Evaluation of a Proposed Gas Sampling Method Performance Verification Test Protocol

FINAL REPORT

Prepared by:

D. L. George R. A. Hart M. Nored

SOUTHWEST RESEARCH INSTITUTE[®] Mechanical and Fluids Engineering Division 6220 Culebra Road San Antonio, Texas, USA 78238-5166

Prepared for:

United States Minerals Management Service Engineering and Research 381 Elden Street, MS-4021 Herndon, VA 20240

Sharon Buffington, Project Manager

July 2004

Disclaimer

This report was prepared by Southwest Research Institute (SwRI[®]) as an account of contracted work sponsored by the United States Minerals Management Service (MMS). Neither SwRI, MMS, members of these organizations, nor any person acting on their behalf:

- a. Makes any warranty or representation, express or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, methods, or process disclosed in this report may not infringe upon privately owned rights; or
- b. Assumes any liability with respect to the use of, or for damages resulting from the use of, any information, apparatus, method, or process disclosed in this report.

References to trade names or specific commercial products, commodities, or services in this report does not represent or constitute an endorsement, recommendation, or favoring by SwRI or MMS of the specific commercial product, commodity, or service.

TABLE OF CONTENTS

LIST	OF FIGURES	iv
LIST	OF TABLES	vi
1.0	INTRODUCTION	1
2.0	TEST PROTOCOL AND SAMPLING METHODS	
2.1 2.2 2. 2. 2.	PERFORMANCE VERIFICATION TEST PROTOCOLSAMPLING METHODS.2.1.2.1Established Sampling Methods Tested Using the Protocol.2.2Proposed New Sampling Methods Tested Using the Protocol.2.3Sampling Methods Considered but Not Tested	3
3.0	SAMPLING TESTS	7
3.1 3. 3.2 3.2 3. 3. 3. 3.3 4.0	VERIFICATION TESTS PERFORMED UNDER OPTIMUM CONDITIONS. 1.1 Facility and Equipment. 1.2 Test Conditions 1.3 Results. VERIFICATION TESTS PERFORMED UNDER ADVERSE CONDITIONS 2.1 Facility and Equipment. 2.2 Test Conditions 2.3 Results. 2.4 Test Conditions – Repeat Tests. 2.5 Results – Repeat Tests. ASSESSMENT OF THE SAMPLING METHODS. CONCLUSIONS	
5.0	REFERENCES	
APPE APPE	ENDIX A PROPOSED PERFORMANCE VERIFICATION TEST PROTOCO ENDIX B PROCEDURES FOR NEW SAMPLING METHODS	OL 35 41
	I ADDATORY INSPECTION CHECKLIST	51
C.1 C.2 C C C	GC CALIBRATIONS <i>G.2.1 MRF GC</i> <i>C.2.2 Powder Wash GC</i> <i>C.2.3 Powder Wash GC - Repeat Tests</i>	
APPE	ENDIX D DETAILED TEST RESULTS	

LIST OF FIGURES

		Page
Figure 1.	Schematic of the MRF test section showing the piping arrangement and spot sampling locations.	7
Figure 2.	MRF test section piping configured for the sampling tests. The schematic for this setup is shown in Figure 1	
Figure 3.	Sampling equipment used in tests of the Controlled Rate Purge method at the MRF. Bottom left, pigtail and end valve; bottom right, sample probes with isolation valve and pressure gauge connection. The scale on the tape measure is in inches.	9
Figure 4.	Dew scope connected to the MRF test section for determination of the gas stream HCDP	
Figure 5.	Stream analyses from 10:40 am and 3:25 pm on June 18, illustrating the drift that was observed in the portable GC during the MRF tests	11
Figure 6.	Gas velocity and pressure in the loop during the sampling tests conducted at the MRF. Vertical dashed lines show intervals during which samples were drawn using the various methods. Flow was in a 6" diameter Schedule 80 pipe.	12
Figure 7.	Equipment and gas temperatures during the sampling tests conducted at the MRF. Black vertical lines with long dashes indicate intervals during which samples were drawn using the various methods. Red vertical lines with shorter dashed lines indicate times when GC analyses of the flowing stream were obtained.	
Figure 8.	Pipeline and sampling locations at the Powder Wash field site	16
Figure 9.	Configuration of the equipment used for collecting samples at the Powder Wash field site. Left, Controlled Rate Purge; center, Fill-and-Empty; right, High-Pressure Helium Displacement	17
Figure 10	Configuration of the equipment used for collecting samples with the Pitot and Bypass method at the Powder Wash field site	
Figure 11	. Sampling probes used for the Powder Wash tests. Left, curved probes for the Pitot and Bypass method; right, example of a straight probe used for the other sampling methods.	
Figure 12	. Long-term trends in flowing stream heating value and nitrogen content around the time of the sampling tests conducted in November at the Powder Wash field site.	

Figure 13.	Gas velocity and pressure in the pipeline during the sampling tests conducted in November at the Powder Wash field site. Vertical dashed lines show intervals during which samples were taken using the various sampling methods. Flow was in an 8" diameter pipe	21
Figure 14.	Typical sampling arrangement at the Powder Wash field site showing which portions of the system were not insulated during the November tests. The attached lines and valves were insulated during the December retests.	21
Figure 15.	Equipment and gas temperatures during the sampling tests conducted in November 2003 at the Powder Wash field site. Black vertical lines with long dashes indicate intervals during which samples were drawn using the various methods. Red vertical lines with shorter dashed lines indicate times when GC analyses of the flowing stream were obtained	22
Figure 16.	Long-term trends in stream heating value and nitrogen content around the time of the sampling tests conducted in December at the Powder Wash field site.	25
Figure 17.	Flowing gas velocity and line pressure in the pipeline during the sampling tests conducted in December at the Powder Wash field site. Vertical dashed lines show intervals during which samples were taken by the various methods. Flow was in an 8" diameter pipe	26
Figure 18.	Equipment and gas temperatures during the sampling tests conducted in December 2003 at the Powder Wash field site. Black vertical lines with long dashes indicate intervals during which samples were drawn using the various methods. Red vertical lines with shorter dashed lines indicate times when GC analyses of the flowing stream were obtained	27
Figure C-1.	Dew point curve for gas used to calibrate the Daniel 2350 GC at the MRF. Curve computed from SRK equation of state	59
Figure C-2.	Fidelity plot for column A of the MRF Daniel 2350 GC. June 2003 calibration runs on Scott gas #XL002396.	59
Figure C-3.	Fidelity plot for column B of the MRF Daniel 2350 GC. June 2003 calibration runs on Scott gas #XL002396.	60
Figure C-4.	Dew point curves for gases used to calibrate the Varian CP-4900 GC at the Powder Wash site. Curves computed from SRK equation of state	61
Figure C-5.	Fidelity plot for column A of the Varian CP-4900 GC at the Powder Wash site. November 11 calibration run on DCG gas #22933AW	61

Figure C-6.	Fidelity plot for column B of the Varian CP-4900 GC at the Powder Wash site. November 11 calibration run on DCG gas #22933AW62
Figure C-7.	Fidelity plot for column A of the Varian CP-4900 GC at the Powder Wash site. November 12 calibration run on Scott gas #ALM051559
Figure C-8.	Fidelity plot for column B of the Varian CP-4900 GC at the Powder Wash site. November 12 calibration run on Scott gas #ALM05155963
Figure C-9.	Fidelity plot for column A of the Varian CP-4900 GC at the Powder Wash site. December 18 calibration run on DCG gas #22933AW64
Figure C-10	 Fidelity plot for column B of the Varian CP-4900 GC at the Powder Wash site. December 18 calibration run on DCG gas #22933AW64

LIST OF TABLES

Table 1. Acceptance criteria established by the proposed test protocol for repeatability and reproducibility of sample components	3
Table 2. Acceptance criteria established by the proposed test protocol for repeatability and reproducibility of sample heating values.	4
Table 3. Summary of results from the tests of the Fill-and-Empty method conducted at the MRF under optimum conditions.	14
Table 4. Summary of results from the tests of the Controlled Rate Purge method conducted at the MRF under optimum conditions.	15
Table 5. Summary of results from the tests of the Helium Pop method conducted at the MRF under optimum conditions	15
Table 6. Summary of results from the tests of the Controlled Rate Purge method conducted in November at the Powder Wash field site	23
Table 7. Summary of results from the tests of the Helium Pop method conducted in November at the Powder Wash field site.	23
Table 8. Summary of results from the tests of the High-Pressure Helium Displacement method conducted in November at the Powder Wash field site	24
Table 9. Summary of results from the tests of the Pitot and Bypass method conducted in November at the Powder Wash field site.	24
Table 10. Summary of results from the retest of the Fill-and-Empty method conducted in December at the Powder Wash field site.	28
Table 11. Summary of results from the retest of the Helium Pop method conducted in December at the Powder Wash field site	28
Table 12. Summary of results from the retest of the Pitot and Bypass method conducted in December at the Powder Wash field site.	28
Table 13. Comparison of results from all sampling tests performed in this project	29
Table D-1. Detailed results from MRF sampling tests, June 18, 2003: Fill-and- Empty method.	67

Table D-2.	Detailed results from MRF sampling tests, June 18, 2003: Controlled Rate Purge method.	68
Table D-3.	Detailed results from MRF sampling tests, June 18, 2003: Helium Pop method.	69
Table D-4.	Detailed results from Powder Wash sampling tests, November 10, 2003: Controlled Rate Purge method.	70
Table D-5.	Detailed results from Powder Wash sampling tests, November 10, 2003: Helium Pop method.	71
Table D-6.	Detailed results from Powder Wash sampling tests, November 10, 2003: High-Pressure Helium Displacement method.	72
Table D-7.	Detailed results from Powder Wash sampling tests, November 10, 2003: Pitot and Bypass method.	73
Table D-8.	Detailed results from Powder Wash sampling tests, December 19, 2003: Fill-and-Empty method.	74
Table D-9.	Detailed results from Powder Wash sampling tests, December 19, 2003: Helium Pop method.	75
Table D-10	. Detailed results from Powder Wash sampling tests, December 19, 2003: Pitot and Bypass method.	76

This page is intentionally blank.

1.0 Introduction

The revision of the American Petroleum Institute (API) Manual of Petroleum Measurement Standards (MPMS) Chapter 14.1, *Collecting and Handling of Natural Gas Samples for Custody Transfer* (Reference 1), was completed in 2001. During the revision, the API Chapter 14.1 Working Group compiled a list of unresolved technical issues related to natural gas sampling methodology. An investigation into these technical issues has been ongoing at Southwest Research Institute (SwRI) since 2001, under the Gas Technology Institute (GTI) Measurement Research Program, co-funded by the Gas Technology Institute and the U.S. Minerals Management Service.

This report presents the results of experimental research to evaluate a proposed test protocol to verify the performance of natural gas sampling methods. This protocol is intended to serve as a means of assessing new gas sampling methods for the natural gas industry and should facilitate the development of new and better gas sampling methods. By providing a reliable procedure for new sampling methods to be introduced to the natural gas industry, it will be possible to more accurately determine the energy content of natural gas and reduce the magnitude of errors in natural gas measurements.

