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ABSTRACT

The Taylor-Gortler vortex instability equations are formulated for steady

and unsteady interacting boundary layer flows of the type which arise in

triple-deck theory. The effective G_rtler number is shown to be a function of

the wall shape in the boundary layer and the possibility of both steady and

unsteady Taylor-Gortler modes exists. As an example the steady flow in a

symmetrically constricted channel is considered and it is shown that unstable

Gortler vortices exist before the boundary layers at the wall develop the

Goldstein singularity discussed by Smith and Daniels (1981). As an example of

an unsteady spatially varying basic state we also consider the instability of

high frequency large amplitude Tollmien-Schlichting waves in a curved

channel. It is shown that they are unstable in the first _Stokes layer stage _

of the hierarchy of nonlinear states discussed by Smith and Burggraf (1985).

The Tollmien-Schlichting waves are shown to be unstable in the presence of

both convex and concave curvature.
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INTRODUCTION

Our concern is with the Taylor-Gortler instability of interactive boundary

layer flows of the type which occur in triple-deck theory. Thus, we

investigate the instability of the "lower deck" boundary layer which is set up

when a classical boundary layer with Reynolds number RE encounters a hump of

height and length order _5/8 and _3/8 respectively. We find that the

form of the Taylor-Gortler instability equations in the lower deck are almost

identical to those appropriate to a classical boundary layer. The main

difference is that the wall shape function f(X,T) enters the instability

equations and, in fact, for steady flows fXX plays the role of the Gortler

number.

We shall see that for unsteady interactive boundary layer flows both

steady and unsteady Taylor-Gortler vortices of the type discussed by Hall

(1982, 1983) and Seminara and Hall (1976) respectively are possible. These

flows are also potentially unstable to short wavelength Rayleigh modes and the

reader is referred to the papers by Bodonyi and Smith (1985) and Tutty and

Cowley (1985) for a discussion of that problem. In general the instability

equations which we derive must be solved numerically because a parallel flow

and/or a quasi-steady approximation cannot be justified. However, in order to

demonstrate that some of these flows are unstable we shall here concentrate on

two problems for which some asymptotic progress is possible.

Firstly, we look in detail at the steady flow in a symmetrically

constricted channel. Smith and Daniels (1981) have shown that when h the

scaled height of constriction becomes large a classical boundary layer of

thickness 0(h -I/2 ) is set up within the wall boundary layer. This inner

boundary layer develops a Goldstein singularity beyond the minimum channel
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width position, but Smith and Daniels showed that the singularity could be

removed without any upstream influence being set up. Here we consider the

instability of the flow before the boundary layer develops the singularity.

For large values of h we are able to solve the instability equations

asymptotically and demonstrate the instability of the h- i_ layer. In

general the instability occurs before the Goldstein singularity develops;

however, it is possible, as in Smith and Daniels (1981), to choose humps with

the required concave curvature only beyond the position where the singularity

develops.

Secondly, we look at the unsteady interactive boundary layer which governs

the growth of Tollmien-Schlichting waves in parallel or boundary layer

flows. Here the unsteadiness is characterized by _ the frequency of the

Tollmien-Schlichting wave. For definiteness, and to avoid the complications

of boundary layer growth, we look at the instability of the waves in a

slightly curved channel. Recently Smith and Burggraf (1985) looked at the

structure of high frequency large amplitude Tollmien-Schlichting waves in a

variety of situations. Dependent on the size of the disturbance and the

particular flow under investigation, they found a hierarchy of nonlinear

partial differential systems to describe the disturbance. The first nonlinear

stage discussed by Smith and Burggraf is such that the disturbance has the

form of a Stokes layer near the wall. We investigate the instability of this

flow and identify the critical disturbance size above which the Tollmien-

Schlichting wave is unstable to the Stokes layer Taylor-Gortler mode

identified by Seminara and Hall (1976). When the Tollmien-Schlichting wave

has amplitude greater than this critical value, a three-dimensional flow

containing streamwise vortices develops; the effect of this new flow on the
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growth of the wave into the larger amplitude states of Smith and Burggraf is

