TOP QUARK MASS MEASUREMENT IN THE LEPTON+JETS CHANNEL USING A MULTIVARIATE TECHNIQUE AT CDF

JOHN FREEMAN, PEDRO MOVILLA FERNANDEZ, LINA GALTIERI, PAUL LUJAN, JEREMY LYS (LBNL); JASON NIELSEN (U.C. SANTA CRUZ); IGOR VOLOBOUEV (TEXAS TECH)

1. Physics of the Top Quark Mass

- The Standard Model (SM) is the theory of interactions between matter particles (fermions) via force-carrying particles (bosons)
- The top quark is the most massive particle measured, about 35 times heavier than the next largest quark; like other particles it gains its mass through interaction with the stillundiscovered "Higgs Boson"
- Interactions between the Higgs, top quark and W boson allow measurements of the W and top masses to constrain the mass of the undiscovered Higgs!

2. The Data

- Currently, the Tevatron at Fermilab is the only accelerator on the planet with high enough energy to produce top quark events; it does so using $p\bar{p}$ collisions at a center-of-mass energy of 1.96 TeV
- Using the CDF detector, we measure events in the $t\bar{t}$ to "l+jets" channel, where after each top decays to a W boson and b quark, one W decays to two light quarks, the other to a neutrino and muon/electron
- To find these events, we require:
 - Four high energy jets from the hadronization of the four quarks
 - At least one jet "tagged" as coming from a b quark
 - A high energy electron or muon
 - Large transverse missing energy in the detector (to account for the neutrino passing through undetected)
- Expect some background in the sample (mainly W + heavy flavor quarks, W + mistagged light quarks, non-W events)

	Background	1 tag	2 tags		
n	non-W QCD	5.5 ± 1.1	0.13 ± 0.07		
+	W+light mistag	9.5 ± 1.6	0.65 ± 0.32		
17	W+HF $(b\bar{b}, c\bar{c}, c)$	7.2 ± 2.6	1.03 ± 0.32		
v	diboson (WW, WZ, ZZ)	1.4 ± 0.3	0.07 ± 0.02		
5.	single top	0.6 ± 0.1	0.00 ± 0.00		
- /	Total expected	24.1 ± 3.4	1.88 ± 0.48		
	Events observed	132	47		

3. The Jet Energy Scale

- The jet energy scale (JES) scales true quark energies to their shower energies measured in the CDF calorimeters
- Account for JES by computing a 2-d likelihood in top mass and JES using knowledge of W mass - without this, JES systematic error is approximately 3 GeV!

out of

4. Signal Likelihood Calculation

$L(\vec{y} \mid m_t, \text{JES}) = \int f(z_1) f(z_2) \, \text{TF}(\vec{y} \cdot \text{JES} \mid \vec{x}) \, |M_{eff}(m_t, \vec{x})|^2 \, d\Phi(\vec{x})$

- For each event, given quantities measured in the detector (\vec{y}) calculate the likelihood by integrating over \vec{x} , the phase space of possible quark-level decay kinematics
- For each \vec{x} , a weight is calculated proportional to
 - The distribution functions of the incoming parton energies (the f(z)'s)
 - The matrix element of the $t\bar{t}$ decay squared $(|M_{eff}(m_t, \vec{x})|^2)$, and the transfer function (TF) between the quark p_T and the jet momenta
- Assume muon/electron momentum + quark masses and angles are known; this reduces the integration from 22 dimensions to a more tractable 7 dimensions

• COMPENSATE: Use quarks in MC events which obey assumptions to

- Construct new propagators for the matrix element
- Construct the TFs

5. Background Handling

 $\log L_{\text{final}} = (\log L_{signal}) - \mathbf{f}_{bg} \log \overline{L(\text{background})}$

- Calculate probability an event is background: $f_{bg} = B(q)/(S(q) + B(q))$
- q is an event variable which has different distributions for signal (S(q)) and background (B(q))
- To create final log likelihood for event, subtract off the average shape of a background log likelihood curve (log $\overline{L(\text{background})}$) weighted by f_{bg} from the log of the initial likelihood curve (log L_{signal})

• In addition, a cut on the peak probability of the individual event likelihoods reduces background by about 1/3, while retaining 95% of signal events whose jets come from the $t\bar{t}$ decay

6. Monte Carlo Results

• Means of pseudoexperiment measurements indicate a bias of -1.2 GeV/c^2 independent of the top mass, used to calibrate the data measurement

• The measured top mass varies at most by a few tenths of a GeV/ c^2 when the input JES is subjected to a \pm 5% shift

	0.04		0.0		- 1		1.0		10	_
										 .
		-+	-		-		-	-	-	 ٠
	-	_	m, = 18	12.5 GeV	Ve ² (core	d=181.4	3±0.18,	prob=0.1	901)	
	-	-	m, = 13	'5.0 GeV	Ve ² (core	d=173.1	2±0.18,	prob=0.1	546)	
	-		m = 10	17.5 Gen	ve. (core	MH166.5	0±0.19,	prob=0.1	(90)	
r	-				1					 Ξ.
•••••										 č

7. The Measurement

• Using 955 pb⁻¹ of data collected in the CDF detector from March '02 to March '06, 149 candidate events yield a measured a top quark mass of

$169.8\pm2.3~(\text{stat.}+\text{JES})\pm1.4~(\text{syst.})~\text{GeV/c}^2$

- 1.7 GeV/c² of the 2.3 (stat. + JES) GeV/c² error is due to the JES
- + World average is $170.9 \pm 1.1 \; (\text{stat.}) \pm 1.5 \; (\text{syst.}) \; \text{GeV/c}^2$

CDF Run 2 Preliminary 955 pb⁻¹ all events, cal