A proposed test protocol was drafted by an ad hoc committee of the API Chapter 14.1 Working Group as an addendum to Chapter 14.1. However, until the work described herein was completed, the procedure had not been experimentally validated. The present work involved applying the proposed test protocol to established sampling methods described in GPA (Gas Processors Association) Standard 2261 (Reference 2) and discussed in API Chapter 14.1, as well as to selected new sampling methods. The primary goal of this testing was to evaluate the test protocol. A secondary goal was to assess the ability of several new sampling methods to provide representative gas samples.

Per the requirements of the proposed test protocol, testing of the methods was carried out under both optimum and adverse conditions. For the purposes of this report, "optimum" conditions are considered to be situations where both the pipeline and the ambient temperatures are well above the hydrocarbon dew point (HCDP). On the other hand, "adverse" conditions are defined as situations in which the pipeline temperature is within 5°F of the HCDP, but the ambient temperature is at least 20°F below the HCDP. The testing under optimum conditions was performed at the Southwest Research Institute Metering Research Facility (MRF), and the adverse conditions tests were conducted at the Questar Pipeline Company metering station in Powder Wash, Colorado.

This combination of sampling methods and test conditions was chosen to determine if the protocol could distinguish between acceptable and unacceptable methods, where an acceptable method is considered to be one that produces a representative sample of the flowing gas stream. By using the verification protocol to test currently-recommended sampling methods, it could be determined whether methods known to provide accurate results when performed correctly would pass the tests in the protocol, and whether the acceptance criteria in the protocol were too strict. Including proposed new methods in the test plan allowed for an evaluation of methods that are not already included in the industry standards, but show potential as viable alternatives. The tests also helped to identify any problems with the procedure, and to determine the practicality of the procedure and its ease of implementation in field settings, especially under adverse conditions.

This report describes the testing that was done to evaluate the proposed test protocol and presents the results obtained for both established and new gas sampling methods. The proposed test protocol and the sampling methods that were tested are briefly reviewed in Chapter 2. Chapter 3 presents the results of the sampling tests. This chapter is divided into sections for each test site, and each subsection contains complete documentation of the test facility and conditions, as well as a summary of the results obtained. Chapter 4 concludes the report with a comparison of the results from all of the sampling tests and an assessment of the proposed test protocol itself. For reference purposes, several items have been included in the appendices of this report. These items include the complete text of the proposed test protocol

(Appendix A), procedures for the new sampling methods (Appendix B), gas chromatograph setup and calibration data (Appendix C), and a detailed tabulation of the results from all of the sampling tests (Appendix D).

2.0 Test Protocol and Sampling Methods

This chapter contains a brief overview of the proposed test protocol and presents the sampling methods that were considered for use in this investigation. The complete test protocol and detailed procedures for the new sampling methods may be found in Appendices A and B, respectively.

2.1 Performance Verification Test Protocol

A draft of the proposed test protocol used for the present testing may be found in Appendix A. As of the date of this report, the proposed test protocol was in the API ballot process. It is expected that the results and experience obtained from this testing will be used to revise the protocol before final publication.

The proposed test protocol requires that the gas samples be evaluated in terms of both repeatability and reproducibility. For purposes of this protocol, the API definition of repeatability is used: the comparison of back-to-back analyses using the same sample, chromatograph and operator (Reference 1). Reproducibility is defined as the comparison between the analysis of the flowing gas stream itself and the analysis of a spot or composite sample taken from the same stream. For each sampling method under evaluation, the protocol requires that a minimum of five samples be taken, and that each sample be analyzed at least three times. Repeatability and reproducibility of all gas stream components (typically C₁ through C₉, CO₂, and N₂) and the heating value are evaluated. (The methods used to analyze the data for these tests will be discussed in more detail in Section 3.1.3.) Results of successive analyses of each sample are compared to judge the repeatability of the sample; reproducibility is assessed by determining how well a sample analysis matches the analysis of the flowing gas stream, determined with an online or portable gas chromatograph, and analyzed at the same time that the sample is drawn from the flowing gas stream. The acceptance criteria for repeatability and reproducibility established by the proposed test protocol for composition and heating value are shown in Table 1 and Table 2. The values for the individual components are taken directly from API Chapter 14.1, Appendix E.

Repeata	bility Criteria	Reproducibility Criteria		
Mol % Concentration	Max. Allowed Deviation (± Mol %)	Mol % Concentration	Max. Allowed Deviation (± Mol %)	
0 to 1	0.02	0 to 1	0.04	
> 1 to 5	0.10	> 1 to 5	0.13	
> 5 to 15	0.18	> 5 to 15	0.26	
> 15 to 30	0.28	> 15 to 30	0.38	
> 30 to 50	0.40	> 30 to 50	0.50	
> 50	0.52	> 50	0.63	

 Table 1. Acceptance criteria established by the proposed test protocol for repeatability and reproducibility of sample components.

Table 2. Acceptance criteria established by the proposed test protocol for repeatability and reproducibility of sample heating values.

Repeatability Criteria	Reproducibility Criteria	
1 Btu/scf	3 Btu/scf	

Some key features and requirements of the test protocol are as follows:

- The protocol provides acceptance criteria for repeatability (of multiple samples from the same sample cylinder) and reproducibility (of the flowing stream composition by the spot samples).
- The same gas chromatograph is used to analyze the flowing gas stream itself and the spot or composite samples taken from the stream, to eliminate any bias error caused by using different chromatographs. The chromatograph, sample delivery system, and calibration procedures must comply with the requirements of API Chapter 14.1, Appendix E.
- Cleanliness of all analysis equipment must be verified before tests.
- A proposed sampling method is to be tested on at least two different gas compositions, under both optimum and adverse conditions.
- The hydrocarbon dew point of the gas stream must be measured before the tests, and equipment must be kept well above the dew point to prevent sample distortion.
- Verification that the chosen sampling location has a steady flow rate and a stable gas composition is required prior to the sampling tests.
- Specific reporting requirements are given to ensure proper documentation of the procedure and results.

2.2 Sampling Methods

The API Chapter 14.1 Working Group identified a total of nine sampling methods as candidates for testing using the protocol. Of these, five were established methods that are currently recommended in API Chapter 14.1, and the remaining four were proposed new methods. As the project progressed, it was decided not to test some of the methods, and results were ultimately obtained for three established methods and three new methods. The sampling methods that were used and those that were considered but not tested are discussed in the following sections.

2.2.1 Established Sampling Methods Tested Using the Protocol

The proposed test protocol was used to test three of the methods described in GPA 2261 (Reference 2) and listed in API Chapter 14.1 as acceptable for use. The established sampling methods that were tested as a part of the current project are as follows:

- Purging Fill-and-Empty Method
- Helium Pop Method
- Purging Controlled Rate Method

For these methods, the procedures given in the 2003 draft of GPA Standard 2166 were followed. As its name suggests, the Fill-and-Empty method involves alternately filling and emptying the sample cylinder a specified number of times before filling it with the final gas sample. This purging cycle serves to remove any helium blanket gas or other residual contents from the sample cylinder before the final sample is taken. For the Helium Pop method, the sample cylinder is evacuated and charged above atmospheric pressure using a small amount of helium, to prevent air leaks into the cylinder, before the cylinder is filled with the gas sample. The Controlled Rate Purge method is similar to the Fill-and-Empty procedure, except that natural gas flows continuously through the sample cylinder to purge it for a specified period of time before a gas sample is collected.

The Fill-and-Empty and Helium Pop methods were chosen for testing since they are commonly used, and since experience within the API 14.1 Working Group indicated that these methods would perform well under relatively adverse conditions. Although the Controlled Rate Purge method is listed in API Chapter 14.1 as acceptable for use, this method was expected to do poorly when used under adverse conditions, and it was included to test the ability of the verification protocol to distinguish between acceptable and unacceptable methods. Informal experience within the Working Group suggested that under adverse conditions, heavy hydrocarbons would condense in the sample cylinder as gas was purged through the cylinder, leading to samples with higher heating values than the actual flowing stream.

2.2.2 Proposed New Sampling Methods Tested Using the Protocol

The verification test procedure was also applied to three new sampling methods proposed to the API Chapter 14.1 Working Group:

- Pitot and Bypass Method proposed by Fred Van Orsdol, SPL Corporation
- High-Pressure Helium Displacement Method proposed by Eric Fritz, Natural Gas Pipeline Company of America
- Modified Helium Pack Method proposed by R. Mark Haefele, BP

Detailed procedures for these three methods may be found in Appendix B. The Pitot and Bypass method is a modification of the Controlled Rate Purge method designed to eliminate venting of the purge gas to the atmosphere. In this method, the outlet of the sample cylinder is connected to a second tap on the pipeline, so that during purging, flow passes through the sample cylinder and reenters the pipeline downstream of the gas sampling point. The High-Pressure Helium Displacement method also follows a procedure similar to the Controlled Rate Purge method, except that the sample cylinder is initially charged with helium to a pressure greater than the pipeline pressure. When the valves are initially opened, the helium purges the sample probe and flows into the pipeline. The Modified Helium Pack method is also a procedure similar to the Helium Pop method, except that the sample cylinder is evacuated after attachment to the pipeline, thus eliminating the emission of gas to the atmosphere. All of these methods use a sample cylinder that is initially pressurized with helium to a pressure above the pipeline probe can be back flushed prior to sampling.

2.2.3 Sampling Methods Considered but Not Tested

Three out of the nine sampling methods that were initially proposed for testing under the verification protocol were not tested due to limitations of the project budget and schedule. The methods that were not tested are as follows:

- Water Displacement Method GPA 2166 (Reference 2)
- Glycol Displacement Method GPA 2166 (Reference 2)
- Two-Stage Absorption Method proposed by Chris Cowper, EffecTech Ltd.

The two GPA methods were eliminated because they are less commonly used than the other GPA methods tested. The Two-Stage Absorption method was not tested due to its complexity, and due to the fact that the API 14.1 Working Group concluded that its purpose was not in line with the goals of this project.

3.0 Sampling Tests

The sampling tests performed to evaluate the proposed test protocol were performed at two sites. The testing under optimum conditions was performed at the SwRI Metering Research Facility, while the adverse condition tests were conducted at a Questar Pipeline metering station in Powder Wash, Colorado. One feature of the proposed test protocol is that it requires extensive documentation of the tests and results. In accordance with those requirements, this chapter contains detailed information on the facilities and conditions found at each test site, along with the results obtained from the testing. This chapter concludes with an overall comparison of the results from all of the sampling tests, and an assessment of the proposed test protocol itself.

3.1 Verification Tests Performed Under Optimum Conditions

The testing under optimum conditions was conducted at the SwRI Metering Research Facility. During this testing both the pipeline and ambient temperature were well above the HCDP. At the MRF, the Fill-and-Empty method, the Helium Pop method, and the Controlled Rate Purge method were tested. The original project plans called for the three new sampling methods to also be tested at the MRF, but equipment problems discussed below required a revision to the scope of work, and it was decided to test the new methods only at the field site. Since the conditions at the field site were far less favorable than those at the MRF, testing the new methods only at the field site still provided a worst-case evaluation of the new methods.

3.1.1 Facility and Equipment

The testing was performed in lean gas (nominally 1,050 Btu/scf) using the High Pressure Loop (HPL) at the MRF. The HPL was configured for the sampling tests by installing several existing pipe spools equipped with fittings for the sample probes in the test section of the loop. Figure 1 is a schematic of the test facility layout showing where the various pieces of equipment were installed in the HPL test section. All of the sampling locations were located at least 8 pipe diameters downstream of any component that could create a flow disturbance. A photograph of the facility taken during the tests is shown in Figure 2.