beyond the scope of this paper. The procedure adopted in the rest of this

paper is as follows: in Section 2 we derive the equations governing the

centrifugal instability of "lower-deck" boundary layer flows. In Section 3 we

show how these equations can be solved for the steady symmetric channel flow

problem. In Section 4 we carry out a similar analysis for Tollmien-

Schlichting waves in curved channel flows whilst in Section 5 we draw some

conclusions.

2. THE TAYLOR-GORTLER INSTABILITY EQUATIONS FOR TRIPLE-DECK FLOWS

It is useful at this stage to discuss briefly the Taylor-G_rtler

instability equations for a classical two-dimensional boundary layer flow over

a curved wall. The reader is referred to the papers by, for example, G_rtler

(1940), Smith (1955), Floryan and Saric (1979), Hall (1982) for a discussion

of the approximations required to obtain a self-consistent set of linear

stability equations.

Suppose then that £ and U0 are typical length and velocity scales for

the flow and that _ is the kinematic viscosity of the fluid. We define a

Reynolds number RE by

U0
- , (2.1)RE

and take x and y to be dimensionless variables measuring distance along

-I
and normal to a surface with local curvature a K(x). The variable x is

scaled on _ whilst y is a boundary layer variable scaled on gRE 16 . The

basic flow _B is of the form
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uB = U0(_(x,y),_i/2_(x,y),0) + ...,

and this flow is perturbed by writing

u = uB + U0(U(x,y),_i/2V(x,y),_I/2w(x,y))exp{i_I/2kz}. (2.2)

Here k is a nondimensional wavenumber in the spanwise direction, and we have

assumed that the instability occurs on the boundary layer thickness length

scale. From the momentum and continuity equations we can show that in the

limit RE + = with the G_rtler number G = 2 _ held fixed the linear

stability equations are

U + V + ikW = 0 (2.3a)x y

k2_U + U_ + v--U + Vu = {2 - }U, (2.3b)x x y y

-- -- -- 2 k2uV + Uv + vV + V_ + K(x)G_U = -P + {2 - }V, (2.3c)x x y y y Y

_ _ k2
uW + vW = -ikP + {85x y - }W. (2.3d)

Here P is the nondimensional pressure perturbation corresponding to (U, V.

W) and we have assumed that the perturbation is steady. The generalization

of (2.3) to a weakly three-dimensional boundary layer is given by Hall (1985).

The essential difficulty with (2.3) is that for G and k 0(i) there is

no rational reason why a parallel flow approximation should be made and the

partial differential system must be solved numerically as was done by Hall

(1983) For k >> 1 but G k4• , N an asymptotic solution to (2.3) was given
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by Hall (1982) who showed that in this limit nonparallel effects can be taken

care of in a self-consistent manner. For 0(I) wavenumbers the numerical

calculations of Hall (1983) showed that the position of neutral stability is a

function of the initial disturbance. At higher G_rtler numbers the local

growth rate approaches the asymptotic result which, in this regime, is

consistent with a parallel flow theory calculation. Unfortunateley, it has

been assumed elsewhere that this latter result justifies the use of parallel

flow theories. However, in the only regime where the parallel flow theories

are valid, i.e., k >> i, an asymptotic result of at least the same accuracy as

any parallel flow theory can be written down in closed form with little

effort.

