

A Goupaleveh
() da.dbs

Ddbs
[1u_parse.dbs

Name: Iu_full.dbs,

ETR

Language (7 B s

Source Form:

INCLUDE Path:

Disrmiss) Help

The Save Database dialog box.

Load F77 Source [entry]: loads Fortran 77 source (.f or .list file).

Load Database [entry]: loads a previously saved database (.dbs file).

Save Database [entry]: saves the current analysis result to a database. As of CAPO Version 1.1, the directives analysis result is not yet saved to the database. But the inserted directives are saved.

[image: image30.png]- CAPTools: Save OpenMP Directives Code

Current Directory: /u/wk/hiin/capo/tests/npb/lu_ns
D

Files in Current

ctory:

[#. Gounaleved Dyalllist
(bl
[butsf
[0 domain
[erhs.
[errorf
[exactf
Dhiacld.f
Dacuf

[1znorm f

ETR

el |

Name: lu_omp.f

save Us

Original Filenares | Suffixed Original Filenames [Single Filename

FHlename Suffic oy

Disrmiss) Heln

The Save OpenMP Directives Code dialog box.

Save OpenMP Directives Code [entry]: performs the directives analysis if it has not been done and generates OpenMP direc-tives. The code can be saved to multiple files or to a single file.

The following popup menus are hookups to various tools from selected lists or items in a GUI window, usually activated with a right-mouse-button click.

Command Menu [popup]: for a selected statement.

Loop Menu [popup]: for a selected loop.

Routine Menu [popup]: for a selected routine.

Variable Menu [popup]: for a selected variable.

A4. CAPO Command Interface

The command interface for CAPO is available in Version 1.1 and works closely with the CAPTools command interface. It provides a way to access the functionality of GUI components without starting the GUI. It serves as a means to record actions (to a log file) as a result of any user GUI activities so that these actions can be played back later. The commands in the command interface are usually recorded to a log file or a command file with

capo –logfile capo_run.cmd

and played back with

capo [-batch] capo_run.cmd.

The second line with the [-batch] option can be used to start a CAPO session in a batch mode.

The command interface for CAPO is different from the command-line version of CAPO, which takes simply the database as input and creates the Fortran output:

capo –capoc [-options] database.dbs output.f.

This stand-alone version is mostly for testing purpose. The command interface is the preferred method.

A4.1. Commands for the Command Interface

CAPO commands start with the keyword “capo” to distinguish them from CAPTools commands.

Main commands:

 load <file.dbs>

 - Load database file
 capo version 1

 - Define CAPO command version
 capo removedep <routine> <variable> <loop_number> <dtype> <fc> [<drout>]

 - Remove loop-related data dependences

 * routine - routine name

 * variable - relevant variable in the routine
 * loop_number - loop to be considered
 * dtype - dependence type: 1 for loop-carried TRUE dependences

 2 for TRUE dependences from outside loop

 3 for loop-carried ANTI dependences

 4 for loop-carried OUTPUT dependences

 * fc - 1 father list, 2 child list, 0 both lists
 * [drout] – optional field to define routine in which the variable is actually declared (if it is different from <routine>)
 capo update [0/1]

 - Perform directives analysis with the new setting
 '0' for initial analysis, '1' for new update
 capo passtwo

 - Re-perform the pass-two analysis
 capo generate [<file.f>]

 - Generate OpenMP directives. <file.f> is used to define the logfile name, i.e. <file.log>. If <file.f> is not given, “capo-info.log” is assumed for the logfile name.
 save source <file.f> 3 0

 - Save source code to <file.f>

 '3' indicates a single file
 ("load" and "save" are two CAPTools commands. See A-4.2 for details.)

Parameter setting commands:

 capo set log-file on/off/stdout

 - Turn on/off information logging, default is on
 capo set log-file-name <filename>

 - Define log filename, default is "capo-info.log"

 capo set log-info minl/std/more/debug

 - Select log information type, default is std

 capo set loop-granularity <value>

 - Set loop granularity threshold, default value = 6

 capo set directive-type omp/sgi/sgix/no

 - Select directive type, default is omp

 capo set optimize-type off/o1/o2/o3

 - Set the optimization type, default is o2

 capo set user-loop-file <filename>

 - Define user loop file, default is "userloop.par"

 capo set directive-clear off/on/<filename>

 - Turn on/off old directive clearing, default is on

 A <filename> is used to define a new set of directives
 capo set comment-type f77/f90

 - Set the comment type for directive, default is f90

 capo set use-parti-loop yes/no

 - Allow the partitioned loop for directive, default is no

 capo set rdup-type loop/region

 - Select the routine duplication type, default is region

 capo set allow-pio no/incall/write/noread/any

 - Allow parallel I/O type, default is no

Setting commands for debugging purpose:

 capo set mflag <mflag_value>

 - Define the module flag
 <mflag_value> can be <number>/<m1:m2..> with [+-] sign
 capo set region-type default/loop/bloop/one/join/full

 - Set a region type, default is full

 capo set tpriv-directive on/off

 - Turn on/off the generation of THREADPRIVATE, default is on

 capo set allow-unksize true/false

 - Allow the use of unknown-size private variables, default is false

 capo set have-pipeloop true/false

 - Generate pipeline loop, default is true

 capo set have-induc true/false

 - Treat parallel induction loop, default is true

 capo set have-arreduc true/false

 - Treat array reduction, default is true

 capo set have-nowait true/false

 - Generate the NOWAIT directive, default is true

 capo set apply-userloop yes/no

 - Apply user defined loop types, default is yes

 capo set apply-dirclear yes/no

 - Apply old directive clearing, default is yes

A4.2. Other CAPTools Commands Useful for CAPO

 version 2

 - Define CAPTools command version
 load <file.f/file.list/file.dbs>

 - Load source/database file
 save database <file.dbs>

 - Save to database
 save source <dir/suffix/file.f> <1/2/3> 0

 - Save source with type 1, 2 or 3

 Type 1: Save to original files, <dir> is required for directory name

 Type 2: Save to original files with <suffix>, <dir/suffix> required

 Type 3: Save to a single file with file name <file.f>

 set exact on

 set scaler on

 set knowledge on

 set disproofs on

 set interprocedural on

 set logic on

 - Settings for the analysis power
 add read knowledge applu:76:((nx-5 .GT. 0))

 - Define read user knowledge
 analyse

 - Perform dependence analysis
A4.3. An Example of "capo_run.cmd"

version 2

load applu_full.dbs

capo version 1

capo set log-file-name applu_omp.log

capo update 0

capo removedep setbv u 1 4 0

capo removedep setbv u 3 4 0

capo removedep setbv u 5 4 0

capo update 1

capo generate

save source applu_omp.f 3 0

To use the command file, do "capo -batch capo_run.cmd".

The View menu:

Directives [entry]:

activates the Directives browser, which performs the directives analysis (if not yet done) and presents information on directives.

The Edit menu:

Directives Setting [entry]:

activates the Setting dialog box as given in Section � REF _Ref520800439 \r \h ��A3.6�. It can be used to set up parameters for CAPO before the the directives analysis is performed.

loop number

routine

name

nesting level

line number

line number

routine

name

Routine [label]: indicates the currently selected routine.

Variable List [list]: contains a list of variables used in the loop heads of the current routine.

Scope [setting]: controls the scope of variables.

Loop Variable	— variables from loop iteration

Loop Limit	— variables from loop high-low limit

Either			— either of the above two cases

53
CAPO User Manual

56
CAPO User Manual

_1015935520.doc
[image: image1.png]RLHS:1/1/83: DO 100 L=LS,LE,1