Figure 1. Schematic of the MRF test section showing the piping arrangement and spot sampling locations.

Figure 2. MRF test section piping configured for the sampling tests. The schematic for this setup is shown in Figure 1.

Figure 3 is a photograph of the sampling apparatus used for tests of the Controlled Rate Purge method. The arrangement of the equipment for the other methods was similar to the arrangement shown in this figure. The sample probes had angle-cut ends and were sized so that the tip of the probe was located in the center one-third of the pipe. Whitey[®] ball valves were installed on the sample probes and at the end of the pigtail. In keeping with the common practice, the API 14.1 Working Group requested that the sample cylinders used for the testing be equipped with YZ[®] needle valves at each end. All connections and pigtails were made with ¹/₄" OD stainless steel tubing and ¹/₄" NPT fittings. For the Controlled Rate Purge method, a drilled plug with a 0.02-inch diameter bore was installed at the end of the pigtail, in accordance with API Chapter 14.1. A separator [as described in GPA 2166 (Reference 2)] was not included in any of the sampling systems for this testing, since the flowing gas temperature and equipment temperatures were all well above the HCDP of the gas.

Preparation of the sampling equipment followed the procedures given in the proposed test protocol. All of the sample cylinders, valves, probes, and tubing were steam cleaned prior to use. After cleaning, all of the sample cylinders were evacuated, and cylinders to be used for the Helium Pop method were charged with helium. A total of fifteen 300-cc sample cylinders were prepared for testing, so that three different methods could be tested before cylinders had to be reused. To verify the cleanliness of the sample cylinders, two of the cylinders were charged with helium (99.999% purity) to 50 psig and heated to 180°F for 12 hours. Gas Chromatographic (GC) analysis of the contents of these cylinders showed no peaks in the chromatograms, hence, it was concluded that the cleaning process had left no residual hydrocarbons in the cylinders.

To gather information about the test conditions and sampling equipment, the standard instrumentation at the HPL was used, along with some additional thermocouples installed at several key locations in the gas sampling system. Exposed-junction, type T thermocouples were taped to the sample probe just above the pipeline, the tubing just below the sample cylinder inlet, the GC sample probe just above the pipeline, and the GC inlet. Surface temperature data from these sensors was read and logged by an HP Model 34970A data logger at one-second intervals. In addition to these measurements, the HPL instrumentation recorded the temperature, pressure and flow rate of the gas stream, and the ambient

temperature. The temperature and pressure of the gas stream were measured using Rosemount Model 3144 and 3051C transmitters, respectively. The flow rate was determined using the HPL critical flow nozzles, and verified using two reference turbine meters.

Figure 3. Sampling equipment used in tests of the Controlled Rate Purge method at the MRF. Bottom left, pigtail and end valve; bottom right, sample probes with isolation valve and pressure gauge connection. The scale on the tape measure is in inches.

As required by the proposed test protocol, the HCDP of the gas stream was determined by using a manual chilled mirror tester (dew scope) equipped with a video camera. Figure 4 shows the dew scope (Chandler Engineering Chanscope II, Model 13-1200-C-N-1) in use during the tests at the MRF. The

temperature sensor in the dew point tester was calibrated, traceable to NIST, before using the device. Measurements of the dew point were made independently by two technicians to confirm the readings.

Figure 4. Dew scope connected to the MRF test section for determination of the gas stream HCDP.

It was originally planned for all of the gas composition analyses to be performed with a portable gas chromatograph that was loaned by Questar for use in this project. This GC was to be used for analyses of both the flowing gas stream and the gas samples, to eliminate any potential biases that could be caused by using different instruments for the two analyses. Prior to the start of the first sampling tests, the GC was taken to the MRF calibration laboratory and all of the preparation, calibration, and verification procedures of the proposed sampling verification protocol were performed. Although the GC met all of the requirements of the protocol, problems were encountered when the GC was moved outdoors to the HPL for the sampling tests. During these tests, the calibration drifted and the instrument failed to produce repeatable analyses of the flowing gas stream. The cause of the drift was traced to changing ambient conditions. Figure 5 contains two chromatograms, one taken in the morning, and the other taken in the afternoon, illustrating the drift that was observed.

Figure 5. Stream analyses from 10:40 am and 3:25 pm on June 18, illustrating the drift that was observed in the portable GC during the MRF tests.

Instead of using the portable GC, it was decided to use the MRF on-line GC, which was also operating during the sampling tests. The MRF GC is a Daniel Model 2350 capable of analyses to C_{9} +, with analysis software and a sample delivery system that also complies with all of the requirements of API Chapter 14.1. The sample probe for the Daniel GC is located far downstream of the test section, and upstream of the critical flow Venturis used as the reference flow meters for the test facility. The MRF GC is located outdoors, but the columns are contained in insulated ovens for year-round stable performance. Heating of the sample cylinders or other sampling equipment was not required for these tests, as ambient temperatures were far above the HCDP. Further details of the analysis setup may be found in Appendix C of this report, which contains the API Chapter 14.1 inspection checklist for the sample analysis system.

The work to verify that the portable GC met all of the requirements of the sampling protocol was repeated for the MRF GC. The procedures given in the sampling protocol were again followed for calibration of the MRF GC. Since it is used for routine testing at the MRF, the Daniel GC is calibrated daily on a 1,030 Btu/scf gas that was prepared in accordance with the requirements of the current revision of API Chapter 14.1, Section 16. Analyses were repeatable to within 0.02 mol% for methane and to within smaller limits for the other components. The MRF chromatograph was also tested on a separate certified gas blend to determine its ability to reproduce known gas compositions. Analyses of the "unknown" gas reproduced its certified composition to within 0.05 mol% for methane and less for the other components. All repeatability and reproducibility values were within API Chapter 14.1 Appendix E limits. Detailed information on the GC calibration, including fidelity plots, is included in Appendix C.

3.1.2 Test Conditions

Tests of the Fill-and-Empty method, the Helium Pop method, and the Controlled Rate Purge

method were conducted on June 18, 2003. The specific procedures used for the testing of these methods at the MRF can be found in the 2003 draft revision of GPA 2166, which is expected to be published in 2004. The actual procedures have changed little from the 1986 edition of GPA 2166. For tests of the Fill-and-Empty method, three fill-and-empty cycles were completed before the final sample was collected. For the Controlled Rate Purge method, the sample cylinder was purged for 70 seconds prior to collection of the sample.

The gas used for the testing was obtained from the MRF storage vessels and recirculated in the flow loop to ensure a constant gas composition during the tests. Since no gas was added or removed from the loop while the sampling tests were being performed and all temperatures were significantly above the HCDP, it can be assumed that the gas composition in the system was stable during the testing.

As required by the proposed test protocol, the HCDP of the gas stream was measured immediately prior to collecting the gas samples and again at the conclusion of the testing. During attempts to measure the hydrocarbon dew point, water vapor condensed on the chilled mirror first, making determination of the HCDP difficult. In one run, water condensation was observed at 37°F, and no clear evidence of hydrocarbon liquids was found until the temperature was well below 0°F. For the test conditions, the HCDP was predicted using equations of state to be 27°F. Consequently, a dew point of 37°F was taken as a conservative estimate of the HCDP for the tests.

The flow rate and system pressure were monitored during testing to verify that they remained stable. Values of the line pressure and gas velocity during the periods that the three sampling methods were tested are shown in Figure 6. A steady flow rate of approximately 435 acfm in the loop was maintained during testing through the use of critical flow Venturis that served as the reference flow meters for the test facility. The gas stream pressure varied only slightly, between 1,009 and 1,014 psia.

Figure 6. Gas velocity and pressure in the loop during the sampling tests conducted at the MRF. Vertical dashed lines show intervals during which samples were drawn using the various methods. Flow was in a 6" diameter Schedule 80 pipe.

The local temperatures of the sampling hardware, along with the gas stream and ambient temperature, are plotted in Figure 7 for the periods that the samples were drawn using the three test methods. These data show that none of the sampling equipment dropped below $71^{\circ}F$ during the tests. Since the gas stream temperature and the equipment temperatures were all significantly above the HCDP (conservatively estimated to be $37^{\circ}F$, as discussed above), heating of the sample lines was not necessary.

Figure 7. Equipment and gas temperatures during the sampling tests conducted at the MRF. Black vertical lines with long dashes indicate intervals during which samples were drawn using the various methods. Red vertical lines with shorter dashed lines indicate times when GC analyses of the flowing stream were obtained.

3.1.3 Results

For each sampling method tested, five gas samples were collected and analyzed. Each sample was collected in a separate 300 cc sample cylinder using the procedure appropriate for the method. After all of the samples had been collected, the gas samples were analyzed using the MRF GC. As required by the protocol, results of the analysis of each cylinder were compared to an analysis of the flowing stream, also made with the MRF GC nearest to the time that the sample was drawn. Because ambient conditions were 40°F or more above the conservative dew point of the HPL gas, and sections of the GC sample delivery lines were heat traced to 120°F, it was not deemed necessary to heat the gas samples prior to the analysis. The contents of each sample cylinder were analyzed six times. To be sure that the GC and sample delivery system had been purged of the gas sample from the previous run, only the results of the last three analyses of each cylinder were used to evaluate the method.

To illustrate the method used to evaluate the results of each sampling method, consider three successive GC analyses of a gas sample obtained using a particular sampling method. Let the analysis results obtained in order from a single sample cylinder be A_1 , A_2 , and A_3 , where A_1 , A_2 , and A_3 represent

either the concentration of a single component in the analysis, or the heating value of the gas composition in the analysis. The repeatability deviation for a particular component (or the heating value) is computed as the maximum absolute difference between successive pairs of values. In terms of the notation just introduced,

Repeatability Deviation =
$$max\{|A_1 - A_2|, |A_2 - A_3|\}.$$
 (Eq. 1)

The reproducibility deviation for a particular component (or the heating value) is based on the maximum absolute difference obtained when comparing each of the three analyses to the value obtained from the GC analysis of the gas stream taken at approximately the same time as the sample. If A_{STRM} is the concentration of one component, or the heating value of the gas stream, then

Reproducibility Deviation =
$$max\{|A_1 - A_{STRM}|, |A_2 - A_{STRM}|, |A_3 - A_{STRM}|\}.$$
 (Eq. 2)

The results obtained from the three sampling methods tested at the MRF are summarized in Table 3 through Table 5. The complete results of the analyses of each sample have been included in Appendix D. In these tables, the first column identifies the sample cylinder used in testing the method. The second column identifies any component that failed to meet the repeatability criteria. If all components are within the specified limits, then the results are reported as "All OK". The actual deviations for each component may be found in the data included in Appendix D. The next column shows the maximum repeatability deviation in heating value, computed from Equation 1. The last two columns of the tables report the reproducibility results in a format similar to the repeatability results. Note, as discussed above, that the deviations reported in these tables and in Appendix D are unsigned (i.e., only the absolute value of the differences have been considered).

All of the samples taken using the three methods met the repeatability and reproducibility requirements for the components and the heating value. Thus, it may be concluded that, under optimum conditions, the three methods produced representative samples of the gas stream to within the required limits of the proposed test protocol. These results will be discussed in more detail in Section 3.3, where they will be compared to the results obtained from the other sampling tests.