We now show how the equations corresponding to (2.3) can be derived for a

basic flow governed by some interactive boundary layer structure. For

definiteness we focus on a flow governed by triple-deck theory; the

formulation for other structures is essentially identical. Consider then the

flow over the wall

5
y = g f(x,r),

-3 -2 tU0

where X = g x, and T = _ _ . Here t denotes time whilst the small

parameter g = RE I/8. We define the lower deck variable Y by

-5
Y =€ y,

and in the lower deck the basic state expands as

_L
- (€_(X,Y),s 3 V(X,Y),O) + -.-,

U0
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whilst the pressure expands as

p£2 2 --
--= E p(X) + ....
uU0

The equations which determine the flow in the lower deck are

m

_T + _ _X + v _ = -_X + Uyy, (2.4a)

uX + Vy = 0, (2.4b)

whilst the boundary conditions at the wall are

-- D

u = 0, v = ft on Y = f(X,T), (2.5a)

and at infinity we require

u . Y + A(X,T), (2.5b)

D

where A is the displacement function which must be related to p through a

pressure-displacement law. If we make the unsteady Prandtl transform

Y + Y + f(X,t), _ + _ + U--fx+ fT' (2.6)

then (2.4a), (2.4b) are unchanged whilst (2.5) reduces to

-- m

u = v = 0, Y = O,

u + Y + A + f, Y + _. (2.7)
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We now investigate the instabilty of this flow to Taylor-G_rtler vortices

which might be associated with either the steady or unsteady components of the

basic state. We look for perturbations confined to the lower deck having

spanwise wavelength comparable with the lower deck thickness. The possible

source of instability is, of course, the curvature of the wall in the lower

deck. We write

u
~ 3

U0 - _BL + A(gU(X,Y,T), g3 V(X,Y,T), _ W(X,Y,T))E, (2.8)

ikZ _I_where A << 1 and E = exp _ . Here Z has been scaled on _ and we
E

have assumed in (2.8) that the normal and spanwise velocity components are

comparable. This is the usual case for Taylor-G_rtler instabilities, and the

relative scaling of the X and Y velocity components is again consistent

with that appropriate to the small gap Taylor vortex problem (see, for

+
example, Davey (1962)). The pressure perturbation p in the lower deck

expands as

+
6

P _ = _ P(X,Y,T)E, (2.9)
_U0

and the above relatively small scaling for P enables us to retain the

convective and diffusive terms in the Y and Z momentum equations. It

remains for us to substitute the perturbed flow into the Navier-Stokes

equations for the lower deck and with A << 1 linearize about the basic

state. We note that at this stage it has not been necessary to define a

G_rtler number for the flow. After linearizing about the basic state and

making the Prandtl transform (2.6) together with
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V . V + Ufx,

we obtain

UX + Vy + ikW = 0,

v_+u-vx+_v_+vv_+% +_u{_+_} :__+{___}v,

WT + u--WX + _Wy = -ikP + {_2 - k2}W, (2.10)

which must be solved subject to

U = V = W = 0, Y = 0, _. (2.11)

We see that the generalization of (2.3) to an unsteady triple-deck flow leads

to almost the same equations but with KGu--U replaced by 2{fxx _ + fXT}" For

steady triple-deck flows this means that fXX plays the role of the Gortler

number, whilst for unsteady flows an extra term proportional to UfXT arises

due to the vertical motion of the boundary. For time-periodic basic states

the system (2.10) contains the terms which lead to centrifugal instabilities

in Stokes layers so in general we must be alert to the possibility of both

types of Gortler instability.

The solution of (2.10) is in general a numerical problem which, for time-

dependent flows, will be an order of magnitude more difficult than the steady

state calculations of Hall (1983). In the next section we will look at a

particular steady state which it is possible for us to solve (2.10)
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asymptotically in a self-consistent manner. Finally we note that, with the

appropriate scalings used, (2.10) apply to other interactive boundary layer

flows governed by (2.4), (2.7).

3. SYMMETRIC CHANNEL FLOWS

In general it is not possible to solve (2.10) analytically; however, we

now show how asymptotic methods can be used for a particular steady basic

flow. We refer to the internal channel flows discussed by Smith and Daniels

(1981). In that problem the wall boundary layer thickness is N R-I/3 and

the x variations are on an 0(i) length scale. However, if the disturbance

quantities are scaled appropriately then (2.10) still apply. The basic state

satisfies (2.4) but with A = 0 in (2.7) since the channel is symmetric.

For steady flows we saw in Section 2 that fXX plays the role of the

G_rtler number so that we expect the flow to become more unstable with

increasing hump height. In view of the work of Hall (1982) we might then

expect that an asymptotic solution of (2.10) should be possible. The Smith-

Daniels problem is a suitable candidate for such an analysis because its

structure for Ifl >> 1 is reasonably well understood. Suppose that we write

f(x) = hF(X), (3.1)

with h >> i. In this situation a classical boundary layer extending to

X = -_ and of thickness ~ h-I_ is attached to the hump. In this layer

u, v, expand as

u = hU + ..., (3.1a)
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-v = h + ..., (3.1b)

-- -- 16 and satisfy thewhere U and V are functions of X and _ = h Y,

classical boundary layer equations with pressure gradient -FF X and _ . F

when _ . =. The effective G_rtler number for the inner 0(h -I/2) boundary

layer then becomes 0(h 7/2) so that, on the basis of the work of Hall (1983),

we expect that neutral modes will have k _ 0(h7/8). Moreover, these modes

will be concentrated in an internal layer of depth h-II/16 which is located

so as to maximize the local spatial growth rate. At the location X we

assume the layer is centered on _ = _(X) and write

h3/l= 6(_ _ _(X)). (3.2)

The wavenumber k is then expanded as

k = k0 h7/8 + kI h 1/2+ ..., (3.3)

whilst we write

U = {U0(n,X) + h-3/16 UI(_,X ) + h-3/8 U2(_,X ) + ...}E*, (3.4)

together with similar expansion for V W and P Here the

hl/4 ' hl/16 h15/16 •

quantity E is defined by

, h3/4 X h_3/8 ]

E = exp f {B0(X) + BI(X) + -..}dXj , (3.5)
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so that {8i(X) } determine the spatial growth of the disturbance. In fact,

we will concentrate on the neutral case and to the order which we proceed here

it is not necessary to distinguish between the growth rates for different flow

quantities. Finally, near _ the basic state expands as

h{_o(X) + h-3/16 (X) + h-3/8 2 --= n_ 1 n U2(X) + ---} (3.6a)

h I_ {Vo(X ) + h-3/16 (X) + h-3/8 2 --= nV I n V2(X) + "''} (3.6b)

where

-- _(i)(x,_ ) v(il(x,_)
U (X) - Vi(X ) - (3.6c)l i! ' i! "

It remains for us to substitute the above expansion into (2.10) and

-3/16
successively equate like powers of order h . The zeroth order problem is

found to be

(80 UO + k2)V0 + 2Fxx UO UI= 0, (3.7a)

(B0 UO + k2)U0 + V0 _I = O, (3.7b)

iP0 + k0 W0 = 0, (3.7c)

V6 + ik0 W0 = O. (3.7d)

The required consistency condition for (3.7a), (3.7b) yields the zeroth order

eigenrelation

2)2 = Ul U0 (3.8)(Bo +
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and the potentially unstable root of this equation is

2 /
4U I U0 FXX ,U0 B0 = -k0 -

which exists only for U1U 0 FXX > 0. At a position where U1 U0 FXX

vanishes we have a coalescence of modes and a transition region is required.