	Repeatability		Repro	ducibility
	Components not Meeting Criteria	Max. Heating Value Deviation (Btu/scf)	Components Not Meeting Criteria	Max. Heating Value Deviation (Btu/scf)
Sample Cylinder FE1	All OK	0.14	All OK	0.95
Sample Cylinder FE2	All OK	0.15	All OK	0.86
Sample Cylinder FE3	All OK	0.05	All OK	0.26
Sample Cylinder FE4	All OK	0.19	All OK	0.22
Sample Cylinder FE5	All OK	0.10	All OK	0.61

 Table 3. Summary of results from the tests of the Fill-and-Empty method conducted at the MRF under optimum conditions.

	Repeatability		Reproducibility	
	Components not Meeting Criteria	Max. Heating Value Deviation (Btu/scf)	Components Not Meeting Criteria	Max. Heating Value Deviation (Btu/scf)
Sample Cylinder CR1	All OK	0.24	All OK	0.77
Sample Cylinder CR2	All OK	0.29	All OK	1.43
Sample Cylinder CR3	All OK	0.05	All OK	0.97
Sample Cylinder CR4	All OK	0.63	All OK	0.69
Sample Cylinder CR5	All OK	0.70	All OK	0.73

 Table 4. Summary of results from the tests of the Controlled Rate Purge method conducted at the MRF under optimum conditions.

 Table 5. Summary of results from the tests of the Helium Pop method conducted at the MRF under optimum conditions.

	Repeatability		Repro	ducibility
	Components not Meeting Criteria	Max. Heating Value Deviation (Btu/scf)	Components Not Meeting Criteria	Max. Heating Value Deviation (Btu/scf)
Sample Cylinder HP1	All OK	0.07	All OK	0.96
Sample Cylinder HP2	All OK	0.04	All OK	0.99
Sample Cylinder HP3	All OK	0.60	All OK	0.87
Sample Cylinder HP4	All OK	0.03	All OK	0.80
Sample Cylinder HP5	All OK	0.21	All OK	0.84

3.2 Verification Tests Performed Under Adverse Conditions

For tests of the sampling methods under adverse conditions, a field site was desired with a rich gas stream (1,200-1,400 Btu/scf) at line conditions just above the HCDP. The field site was also required to have a stable gas composition and adequate infrastructure for performing the testing (sampling ports, pipeline instrumentation, an accessible GC, etc.). The site selection committee sent questionnaires to a number of companies, and received information on seventeen candidate sites for the field tests.

The site chosen for the field testing of the proposed test protocol is a Questar Pipeline metering station in Powder Wash, Colorado. The testing was performed under adverse conditions during which the pipeline temperature was at or just above the HCDP and the ambient temperatures were well below the HCDP. At the Powder Wash site, the following methods were tested: Fill-and-Empty, Helium Pop, Controlled Rate Purge, Pitot and Bypass, and High-Pressure Helium Displacement. An attempt was made to test the Modified Helium Pack method, but due to the cold conditions, the vacuum pump needed for this method would not function, and a second vacuum pump also failed, so that testing of this method was not possible.

3.2.1 Facility and Equipment

The testing was performed in rich gas (nominally 1,200 Btu/scf) at the Questar metering station in Powder Wash, Colorado. This is the same site used during the composite sampler tests conducted in 1999 and 2000 and discussed in Reference 3. The samples were collected from a straight section of 8-inchdiameter pipe located immediately upstream of an orifice meter. This section of pipe had four sampling locations located five pipe diameters apart. A photograph of the facility taken during the tests is shown in Figure 8. In the direction of flow, the first pair of sampling locations contained the curved probes used for the Pitot and Bypass method. The next sampling location was equipped with a straight probe that was used for the other sampling methods tested. The fourth sampling location at the downstream end of the pipe was used for the dew point tester and the gas chromatograph. The spacing between the sampling locations was sufficient to place each probe at least eight characteristic diameters downstream of any object creating a flow disturbance, where the characteristic diameter is based on the scale of the object creating the disturbance (e.g., the diameter of an upstream probe).

Figure 8. Pipeline and sampling locations at the Powder Wash field site.

The sampling arrangements used for most of the methods are shown in Figure 9 and Figure 10. The sampling hardware (valves, tubing, sample cylinders, etc.) from the MRF tests was also used for performing the same tests at the Powder Wash site. Questar provided some additional 300-cc sample

cylinders, valves and probes for tests of the new sampling methods. As much as practical, the configuration of the sampling equipment from the MRF tests was duplicated for the Powder Wash tests. Ball valves were installed on the sample probes and needle valves were used on the sample cylinders and at the end of the pigtail. The only exception to this was for the Pitot and Bypass method, which required ball valves on the sample cylinders and at both probes. All connections and pigtails were made with ¹/₄" OD stainless steel tubing and ¹/₄" NPT fittings. For the Controlled Rate Purge method and the High-Pressure Helium Displacement method, a drilled plug with a 0.02-inch diameter bore was installed at the end of the pigtail. A separator [as described in GPA 2166 (Reference 2)] was not included in any of the sampling systems, at the request of the API 14.1 Working Group.

Figure 11 shows the sampling probes that were used. The Pitot and Bypass method required a pair of curved probes. These probes were manufactured by Welker Engineering and were designed so that the curved end could be inserted through the existing fittings on the pipe. For all of the other methods, straight sample probes with angle-cut ends were used. All of the sample probes were sized so that the tip of the probe was located in the center one-third of the pipe.

Figure 9. Configuration of the equipment used for collecting samples at the Powder Wash field site. Left, Controlled Rate Purge; center, Fill-and-Empty; right, High-Pressure Helium Displacement.

Figure 10. Configuration of the equipment used for collecting samples with the Pitot and Bypass method at the Powder Wash field site.

Figure 11. Sampling probes used for the Powder Wash tests. Left, curved probes for the Pitot and Bypass method; right, example of a straight probe used for the other sampling methods.

Preparation of the sampling equipment again followed the procedures given in the proposed test protocol. Enough 300 cc sample cylinders were prepared so that all six of the methods could be tested at the field site. All of the sample cylinders, valves, probes, and tubing from the MRF test were steam cleaned prior to reuse at the field site. The equipment provided by Questar was cleaned with acetone. Prior to the start of tests, a subset of cleaned sample cylinders were charged with helium (99.999% purity), and then analyzed to verify that the portable GC, sample cylinders, and sample delivery tubing were clean and free of contaminants. After cleaning, all of the sample cylinders were evacuated, and the cylinders to be used for the Helium Pop method and the three new sampling methods were pre-charged with helium as specified in their respective sampling procedures.

The HP Model 34970A data logger was again used to monitor and record (at one-second intervals) temperatures obtained with surface-mount type T thermocouples attached to the sample probe, the sample cylinder inlet, the gas chromatograph (GC) sample probe, and the GC inlet. An additional, standard Type T thermocouple was used to measure the ambient temperature. The temperature, pressure, and flow rate of the gas stream were obtained from transmitters and a flow computer permanently located at the site.

The HCDP of the gas stream was measured using a chilled mirror device provided by Questar. As required by the proposed test protocol, the dew scope had a NIST traceable temperature sensor calibration. Measurements of the dew point were made independently by two technicians to confirm the readings.

All of the gas analyses at the Powder Wash site were performed using a Varian Model CR-4900 portable gas chromatograph. This GC is capable of analyses to C_{9+} and it was verified that the chromatograph and sample delivery system complied with all of the requirements of API Chapter 14.1. The GC was connected to a sample probe located downstream of the spot sample location as shown in Figure 8. The GC was located in a heated vehicle, and the line connecting the GC to the pipeline was heat traced along its entire length. Further details of the analysis setup may be found in Appendix C of this report, which contains the API Chapter 14.1 inspection checklist for the sample analysis system.

Validation of the portable GC was carried out using the procedures given in the proposed sampling protocol. The GC was calibrated on a 1,200 Btu/scf gas that was prepared in accordance with the requirements of the current revision of API Chapter 14.1, Section 16. The chromatograph was also tested on a separate certified gas blend to determine its Warren reproducibility. All repeatability and reproducibility values were within API Chapter 14.1 Appendix E limits. As will be discussed in more detail below, some additional sampling tests were performed following the first round of tests completed in November. The portable GC was calibrated prior to these additional tests, and all values were again within the Appendix E limits, except for CO_2 , which was 0.01 mol% high. Detailed information on the GC calibrations, including fidelity plots, is included in Appendix C. The calibration gases were analyzed using a separate GC to confirm their composition before they were used to calibrate the Varian GC used for the protocol analyses.

3.2.2 Test Conditions

Tests of the Fill-and-Empty, Helium Pop, Controlled Rate Purge, Pitot and Bypass, and High-Pressure Helium Displacement methods were conducted on November 10, 2003. The specific procedures used for these methods at the Powder Wash site can be found in the 2003 draft revision of GPA 2166 and in Appendix B. For the Fill-and-Empty method, three fill-and-empty cycles were completed before the final gas sample was collected. For tests of the Controlled Rate Purge method, the sample cylinder was purged for 70 seconds prior to collection of the sample. As noted in the table of results below, some Pitot and Bypass samples were taken after a 60 second purge time, while others were taken after a 90 second purge time.

The gas stream was monitored before and during the testing to determine the stability of the gas

composition and the flowing conditions in the pipeline. Figure 12 shows measurements of the stream heating value and nitrogen content at one-hour intervals taken over the course of several days around the time of the tests. The nitrogen content remained fairly constant, but the heating value exhibited a regular fluctuation of approximately ± 10 Btu/scf over the course of several days, suggesting that the line temperature may have been influencing the gas composition. This was also observed during the composite sampler tests conducted in 1999 and 2000 and discussed in Reference 3. The Powder Wash metering station is located just downstream of a separation facility, so that the gas stream temperature is typically very close to the HCDP. The tandem changes in stream temperature changes and heating value reflect the fact that the gas leaving the separator is normally at or just above the HCDP temperature. However, the period of the fluctuations is very long compared with the time interval over which all samples were taken using a given test method, thus, the composition was essentially stable while tests of each sampling method were being performed.

The HCDP of the gas stream was measured immediately prior to collecting the gas samples and determined to be 69°F, approximately the same as the flowing stream temperature. An attempt was made to measure the HCDP after tests, but the tests were concluded after sunset, and the dew scope used at the site relied on ambient lighting to illuminate the chilled mirror, so a post-test measurement was not possible.

Figure 12. Long-term trends in flowing stream heating value and nitrogen content around the time of the sampling tests conducted in November at the Powder Wash field site.

Detailed records of the line pressure and flowing gas velocity during the times that the sampling methods were tested are shown in Figure 13. For this period, the line pressure remained fairly constant at approximately 580 psia, and the average flow rate was 7,670 Mscfd with a variation (maximum to minimum) of $\pm 3.3\%$ about this mean.

Figure 13. Gas velocity and pressure in the pipeline during the sampling tests conducted in November at the Powder Wash field site. Vertical dashed lines show intervals during which samples were taken using the various sampling methods. Flow was in an 8" diameter pipe.

Because the ambient temperature at the site was well below the HCDP of the gas stream, all of the sampling equipment was kept in heated storage containers until it was used to obtain a sample. Although the sample cylinders were insulated to keep them warm outside of the storage containers, insulation was not available during the November tests for the valves and lines connected to the cylinder, as shown in Figure 14.