The most unstable position in the layer is such that

and, with f, k0 given, (3.8) , (3.9) fix and B0. From now on we

restrict our attention to the neutral case and set B0 = B1 = B2 = 0 so that

the flow is neutral at X if

4

k0 = U1 U0 FXX, (3.10)

D

and _ is determined by the condition

_2

U1 + 2U0 U2 = 0,

which requires that [_'[ has a maximum at _ = _. At this stage the

vertical structure of the eigenfunction is not determined; at second-order the

following equation for V0 emerges as a solvability condition:

V_. 4 02 q2-_ k0 kI V0 + k Fxx[U 1 U2 + U3 U0]V 0 = 0. (3.11)

The solutions of (3.11) which decay when [q[ + = are
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V0 = V0n = U(-n -1/2 , yn) (3.12)

where U(-n -I6 , _N) is a parabolic cylinder function and

T = JT{-Fx[_ 1 U_ + U3 U0]ko 2} 1/4,

the wavenumber k, must then satisfy

kI = kin - 3y2
4k0 {n +i/2 }. (3.13)

The most unstable mode corresponds to n = 0 so that correct to order h i/2

the neutral wavenumber is

-- 3 { [_I _2 + U3 U0]11/2

- hl/2+ .... (3.14)

k = {_I U0 FXX} I/4h7/8 +_ U0 UI

Thus for a given hump size h and shape f the flow is neutrally stable at

X to a vortex flow with wavenumber k if (3.14) is satisfied. Clearly

instability occurs only for UI U0 FXX > 0, and if we restrict our attention

to humps with f > 0 then upstream separation does not occur and it can be

shown that until the Goldstein singularity develops U1 U0 > 0 so that only a

locally concave wall can lead to instability.

If we assume that F(X) and k >> 1 are given, then an alternative

interpretation of (3.14) is necessary. In this situation we can think of

(3.14) as an implicit equation for the hump height h >> 1 which makes the

G_rtler vortex flow with wavenumber k >> i neutral at some position in the

flow field. In the following discussion we assume that F . 0, X . _== and
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that FXX is positive in (-=, -C) and negative in (-=, D) where C and

D are positive constants. Since we also know that

= O, _ = O, _ + O, _ +

and

u ~ O(f), x . -_

it follows that U0 UI FXX has at least one maximum in -= < X < -C,

0 < _ < _. Suppose that the largest maximum occurs at

X = XC, _ = _C;

then ignoring the order hl_ term in (3.14) we see that the minimum hump

height hC which leads to a neutral vortex anywhere (in fact at (Xc, _C))

is given by

hC = _I(Xc)_0(Xc)Fxx }-2/7 k8/7. (3.15)

If h is increased beyond hC there will be two neutral locations at

-C - _, -C + 8 with _, 8 > 0 each corresponding to the wavenumber k.

Between these positions the flow is formally unstable; the instability will

amplify by an amount O(exp[h 3/4 I]) for some I > 0 in this interval and

will become nonlinear if its initial size is sufficiently large. For humps

with h ~ 0(I) we expect that a similar situation arises for k N 0(i) with

at least one finite interval where instability occurs. Beyond the position of

the maximum constriction a further region where instability can occur will

exist so long as the Goldstein singularity is not encountered.

L
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4. THE INSTABILITY OF TOLLMIEN-SCHLICHTING WAVES IN CURVED CHANNEL FLOWS

In the previous section we described how a particular steady solution of

(2.4), (2.7) becomes unstable to steady Taylor-G_rtler vortices. We now show

how a time-periodic solution of that system can also become unstable to a

Stokes layer Taylor-G_rtler vortex. The particular type of time-periodic

basic state which we consider corresponds to a large amplitude high frequency

Tollmien-Schlichting wave propagating in a curved channel. Here the curvature

which causes the instability is not on the triple deck length scale, so it is

necessary to say a few words about the derivation of the appropriate form of

the equations corresponding to (2.10).