Figure 14. Typical sampling arrangement at the Powder Wash field site showing which portions of the system were not insulated during the November tests. The attached lines and valves were insulated during the December retests.

The local temperatures of the sampling hardware, along with the gas stream and ambient temperature, are plotted in Figure 15 for the periods that the samples were taken using the various methods. These data show that all of the monitored locations on the sampling equipment were below the HCDP during the tests, as might be expected, since these regions were not insulated. The use of sampling equipment with temperatures below the HCDP and the fact that the gas was likely near saturation (as this site was downstream of a separator) may have contributed to the poor performance of some of the methods tested.

Figure 15. Equipment and gas temperatures during the sampling tests conducted in November 2003 at the Powder Wash field site. Black vertical lines with long dashes indicate intervals during which samples were drawn using the various methods. Red vertical lines with shorter dashed lines indicate times when GC analyses of the flowing stream were obtained.

3.2.3 Results

For each sampling method that was tested, five gas samples were collected and analyzed. Each sample was collected in a separate 300-cc sample cylinder using the procedure appropriate for the method. After all of the samples had been collected, the gas samples were heated to 125°F overnight at the Questar lab, and analyzed three times using the same GC that was used to analyze the flowing gas stream. Before analysis of the contents of each cylinder, helium was used to purge the GC and sample delivery system of the gas from the previous run.

During the process of analyzing the samples, an air leak was discovered in the sample delivery system. This leak was not found during the preparations specified in the proposed test protocol. As a result, all of the cylinders that had been analyzed prior to the discovery of the leak were reanalyzed after the leak was repaired. In the case of the samples obtained with the Fill-and-Empty method, there was not enough gas remaining in any of the sample cylinders to perform another analysis. For most of the other

methods, contents of only one sample cylinder were lost.

The results obtained from the sampling methods tested under adverse conditions are summarized in Table 6 through Table 9. The complete results of the analyses of each sample have been included in Appendix D. The format of these tables is identical to the tables presented and discussed in Section 3.1.3. To assist in interpreting the reproducibility results, components not meeting the criteria of the proposed test protocol have been identified as being either "high" or "low" to indicate how the values compared to the reference values of the gas stream. Values in bold red type are outside the acceptance criteria of Table 1 and Table 2. The Controlled Rate Purge and High-Pressure Helium Displacement methods failed the reproducibility tests, and some samples taken using the Helium Pop and the Pitot and Bypass methods passed, while others did not. These results will be discussed in more detail in Section 3.3, where they will be compared to the results obtained from the other sampling tests.

	Repeatability		Repro	ducibility
	Components not Meeting Criteria	Max. Heating Value Deviation (Btu/scf)	Components Not Meeting Criteria	Max. Heating Value Deviation (Btu/scf)
Sample Cylinder CR1	N_2	0.86	high- N2, C6	8.78
Sample Cylinder CR2	e Cylinder CR2 No data available		No data available	
Sample Cylinder CR3	\mathbf{N}_2	0.25	high- <mark>N2</mark> low- <mark>CO</mark> 2	5.04
Sample Cylinder CR4	All OK	0.12	high- C ₃	7.07
Sample Cylinder CR5	All OK	0.50	high- C ₃ , iC ₄	6.61

 Table 6. Summary of results from the tests of the Controlled Rate Purge method conducted in November at the Powder Wash field site.

 Table 7. Summary of results from the tests of the Helium Pop method conducted in November at the Powder Wash field site.

	Repeatability		Reproducibility	
	Components not Meeting Criteria	Max. Heating Value Deviation (Btu/scf)	Components Not Meeting Criteria	Max. Heating Value Deviation (Btu/scf)
Sample Cylinder HP1	All OK	0.16	high- N2	2.50
Sample Cylinder HP2	All OK	0.20	high- N2	3.17
Sample Cylinder HP3	All OK	0.03	All OK	3.82
Sample Cylinder HP4	No data available		No data available	
Sample Cylinder HP5	All OK	0.45	high- N2	2.79

	Repeatability		Reproducibility	
	Components not Meeting Criteria	Max. Heating Value Deviation (Btu/scf)	Components Not Meeting Criteria	Max. Heating Value Deviation (Btu/scf)
Sample Cylinder EF1	All OK	0.51	high- C ₅ to C ₇	8.50
Sample Cylinder EF2	All OK	0.54	high- iC ₅ , C ₆ , C ₇	9.32
Sample Cylinder EF3	All OK	0.20	<i>high-</i> iC ₄ , C ₅ to C ₇ , CO ₂	14.26
Sample Cylinder EF4	All OK	0.63	high- C ₃ , iC ₄ , C ₅ to C ₇ low- C ₁	18.10
Sample Cylinder EF5	All OK	0.23	high- iC ₄ , C ₅ to C ₇	13.76

 Table 8. Summary of results from the tests of the High-Pressure Helium Displacement method conducted in November at the Powder Wash field site.

 Table 9. Summary of results from the tests of the Pitot and Bypass method conducted in November at the Powder Wash field site.

	Repeatability		Reproducibility	
	Components not Meeting Criteria	Max. Heating Value Deviation (Btu/scf)	Components Not Meeting Criteria	Max. Heating Value Deviation (Btu/scf)
Sample Cylinder PP1	No data available		No data available	
Sample Cylinder PP2*	All OK	0.18	high- C ₆ , C ₇	7.39
Sample Cylinder PP3 [†]	All OK	0.33	low- C3	0.64
Sample Cylinder PP4 [†]	iC ₄	3.28	low- <mark>iC</mark> 4	3.92
Sample Cylinder PP5 [†]	All OK	0.85	low- C ₃	1.16

*90 second purge time prior to sample collection, [†]60 second purge time prior to sample collection.

3.2.4 Test Conditions – Repeat Tests

Due to the difficulties encountered with the analysis of the samples from the Powder Wash site, it was decided to repeat the tests of some of the methods. Repeat tests of the Fill-and-Empty, Helium Pop, and Pitot and Bypass methods were conducted on December 19, 2003 at the Powder Wash site by Questar personnel. Based on previous experience among members of the API Ch. 14.1 Working Group, these methods were expected to pass if performed correctly. The repeat tests also provided an opportunity to test these methods again under conditions in which all of the sampling equipment was insulated. Recall, as discussed in Section 3.2.2, that only the sample cylinder was insulated during the November tests. For the December tests, a second valve assembly (for use between the pipeline and the sample cylinder) was

kept in a heated storage container and was used to replace the assembly in use when its temperature dropped below the ambient temperature. Also, Questar personnel used one exposed-junction thermocouple to measure the surface temperature of the sample cylinders, rather than the tubing near the cylinder inlet, as was done in November. Other than these modifications, the procedures for the repeat tests were exactly identical to those used during the November tests.

Figure 16 shows the stability of the stream heating value and nitrogen content in the pipeline, measured at one-hour intervals over the course of several days around the time of testing. The nitrogen content remained fairly constant, but the heating value exhibited a regular fluctuation of about ± 25 Btu/scf. As was the case during the November tests, the gas stream temperature was very close to the HCDP, as would be expected for the flow just downstream of a separator station, and the temperature and heating value fluctuated in tandem. However, the period of the fluctuations is very long compared with the time interval during which the samples were being taken, and thus the composition was likely stable while the sampling was being performed.

As required by the proposed test protocol, the HCDP of the gas stream was measured immediately prior to collection of the gas samples and was determined to be 65°F. Since it was dark when the testing was completed, it was not possible to measure the HCDP again at the conclusion of the tests.

Figure 16. Long-term trends in stream heating value and nitrogen content around the time of the sampling tests conducted in December at the Powder Wash field site.

The flowing stream conditions and the temperatures of the sampling hardware, along with the gas stream and ambient temperatures, are plotted in Figure 17 and Figure 18 for the periods that the samples were taken. For these tests, the temperature of the sample cylinder was above the HCDP over almost the entire duration of the sample. This may be attributable to the use of insulation blankets around the cylinders and the fact that the valve assemblies were kept in hot storage until used. The sample probe

temperature, however, was below the HCDP, as in November. It is likely that the portion of the sample probe outside the pipe wall was still cooled by exposure to ambient conditions during the repeat tests.

Figure 17. Flowing gas velocity and line pressure in the pipeline during the sampling tests conducted in December at the Powder Wash field site. Vertical dashed lines show intervals during which samples were taken by the various methods. Flow was in an 8" diameter pipe.

Figure 18. Equipment and gas temperatures during the sampling tests conducted in December 2003 at the Powder Wash field site. Black vertical lines with long dashes indicate intervals during which samples were drawn using the various methods. Red vertical lines with shorter dashed lines indicate times when GC analyses of the flowing stream were obtained.

3.2.5 Results – Repeat Tests

The results obtained from the repeat tests of the three sampling methods are summarized in Table 10 through Table 12, which are in the same format as those presented earlier. The procedures for analyzing the gas samples were exactly the same as those used for the November tests. The complete results of the analyses of each sample have been included in Appendix D.

Although all samples from the three methods met the repeatability criteria, at least one sample from each of the methods failed to meet one of the reproducibility requirements. For the Fill-and-Empty method, the reproducibility of the compositions was acceptable, but the heating value of one sample was greater than the 3 Btu/scf reproducibility limit set by the proposed test protocol. For the other two methods, the only reproducibility failures were high nitrogen content in some of the samples. The high nitrogen content may be the result of a small air leak that occurred at some point during the process. These results will be discussed in more detail in Section 3.3, where they will be compared to the results obtained from the other sampling tests.

	Repeatability		Repro	ducibility
	Components not Meeting Criteria	Max. Heating Value Deviation (Btu/scf)	Components Not Meeting Criteria	Max. Heating Value Deviation (Btu/scf)
Sample Cylinder FE1	All OK	0.11	All OK	0.23
Sample Cylinder FE2	All OK	0.09	All OK	0.97
Sample Cylinder FE3	All OK	0.11	All OK	4.10
Sample Cylinder FE4	All OK	0.07	All OK	2.14
Sample Cylinder FE5	All OK	0.10	All OK	2.47

 Table 10. Summary of results from the retest of the Fill-and-Empty method conducted in December at the Powder Wash field site.

 Table 11. Summary of results from the retest of the Helium Pop method conducted in December at the Powder Wash field site.

	Repeatability		Reproducibility	
	Components not Meeting Criteria	Max. Heating Value Deviation (Btu/scf)	Components Not Meeting Criteria	Max. Heating Value Deviation (Btu/scf)
Sample Cylinder HP1	All OK	0.03	high- <mark>N</mark> 2	0.05
Sample Cylinder HP2	All OK	0.08	high- <mark>N</mark> 2	0.26
Sample Cylinder HP3	All OK	0.16	All OK	1.42
Sample Cylinder HP4	All OK	0.45	All OK	1.09
Sample Cylinder HP5	All OK	0.17	high- N2	2.15

 Table 12. Summary of results from the retest of the Pitot and Bypass method conducted in December at the Powder Wash field site.