We consider the flow driven by an azimuthal pressure gradient between

concentric cylinders of radii a, a + d. The maximum flow velocity is taken

U0

to be _-- and if we define dimensionless variables x and y by

a8 _ 6-I r - a - d
x - d @' Y - d

then in the absence of either Tollmien-Schlichting waves or Taylor-G_rtler

vortices the basic state for 6 << 1 is

P-B= U0(u0+ 0(6),0, 0) (4.1)

with

u0 = y(l - y). (4.2)

The Reynolds numer RE is defined by

U0 d

RE- v
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and Dean (1928) showed that (4.1) is centrifugally unstable for 0(I).

i

The flow is also unstable to Tollmien-Schlichting waves for _ _ > 5774. We

ignore the steady Taylor-G_rtler mode and examine the instability of finite

amplitude Tollmien-Schlichting waves to Stokes layer Taylor-G_rtler vortex

occur for _/7 6 ~ 0(i) and so are apparently less important
modes. These

than the steady vortex mode. However, we shall see that they occur both near

the inner and outer cylinders so that in external flows over convex walls we

can expect this mode to be the only centrifugal one available. Our choice of

the curved channel flow problem rather than an external boundary layer enables

us to investigate the instability mechanism without the possibly insurmount-

able difficulties of handling the effect of boundary layer growth.

We first describe the large amplitude high frequency Tollmien-Schlichting

disturbances to (4.1) which exist for RE >> I. The discussion we give is

taken from the recent work of Smith and Burggraf (1985) who investigated a

range of flow regimes where such disturbances can exist. We take z and t

to be dimensionless axial and time variables scaled on d and U0/d. The

appropriate length scale for a Tollmien-Schlichting wave in a channel is

0(_/7) SO that if we define

g = RE I/7 (4.3)

and

X = sx (4.4)

then the wall layers at y = 0,i are of thickness 0(g 2) so that near

y = 0 we write

y = y/ 2. (4.5)
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Following Smith and Burggraf we seek a flow for Y ~ 0(I) of the form

= U0(s2 _(X,Y,T), g5 _(X,Y,T),O) + ... (4.6)

_U0 4
where T = 3 t. The corresponding pressure perturbation is _--- g p(X,T)

and u, v, p are determined by

uT + u uX + v Uy = -Px + Uyy

+_y =0

u

u=v=0, Y=0

u . Y + A(X,T), Y . = (4.7)

Near y = i a similar boundary layer exists whilst in the core we have

= U0(u0,0,0) + U0(g2 ](X,y,T), 3 _(X,y,T),0) + ...

BU0 4 ~

P d _ p(X,y,T) + .... (4.8)

Here u, v, p satisfy

u0 IX + _U0y = 0

_+v =0Y

u0 _X = -P0 (4.9)
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and the appropriate solution is

(],_) = (A(X,T)U0y, - Ax(X,T)u0) , (4.10)

Y 2
P0 = -Axx f u0(s)ds (4.11)

so that the required pressure-displacement relationship is

_ 1

P01y=l - P0 y=-0 30 AXX" (4.12)

We are interested in the large amplitude high frequency solutions of (4.7)

discussed by Smith and Burggraf (1985). The latter authors investigated a

hierarchy of high frequency large amplitude states beginning with the case

~ O(fll_ --~ 0(I) We shall concern ourselves here onlyL~ 0(fl) >> i, _f ) u_T ' "

with the latter state and the reader is referred to the Smith-Burggraf paper

for a discussion of the remarkable range of more nonlinear states which occur

for u >> i.

For _ >> i we write

n = _ I/2Y,

m

_T + _ + _ llz_ + """

8X + _I/2 8
X

and note that linear stability would then lead to instability on the

scale. We note that Smith and Burggraf looked for spatial rather than
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temporal growth. Here it is convenient to look for growth in time because it

leads to an eigenvlaue problem already solved in a different context. The

spatially growing case, except in the locally neutral state, leads to a

different eigenvalue problem. The work of Smith and Burggraf shows directly

that in this regime

= u01 + 0(_ -I_) (4.13a)

= v01 + 0(_-I/2) (4.13b)

where

u01 = {P01(l - em_)E + C.C.}, (4.13c)

v01 = {i_P01(_ - mem--_n+ I)E + C.C.}. (4.13d)

Here C.C. deontes "complex conjugate" and E denotes expi_ - T} with

given by the eigenrelation

= _30,
3

whilst m = e 4 "

Thus the Tollmien-Schlichting wave is bigger than the steady basic state

for n N 0(I) and is just a Stokes layer flow. At higher order the Smith-

Burggraf approach shows that P01 grows exponentially with _ and does not

equilibrate. We will look at the instability of the Tollmien-Schlichting wave

during this stage of its growth.

We shall firstly consider the instability of (4.6) to a Taylor-G_rtler

vortex perturbation with axial wavelength 0(s2). We thus write

u = U0(E 2 _ + g2[U(X,Y,T)exp ikzE-2 + C.C.] + -..), (4.14a)
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v = U0(_5 _ + s5[V(X,Y,T)exp ikz_-2 + C.C.] + ...), (4.14b)

w = U0(E5[W(X,Y,T)exp ikz_-2 + C.C.] + ...), (4.14c)

BU0 ( 4 P + I0 P(X,Y,T)exp ikzg -2 + C.C.] + ...), (4.14d)P - a

and then

26 = Dc4

where D can be interpreted as a Taylor-G_rtler number for the Tollmien-

Schlichting wave. The equations (4.14a), (4.14b), (4.14c), (4.14d) are then

substituted into the momentum and continuity equations, and after linearizing

about the basic state we find that (U, V, W, P) satisfies (2.10) but with

the term 2U{fxx _ + fXT} replaced by Du--U. At this stage the eigenvalue

problem D = D(k) could in principle be solved numerically for any given

basic state. We shall proceed by looking at the high frequency limit of the

Tollmien-Schlichting waves in order to make some analytical progress. We

stress that we expect instability to occur for 0(i) frequencies but do not

pursue the necessary large scale computational task required to verify this

speculative remark.

Let us now look at the high frequency limit of (2.10) and show that the

eigenvalue problem governing the instability of the growing Tollmien-

Schlichting waves can be reduced to one already studied in the context of

Stokes layer instabilities.
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Thus, in the Stokes layer we expand U, V, W, P in the form

U = [U0 (_,n,_) + 0(_- 1/2)]exp 312" f
(4.15a)

V = [_I/2v0(_,_,T) + 0(_0)]exp _3/2 f o(_)d_, (4.15b)

W = [_I/2w0(_,_,T) + 0(_0)]exp _3/2 f a(_)d_, (4.15c)

P = [_P0(_,n,T) + 0(_ ll2-)]exp _3/2 f a(_)d_ (4.15d)

whilst k and D expand as

k = k0 _i/2+ 0(_0), (4.15e)

D = DO _3/2 + 0(_). (4.15f)

The X variation enters the zeroth order problem only through the X

dependence of u01. The growth rate _(_) depends on _ through the

dependence of P01"

If the expansions (4.14), (4.15) are substituted into (2.10), the zeroth

order problem is found to be

V0n + ik0 W0 = 0, (4.16a)

oU0 + U0_ + V0 u01_ = {_2n- k_}U0' (4.16b)
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aV0 + V_- DO = + {22 2
0T u01 U01 -P0n n - k0}V0' (4.16c)

aW 0 + W_ = -ik 0 P0 + {_2n - k20}W0' (4.16d)0T

which must be solved subject to

U0 = V0 = Wo = o, (4.17a)

U0, V0, W0 + 0, n + = (4.17b)

so that the vortex structure is confined to the Stokes layer. The eigenvalue

problem specified (4.16), (4.17) is identical to that studied by Hall (1984)

in the context of Schlichting's (1932) transversely oscillating cylinder

problem. In fact, we identify (k,T) of (2.12) of Hall (1984) with (_k0,

_D 0 IP0112).

It follows from the numerical calculations of Hall (1984) for the neutral

case a = 0 that the Tollmien-Schlichting wave is formallly unstable for

i2DO IP01 > 8.48 (4.18)

which, for a given value of DO, determines IP011 the critical Tollmien-

Schlichting wave amplitude.