	Repeatability		Reproducibility	
	Components not Meeting Criteria	Max. Heating Value Deviation (Btu/scf)	Components Not Meeting Criteria	Max. Heating Value Deviation (Btu/scf)
Sample Cylinder PP1*	All OK	0.08	high- <mark>N</mark> 2	1.49
Sample Cylinder PP2*	All OK	0.34	All OK	1.10
Sample Cylinder PP3*	All OK	0.04	All OK	1.89
Sample Cylinder PP4*	All OK	0.03	All OK	0.33
Sample Cylinder PP5*	All OK	0.14	All OK	0.57

*90-second purge time prior to sample collection.

3.3 Assessment of the Sampling Methods

The results from all of the sampling tests are summarized in Table 13. In this table, "Passed" means that the method met all of the requirements of the proposed test protocol, while "Acceptable" indicates that the method met most of the requirements, except for some minor deviations that are noted in the table. Methods that did not meet the requirements are listed as "Failed". Among the methods tested, two of the established GPA sampling methods (Fill-and-Empty and Helium Pop) produced representative samples of the gas stream under both optimum and adverse conditions. The Pitot and Bypass method, which was tested only under adverse conditions, was the only new method to meet the requirements of the proposed test protocol. The Controlled Rate Purge method passed the protocol requirements under optimum conditions at the MRF. The Controlled Rate Purge method and the High-Pressure Helium Displacement methods failed under adverse conditions at the Powder Wash site during November, but were not included in the December retests due to project constraints.

Table 13.	Comparison	of results from a	all sampling tests	performed in	this project.
			· · · · · ·	F	· · · · J · · ·

	MRF HPL (optimum conditions)	Powder Wash Field Site (adverse conditions, incomplete insulation)	Powder Wash Field Site repeat tests (adverse conditions, complete insulation)
Conditions			
Line Temperature	at least 32°F above HCDP	at HCDP	6°F to 8°F above HCDP
Ambient Temperature	at least 48°F above HCDP	at least 28°F below HCDP	at least 22°F below HCDP
Stream HCDP	below 37°F	69°F	65°F
Line Pressure	1009-1014 psia	578-582 psia	575-576 psia
GPA Sampling Methods			
Fill-and-Empty	Passed	no data available (all samples lost before air leak discovered)	Acceptable (heating value outside reproducibility limits on one sample)
Controlled-Rate Purge	Passed	Failed	Not tested
Helium Pop	Passed	Failed	Acceptable (N ₂ outside reproducibility limits on three samples)
New Sampling Methods			
Pitot and Bypass Method	Not tested	Failed	Acceptable (N ₂ outside reproducibility limits on one sample)
High-Pressure Helium Displacement Method	Not tested	Failed	Not tested
Modified Helium Pack Method	Not tested	Not tested	Not tested

From the comparisons shown in Table 13, it can be seen that the sampling conditions can affect how well a particular sampling method obtains a representative sample of the flowing gas stream. The Helium Pop method, which passed tests at the MRF, failed during the November field tests, but passed when it was retested in December with all equipment insulated from the ambient air. Likewise, the Pitot and Bypass method failed the November field tests, but provided acceptable samples in the December repeat tests. The likely explanation for the improvement in the repeat tests in both of these cases is that the sample lines and valves were kept at a higher temperature by the insulation and the practice of keeping the equipment in a heated container until use. Recall that although the sample cylinders themselves were insulated in both sets of tests, the valves and sample lines were only insulated during the December repeat tests. During the November tests, the portion of the sample probe outside the pipe wall was 13°F to 25°F below the HCDP, and only 10°F to 20°F above ambient temperature; during the December tests, the exposed portion of the probe was no more than 10°F below the HCDP, yet 20°F to 30°F above ambient temperature. This shift of the probe temperature toward the line temperature and away from the ambient temperature suggests that the insulation added to the sampling apparatus helped to keep the equipment warm and improved the quality of the samples.

The Controlled Rate Purge method and the High-Pressure Helium Displacement method were two other methods than failed under adverse conditions with no insulation of the sample lines and valves. Since these methods were not included in the December retests, it is not possible to draw any definite conclusions about how they might have performed if the sampling equipment had been insulated to keep equipment temperatures higher. However, the Controlled Rate Purge method was successful when tested under optimum conditions at the MRF. Based on the performance of the Helium Pop and Pitot and Bypass methods, it is possible that these two failed methods would also perform better under adverse conditions if all equipment were insulated. In summary, these results indicate that attention to the sampling apparatus temperature is an important factor in obtaining representative samples under adverse conditions with any method.

4.0 Conclusions

This report presents the results of experimental research to evaluate a proposed test protocol for verifying the performance of natural gas sampling methods. The primary goal of this testing was to evaluate the test protocol itself, and a secondary goal was to determine the ability of several new sampling methods to provide representative gas samples. The protocol was evaluated by using it to test some of the sampling methods currently found in GPA 2261 that are known to provide accurate results when performed correctly. In addition, several newly-proposed methods that are not currently included in the industry standards, but show potential as viable alternatives, were also tested. Sampling methods were judged based on repeatability and reproducibility criteria for both composition and heating value, as established by the proposed test protocol. The protocol is intended to serve as a means of assessing new gas sampling methods.

Testing of the methods was carried out under both optimum and adverse conditions. For the purposes of this report, "optimum" conditions were considered to be situations where both the pipeline and the ambient temperatures are both well above the hydrocarbon dew point (HCDP), and "adverse" conditions were situations in which the pipeline temperature is at or just above the HCDP, but the ambient temperature is below the HCDP. The tests under optimum conditions were performed at the SwRI Metering Research Facility, and the adverse condition tests were conducted at a Questar Pipeline metering station in Powder Wash, Colorado. Facilities and conditions at each site were carefully documented to support the conclusions in this report.

The sampling tests that were performed helped to identify difficulties with the procedure in the proposed test protocol, and to determine the practicality of the procedure and its ease of implementation in field settings. The key conclusions obtained from this investigation regarding the proposed test protocol are as follows:

- The acceptability criteria in the proposed test protocol appear to be appropriate to distinguish between sampling methods that are acceptable and unacceptable (i.e., methods that do or do not produce a representative sample of a flowing gas stream). Established sampling methods from GPA 2166, expected to pass the protocol criteria, did produce representative samples of the gas stream to within the required limits of the proposed test protocol.
- The requirements on the gas chromatographs used in the tests are rigorous, but more attention to GC calibration and stability may be needed, especially in applications where a portable GC is used in the field. The GC should be calibrated and used in a climate-controlled environment, or calibrated in the same environment in which it is used. Checking the GC calibration during and after tests may also be advisable.
- Air leaks in the analysis equipment were not found during preparations specified by the proposed test protocol. A revision to address this issue is suggested.
- Verifying the GC calibration gas at an independent lab, as required by the proposed test protocol, may not be necessary. Since the objective is to compare sample cylinder contents to the flowing stream, the validity of the comparison depends primarily on the repeatability of the GC.
- A way to simplify the dew point measurements required by the protocol should be considered. Problems commonly encountered in chilled mirror dew point measurements, including water vapor formation and inadequate ambient lighting, posed difficulties during the tests.

- Careful documentation is required during tests. Instruments that time-stamp data, such as flow meters, gas chromatographs, and data loggers must be synchronized to avoid errors in data comparisons.
- The proposed test protocol currently states that the chosen sampling location should have a steady flow rate and a stable composition. However, it does not specify the interval over which these quantities are to be monitored nor does it give limits of acceptability for flow rate variations. These should be addressed in the revision to the proposed protocol.
- To attain representative samples from streams near the HCDP, special attention should be given to the sampling equipment temperatures. For best results, an environmental chamber may be needed around the sampling apparatus. Recent tests with composite samplers at the Powder Wash site (Reference 3) indicate that the use of a chamber to keep sampling equipment warm can produce consistent and accurate samples of a gas stream near its dew point. Also, to ensure that the GC and spot sampling apparatus obtain identical samples, the sample delivery lines and probes should be heated and conditioned identically.
- The proposed test protocol does not currently address where the GC sample location should be relative to the spot sample location. A revision to address this is suggested. The revision should discuss the relative location (upstream or downstream) of the GC probe from the spot sample location, the distance from the sample location, and permitted pipe geometry.
- The protocol is currently being amended to specify test conditions by line temperature and HCDP, rather than by heating value; guidelines for both ambient and flowing gas temperatures during tests will now be included in the protocol.

Three GPA sampling methods (Fill-and-Empty, Controlled Rate Purge, and Helium Pop) and three proposed new sampling methods (Pitot and Bypass, High-Pressure Helium Displacement, and Modified Helium Pack) were tested. The key conclusions obtained from this investigation regarding the sampling methods are as follows:

- All of the established GPA sampling methods tested using the protocol produced representative samples of the gas stream under optimum conditions. The Fill-and-Empty and Helium Pop methods were also found to produce acceptable results when used correctly under adverse conditions.
- The Pitot and Bypass method, which was tested only under adverse conditions, was the only one of the three new methods to meet the requirements of the proposed test protocol.
- The Controlled Rate Purge method and the High-Pressure Helium Displacement methods failed under adverse conditions when the sample lines and valves were not insulated. These methods were not included in the field retests.
- Both the Helium Pop and the Pitot and Bypass methods failed in adverse conditions when the sample lines and valves were not insulated, but subsequently passed when they were retested with fully insulated sampling equipment. This result demonstrates that attention to the sampling apparatus temperature is an important factor in obtaining representative samples under adverse conditions.
- The Modified Helium Pack method could not be tested, due to equipment failure related to the cold conditions at the field site.

5.0 References

- <u>Manual of Petroleum Measurement Standards, Chapter 14 Natural Gas Fluids Measurement,</u> <u>Section 1 – Collecting and Handling of Natural Gas Samples for Custody Transfer,</u> American Petroleum Institute, Washington, D.C., USA, 5th edition, June 2001.
- 2. <u>Obtaining Natural Gas Samples for Analysis by Gas Chromatography</u>, GPA Standard 2166-86, Gas Processors Association, Tulsa, Oklahoma, USA, 1986.
- 3. Kelner, E., Sparks, C. R., and Behring, K. A., <u>Metering Research Facility Program, Natural Gas</u> <u>Sample Collection and Handling – Phase III: Experimental Investigation of Gas Sampling Techniques</u> <u>and Equipment</u>, Gas Research Institute, Des Plaines, Illinois, USA, August 2002.

This page is intentionally blank.

Appendix A

Proposed Performance Verification Test Protocol

This page is intentionally blank.

API MPMS Chapter 14.1 New Spot or Composite Sample Method Performance Verification Procedure

Testing will be limited to a single-phase gas stream at or above its hydrocarbon dew point (HCDP). Multi-phase fluid sampling is not within the scope of this procedure. Laboratory practices described in this document should not be interpreted to be required procedures for normal sampling and analysis.

Procedure

- 1. The same chromatograph used to analyze the sample stream is to be used to analyze the spot or composite samples to eliminate the error of using different chromatographs. It is preferable to use chromatographs for testing that are capable of producing an extended analysis (C_{9+}) accurate within the API Chapter 14.1 guidelines for repeatability and reproducibility. The use of analyzers limited to a C_{6+} output may provide test results that indicate that the sampling method is acceptable for the application tested; however, method approval from such results should not be extrapolated to include applications where a more extended analysis is required.
- 2. Establish that the online or portable chromatograph and sample delivery system complies with API Chapter 14.1. See Appendix (E) for repeatability and reproducibility criteria and inspection checklist. The same calibration method and calibration standard is to be used for all chromatographs used for testing.
- 3. Calibration standards must be prepared in accordance with the requirements in API Chapter 14 Section 1 (paragraph 14.1.16), maintained in accordance with the requirements in GPA 2198-98, and verified by a laboratory independent of the blender. Verification of the calibration standard must comply with API Chapter 14.1 Appendix E repeatability and reproducibility criteria.
- 4. Establish that the complete sampling system (chromatograph, cylinders, tubing, etc.) is clean and free of any contaminants prior to calibrating and testing. Verify that the sample delivery system and chromatograph are clean by analyzing a sample of ultra-high purity (UHP) helium. Verify the cleanliness of the sample cylinders by charging them with 50 psig of UHP helium, heating to 125 degrees F for 2-4 hrs, and then analyzing the helium. No peaks should be produced during these procedures.
- 5. If the sample method is tested under controlled laboratory conditions (as in 5a below), performance verification is recommended on multiple gas blends. If the method is tested on a single flowing gas composition at an established metering location (as in 5b below), the results may not apply to a broad spectrum of gas compositions.
 - a) Verify the method on at least two and preferably three gas blends that represent a broad spectrum of gas compositions commonly encountered in gas gathering and transportation

operations. For example, a three-gas test might use blends that produce gross heating values of 1000 BTU, 1175 BTU, and 1350 BTU.

- b) Select a location for sampling that has a steady flow rate and a stable gas composition. Verification of stability will be established before sampling is conducted. Stability is defined as the repeatability of consecutive analyses as defined by API Chapter 14.1 Appendix E.
- 6. Determine the HCDP using the following steps:
 - a) Use the Bureau of Mines dew scope with a NIST-traceable thermometer and a video attachment.
 - b) Heat the sample line to the Bureau of Mines scope to 20-50 degrees F above the HCDP.
 - c) Utilize two technicians to determine the dew point. Each technician shall run a minimum of three dew points to establish repeatability.
 - d) The determined dew point must agree within two (2) degrees F to eliminate uncertainty.
 - e) The dew point is to be checked before and after the sampling procedure tests.
- 7. Determine the composition of the flowing stream using the following steps:
 - a) Verify and document the stability of the composition of the flowing gas stream using a portable or on-line chromatograph.
 - b) The chromatograph is to be analyzing the stream during sampling procedures.
 - c) The chromatograph software will be required to archive and Time- and Date-stamp the chromatograms, composition, and the corresponding BTU. The methods and calibration chromatograms used for each testing procedure shall be saved.
- 8. Also capture and record sufficient data to demonstrate the stability of the dynamic flowing conditions of the stream during the sampling tests.
- 9. Conduct sampling method using the following steps:
 - a) A minimum of five (5) samples shall be obtained for each method tested.
- 10. Analysis Requirements
 - a) Each cylinder shall be heated to 20–50 degrees F above the HCDP for a period of 2–4 hours before analyzing.
 - b) Each cylinder is to be analyzed a minimum of three times to establish repeatability as defined by API Chapter 14.1 Appendix E.
- 11. Data Requirements
 - a) The data shall be in tabular form and in a format that is easy to read and understand.

- b) The data shall be available for public review.
- c) The spot sample analysis report shall reference the corresponding online or portable gas analysis report.
- d) On-line chromatograph data for comparison with composite samples shall be averaged for the same time period as the composite samples.
- 12. Verification of sampling procedure: Sample heating values shall agree within the greater of the tolerances described below or those defined by API Chapter 14.1 Appendix E.
 - a) Review the data to ensure that the accuracy of the spot or composite sample method complies with the repeatability and reproducibility for each component as stated in API Chapter 14.1 Appendix (E).
 - b) The three successive analyses of each test cylinder must repeat within one (1) BTU per cubic foot.
 - c) Each test cylinder must reproduce within three (3) BTU per cubic foot of the online or portable chromatograph.
 - d) Analyses of each composite sample cylinder must reproduce within (3) BTU per cubic foot of the average of the online chromatograph for that sampling period.

The following addition to Step 5 of the test protocol was submitted for ballot in June 2003:

5. c) The protocol is intended to evaluate the performance of new or proposed sampling systems and procedures under ideal conditions and under conditions when only the best current methods will succeed. For example, in a case where two gases are used during the evaluation, the lean gas may be used to verify good performance when the gas is far from its hydrocarbon dew point (HCDP) and ambient temperatures (real or induced) are higher than the flowing temperature of the stream. The richer gas, during the same evaluation, would be used to evaluate the performance of the new or proposed sampling system and procedure when the ambient temperature is colder than the flowing temperature of the stream and the measured hydrocarbon dew point of the stream, and the flowing stream is at a temperature very near its HCDP.

To fully confirm the suitability of new or proposed sampling systems and procedures, it is recommended that the flowing stream during one phase of the evaluation program be within 5°F of its' measured HCDP and that the ambient temperature (actual or induced) be at least 20°F colder than the flowing temperature of that stream.

Record the Following Information

Record test data on a spreadsheet and provide as much additional information as possible, including copies of analyses from labs.

- Description of the sample method
- Description of the test used to evaluate the sample method
- Date of test
- Location of the Test
- Personnel conducting the tests
- Personnel witnessing the tests
- Pipeline Pressure
- Pipeline Size
- Piping Configuration (Upstream and Downstream)
- Sample probe style and description
- Sketch or photo of the piping scheme for the test site
- Description or photo of the test method equipment and physical installation used in test
- Description of the flowing gas stream, i.e., well head, separator, distribution system, meter run, gathering system, etc.
- Ambient Temperature
- Pipeline Flowing Temperature
- Sampling Apparatus Temperature for sample method and reference analyzer. As a minimum, include the temperature at the sample probe and at the exit point of the sample delivery system.
- Description of temperature control equipment (i.e. insulation, heater, steam)
- Hydrocarbon Dew Point
- Cylinder Style
- Cylinder Size
- Sampler style (if applicable) and description
- Timed or Proportional to flow
- Sample volume size
- Approximate elevation of the test location

GC Description

- Last calibrated and how, relative to test data
- Provide records for calibrations performed immediately before, during and after the testing, including response factors and repeatability data

Appendix B

Procedures for New Sampling Methods

This page is intentionally blank.

High Pressure Helium Displacement Method

Proposed by Eric Fritz, Natural Gas Pipeline Company of America

Sample Cylinder Preparation

- 1. Sample cylinders must be thoroughly cleaned before samples are taken.
- 2. Momentarily purge the sample cylinder with helium, and then fill the cylinder to the minimum pressures according to the table below.

Sample Source		Helium Pre-Fill Pressure (psia)		
Pressure		Cylinder Size		
(PSIA)	150-cc	300-cc	500-cc	1000-cc
30	84	79	77	76
40	95	90	87	86
50	106	100	98	96
60	118	111	108	106
70	129	122	119	116
80	140	132	129	127
90	152	143	139	137
100	163	153	150	147
200	276	260	254	249
300	389	366	358	351
400	502	473	462	453
500	615	579	566	555
600	728	686	670	657
700	841	792	774	759
800	954	899	878	861
900	1067	1005	982	963
1000	1180	1112	1086	1065
1100	1293	1218	1190	1167
1200	1406	1325	1294	1269
1300	1519	1431	1398	1371
1400	1632	1538	1502	1473
1500	1745	1644	1606	1575

Note: Assume length from sample probe tip to sample inlet valve of $12" \ge 1/4"$. Do not exceed pressure rating of sample cylinder.

3. Remove sample cylinder from Helium source and check for leaks by immersion of the valves in water or by use of a commercial leak detection solution. Plug valves (if female) or cap valves (if male).

Sampling Method

Note: Insure that the temperature of the sample cylinder exceeds the temperature of the sample source. A minimum of 10°F is recommended. If not, an unrepresentative sample may be obtained.

1. Open sampling source valve (Valve 1) and thoroughly blow out any accumulated material. Close valve at sampling point.

2. Install sample cylinder as shown in the Figure below. The cylinder is preferred to be in the vertical position but may be horizontal to facilitate close connection of the sample cylinder to the probe outlet (if using an angled valve).

- 3. Install a 3-ft. piece of ¹/₄" diameter tubing and the extension tube valve (Valve 4) as shown.
- 4. With all valves closed, open the sample cylinder inlet valve (Valve 2) to allow Helium to fill the connection between the sample cylinder and sampling point valve.
- 5. Open the sampling point valve (Valve 1) to allow Helium to flow (back flush) through the sample probe and into the pipeline. The pressure in the cylinder will equalize with the pressure of the sample source.
- 6. Open the sample cylinder outlet valve (Valve 3) to fully open position.
- 7. Open the extension tube valve (Valve 4) fully. A $\frac{1}{4}$ -turn valve works best.

8. Flow in this manner for the time specified in the following table.

Flow Plug	Cylinder Size			
Drill Size	150-cc	300-cc	500-cc	1000-cc
76 (0.0200")	35 sec	75 sec	115 sec	230 sec
79 (0.0145")	70 sec	135 sec	210 sec	450 sec

- 9. Close the sample valves in the following order: extension tube valve (Valve 4), cylinder outlet valve (Valve 3), cylinder inlet valve (Valve 2), and sampling point valve (Valve 1).
- 10. Open extension tube valve (Valve 4) to allow extension tube pressure to bleed off. Remove the extension tube from the sample cylinder.
- 11. Source pressure will exist in the close-coupled connection between the sample point valve and the cylinder inlet valve. Carefully remove the sample cylinder from the probe by bleeding off pressure, as the short coupling is unscrewed.
- 12. Check sample cylinder for leaks by immersion of the valves in water or by use of a commercial leak detection solution. Plug valves (if female) or cap valves (if male).

Pitot & Bypass Spot Sampling Method

Proposed by Fred Van Orsdol, SPL Corp.

This system would include a Pitot tube inside the meter run facing upstream, followed at the appropriate distance by a Pitot tube facing downstream. Both tubes would be connected to external sampling equipment via vertical couplings welded onto the top of horizontal piping.

On the outlet of the upstream coupling would be a full opening, permanently mounted valve (full opening ball valves for example – not the typical 1/8" diameter passage valves on current cylinders). Close coupled to that valve, in the vertical, would be a sample cylinder with similar full opening valves on its' inlet and outlet. From the sample cylinder outlet valve, tubing would return to the pipe and connect immediately to a full opening valve mounted on the downstream coupling.

All external (to the piping) materials would be insulated and/or heated. All metal in the sample system except the couplings would be stainless steel.

If the flowing temperature of the stream is above the hydrocarbon dew point temperature, no heat will be required – only adequate insulation. If the flowing temperature were at the dew point temperature, heat would also be required. This may limit the utility of this proposal in remote locations without a source of heat. However, even in remote locations we might be able to rig up a safe, temporary heating system, perhaps powered by a vehicle.

To prepare the system for service, a clean cylinder with a high-pressure helium blanket (higher than line pressure) would be installed. Note that a low-pressure helium blanket might be ok, but I'm concerned about the initial fill when a new cylinder is brought into service.

Except when sampling, all valves would be closed.

To purge the cylinder and begin the process of sampling, the clean, helium-pressurized cylinder would be

placed into service by opening the full opening valve on the downstream tap, then the valve on the upstream tap, then the cylinder <u>inlet</u> valve, then the cylinder outlet valve.