Not surprisingly a similar analysis governs the instability problem for

the Tollmien-Schlichting wall layer at y = I. The only change is that,

because the layer is now on a concave wall, the sign of D in (4.16) must be

switched. Papageorgiu (1985) has investigated that eigenvalue problem, and

the critical state is then determined by
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D IP0112 > 5.02. (4.19)

Thus the layer at y = 1 becomes unstable first, and presumably the flow

becomes three-dimensional before the larger amplitude two-dimensonal states of

Smith and Burggraf develop. It is known from the experimental work of

Seminara and Hall (1976) and Park, Barenghi, and Donnelly (1980) that the

initial Stokes layer instability is followed by a secondary mode of

instability at about 30% above the first critical Taylor number. In this

regime the vortices interact and the disturbance persists beyond the Stokes

layer. No adequate theoretical description of this nonequilibrium state is

yet available, but the consequences for the problem discussed here are

important. We refer to the fact that if the Tollmien-Schlichting wave also

undergoes this secondary mode of instability then there will be a mechanism

for disturbances inside the Stokes layer to penetrate outside the boundary

layer.

We further note that if the mechanism described here does indeed apply to_
|

external flows then Tollmien-Schlichting waves will generate Taylor-G_rtler|

vortices if convex or concave regions exist. In the concave regions the

Taylor-G_rtler mechanism associated with the main deck basic state will be

more unstable so that the Tollmien-Schlichting breakdown into the Stokes layer

mode is probably only of practical importance in convex regions.

Finally, we note from the calculations of Hall (1984) that when

instability occurs V0' W0' P0 are of the form

(v0),v0,P0 \P0n/
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whilst

oo

= E 2n.
U0 _ U0n

Some of the functions U0n(n), V0n(n) can be found in the paper by Hall

(1984).

5. CONCLUSION

We have shown that interactive boundary layer flows of the type which

arise in triple-deck theory can support Taylor-G_rtler vortices. The form of

the equations for steady flows is identical to that found for classcial

boundary layers if we interpret the wall curvature as the G_rtler number. For

unsteady boundary layers, an extra term proportional to the streamwise

gradient of the wall velocity is introduced into the equations.

We have seen that both steady and time-periodic boundary layer G_rtler

vortices can be described within the above framework. In particular, we

showed that a large amplitude high frequency Tollmien-Schlichting wave can

interact with a curved wall to give a Stokes layer Gortler vortex. If such a

result also holds for external flows, it means that wall curvture, either

concave or convex, can lead to the breakdown of two-dimensional Tollmien-

Schlichting waves into a three-dimensional flow having streamwise vortices in

a sublayer.

In general, the partial differential equations describing the evolution of

Taylor-Gortler vortices in interactive boundary layer flows will have to be

solved numerically. The results we found for the Smith-Daniels flow in a

symmetric channel suggest that for 0(I) values of h instability will
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occur. Thus we expect that a numerical investigation of the instability

equations for h N 0(i) will show the presence of growing G_rtler vortices

for some range of values of X whilst for large h we would expect to

recover the asymptotic results of Section 3.

It is not yet known what effect the above type of instability will have on

separation; certainly linear stability theory can lead to no predictions on

this matter. However, in situations where the small wavelength analysis of

Hall (1982) can be used we know that the instability will be concentrated away

from the wall. Thus for the Smith-Daniel problem we can show that when the

Goldstein singularity develops the instability still persists since the new

structure required to remove the singularity is confined to a region near the

wall.

We should not overlook the fact that the flows which we have investigated

are also susceptible to Tollmien-Schlichting waves. In a situation where the

basic flow can support both modes of instability we expect that, in view of

the much larger spatial growth rates, the G_rtler mode will dominate. An

adequate description of even a weakly nonlinear interaction between Tollmien-

Schlichting waves and G_rtler vortices has not, to the author's knowledge,

been given for any flow.
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