To trap a spot sample, the downstream tap valve would be closed, then the sample cylinder outlet valve. Next the cylinder inlet valve would be closed, then the upstream tap valve. The cylinder would then be removed from service, capped, checked for leaks, and then shipped to a lab for analysis.

A fresh helium pressurized cylinder would then be installed, with all valves closed until a new sample is needed.

Modified Helium Pack Spot Gas Sampling Method

Apparatus required:

- Pipe thread on the sample cylinder valve that mates with the pipe thread on the sample probe valve,
- Vacuum pump, and
- Pipe thread on the vacuum pump connection that mates with the pipe thread on the sample cylinder valve

Procedure:

- 1. Evacuate the subject sample cylinder
- 2. Fill the sample cylinder with ultra-high purity (UHP) helium to a pressure at least 100 psig above the anticipated line pressure.
- 3. Loosely thread the sample cylinder directly into the sample valve mounted above the sample probe.
- 4. Slowly open the bottom valve on the sample cylinder, bleeding UHP helium into the void between the sample cylinder and the sample probe valve while tightening the connection.
- 5. Fully open the sample probe valve, equalizing the pressure on the helium pack in the sample cylinder with the line pressure, and clearing the sample probe with UHP helium.
- 6. Close the sample probe valve.
- 7. Evacuate the helium pack from the sample probe valve and the sample cylinder through the top valve on the sample cylinder.
- 8. Close the top valve on the sample cylinder.
- 9. Open the sample probe valve, filling the sample cylinder to line pressure.
- 10. Close the bottom sample cylinder valve.
- 11. Close the sample probe valve.
- 12. Disconnect the sample cylinder from the sample probe valve.
- 13. Test cylinder valves for "bubble tight" seal using a bucket of water or leak check liquid.
- 14. Plug and seal valve ports, tag the cylinder, secure and transport in accordance with company safety requirements.

Purposes:

- Collect a representative spot sample of gas without emitting greenhouse gas to the atmosphere
- Clear the sample probe without emitting greenhouse gas to the atmosphere
- Eliminate the phase change problems associated with the purge Fill-and-Empty procedure

Appendix C

GC Setup and Calibration Results

This page is intentionally blank.

C.1 Laboratory Inspection Checklist

This section presents the API MPMS Chapter 14.1, Appendix E laboratory inspection checklist that was used to survey the chromatograph and sample delivery systems at the MRF and Powder Wash field sites. This checklist was used to verify that the analysis systems at these sites complied, as mandated by the proposed test protocol, with the requirements of API Chapter 14.1. Results of the survey at both locations are recorded below.

Laboratory	SwRI MRF	Questar API
Date of Survey	July 10, 2003	November 9, 2003
Survey Conducted By	Darin L. George	Darin L. George

Sample Handling & Conditioning

Are sample cylinders heated?

If sample cylinders are heated, to what temperature?

Is the sample cylinder temperature monitored?

Is the sample heated for at least 2 hours?

Is time monitored for sample cylinder heating?

What is the length of time used for heating sample cylinders? (# hours)

Are samples taken immediately from heater to analyzer if manually transferred?

What method is used to insulate heated sample cylinders during analysis?

Insulated Blanket

Heated Cabinet

Other (Specify)

Comments

N. (X
ino (see comments)	res
	125°F
Ambient monitored	Temperature of storage
	room monitored
	electronically (see
	comments)
	Yes
	No
	At least 12 hours
	(overnight)
	Soo commonts
	See comments
	No
	Yes
Ambient temperature	Cylinder is placed in a
40°F above dew point;	room heated to 125°F and
heating not required	left overnight. Cylinders
	are connected to a
	manifold within the room,
	and samples are drawn
	through the manifold to a
	GC outside the room.

Physical Facility

Is the analyzer room heated?

Is the analyzer room air-conditioned?

Comments

No	Yes
No	Yes
Analyzer is installed outside, as designed. Columns are in insulated ovens	

Filters, Connections, and Hardware

Are filters used between sample and analyzer?	Yes	When liquids are suspected in sample
Туре:	NuPro SS-4TF-15	
Size:	15 μ m sintered filter	20 µm filter
Replacement Interval:	No regular interval	
What are the size, length and material of sample line and fittings?	1/8" diameter stainless steel tubing, 51 to 60" long; SS fittings	1/8" stainless steel tubing, 10 ft long; SS fittings
Are connections, lines, and hardware between sample cylinder and analyzer insulated?	No (ambient temperature 40°F above dew point during use)	Yes
Are connections, lines & hardware between sample cylinder and analyzer heated?	No (ambient temperature 40°F above dew point during use)	Yes
Sample loop size:	Loop 1: 0.1648 cc Loop 2: 0.7524 cc	Variable injector
Comments		Analyzer regulator is heated to 200°F

Injection System

Is the sample system a vacuum injection system?

Is the sample system a purge injection system?

If purge injection system, is there backpressure?

Can the purge rate be read or measured?

What is the purge rate?

Comments

No	Yes
Yes	Yes
Yes	Yes
No (see comments)	No (see comments)
	400 cc/min
Back pressure can be monitored; pressure is 85 psig, within specs	Analyzer typically uses vacuum injection, then purge injection. Back pressure adjustable but not measurable; flow rate measurable.

Analyzer

What is the analyzer brand?

What is the analyzer model?

What is the analyzer's serial number?

Is this an isothermal run?

If "YES," record temperature in °C.

If "NO," secure a copy of the temperature program.

Are the columns configured per GPA 2261?

If "NO," list the configuration.

Integration method:

Peak height

Area

Data logging method:

Manual

Electronic

Highest carbon number component analyzed is:

Calibration schedule is:

Analysis frequency is:

Daniel	Varian	
Daniel 2350 GC	Varian 4900 Quad GC	
384073	4910070	
Yes	Yes	
82°C	Channel A: 103°C Channel B: 87°C	
Yes	Yes	
No	No	
Yes Yes		
No	No	
Yes	Yes (Star software)	
C ₉ +	C ₉ +	
Daily	Daily	
5-minute intervals	Weekly	

Carrier Gas

What is used as the carrier gas?

What is the purity of the carrier gas?

Is the carrier gas pressure monitored?

Is the carrier gas flow rate monitored?

If yes, carrier gas flow rate in cc/minute: Is a carrier gas drier used?

If yes, type of drier material used:

Replacement interval of carrier gas drier material:

Helium	Helium
99.999%	99.999%
Yes	Yes
Yes	No
0.55 to 0.65 sccm	
No	No (dry environment)

Calibration Standard Gas

Manufacturer of calibration standard

Is calibration standard age less than a year old?

If "NO", list the date blended

Is the calibration standard heated continuously?

If no, list the length of time heated before use:

To what temperature is the calibration standard heated?

Is an insulation blanket or heated cabinet used for the calibration standard?

Can the cylinder pressure of the calibration standard be monitored?

If yes, record the pressure in PSIG before and after each test.

Does the lab have calibration standards required for the test program?

Is the hydrocarbon dew point for the calibration standard available?

If yes, hydrocarbon dew point:

Has or could the calibration standard ever been exposed to a temperature below the hydrocarbon dew point?

Comments

Scott Specialty Gas	DCG Partnership	
Yes	Ves	
100	105	
No	Yes	
Not heated (see comments)		
Not heated (see comments)	125°F	
No	Yes (heated room)	
Yes	Typically yes, though the standard used for these tests was not monitored	
95 psig		
Yes	Yes	
Yes	Yes	
Cricondentherm = 27°F	Cricondentherm = 84.9°F	
No	Yes (see comment)	
Calibration standard is kept in a climate- controlled room at 70°F; transfer lines to GC are heated to 120°F. The dew point of the standard is computed before use to confirm that the room temperature is not below dew point.	Standard was placed in a heated room at 125°F for two weeks before use.	

Calculation

Are the component constants used in accordance with the latest GPA 2145?	No	No
If "NO," what constants are used?	GPA 2145-95	GPA 2145-00
Can the constants be verified?	Yes	Yes
Are the calculations performed in accordance with the latest version of GPA 2172?	Yes (GPA 2172-96)	Yes (GPA 2172-96)
Other methods used:	None	None
Values for C_6^+ or other heavy fraction:		
C_6	As given in GPA 2145	As given in GPA 2145
C_6 +		
C ₇	As given in GPA 2145	As given in GPA 2145
C ₇ +		
Other (Specify)	C ₈ as given in GPA 2145; all heavier components assigned values for C ₉	C_8 as given in GPA 2145; all heavier components assigned values for C_9
Composition of fraction:		
C_6	As measured	As measured
C ₇	As measured	As measured
C_8 +	C ₈ as measured	C ₈ as measured
Other (Specify)	C_9 and heavier components treated as C_9	C ₉ and heavier components treated as C ₉

Quality Control Program

Does a Quality Control Program exist? Can a copy of the Quality Control Program be

obtained?

Comments

Yes	Yes
No (currently under revision)	Not available
QC program includes statistical process control, checks of standards	QC program includes regular audits, tests of helium blank samples, different standards, records kept for 2 years

NOTE: Rating by Team

Documentation

Secured area counts and response factors?	Yes	Response factors only
Secured chromatograms and results?	Yes	Yes
Secured copy of analysis report for calibration standards?	Yes	Yes
Secured relative density?	Yes	Specific gravity recorded
Secured HV - saturated and unsaturated, both real and ideal?	Real heating values only	Real heating values only
Secured mol% both normalized and un- normalized?	Yes	Yes
Secured starting and ending pressures for both lab's calibration standard and audit group's standards?	Pressure recorded for lab standard (no audit standard used)	No (not available for lab standard, no audit standard used)

C.2 GC Calibrations

The following sections present the details of the chromatograph calibrations that were performed for the tests conducted at the MRF, the Powder Wash field site, and the repeat tests at the Powder Wash field site.

C.2.1 MRF GC

The MRF GC was calibrated on a 1,030 Btu/scf gas. Figure C-1 is a plot of the calculated dew point curve for the calibration gas. This plot confirms that it is not necessary to heat the calibration gas, since the gas is kept in a climate controlled room which maintains the gas at a temperature at least 50°F above the computed cricondentherm. The fidelity plots for the two columns in the GC are shown in Figure C-2 and Figure C-3. The relative response factors for both columns follow a linear trend, as expected.

Figure C-1. Dew point curve for gas used to calibrate the Daniel 2350 GC at the MRF. Curve computed from SRK equation of state.

Figure C-2. Fidelity plot for column A of the MRF Daniel 2350 GC. June 2003 calibration runs on Scott gas #XL002396.

Figure C-3. Fidelity plot for column B of the MRF Daniel 2350 GC. June 2003 calibration runs on Scott gas #XL002396.

C.2.2 Powder Wash GC

The portable GC at the Powder Wash site was calibrated on a 1,200 Btu/scf gas. Figure C-4 is a plot of the calculated dew point curve for the calibration gas. The gas was maintained at 125°F, which was 40°F above the computed cricondentherm. The fidelity plots for the two columns in the GC are shown in Figure C-5 and Figure C-6. The relative response factors for column A are linear, but not for column B. As a further check on the GC operation, the GC was calibrated on a second gas and showed linear response factors for both columns. The fidelity plots for the second calibration are shown in Figure C-7 and Figure C-8. The acceptable calibration on the second gas suggests that there were no problems with the operation of the GC, but rather that the stated composition of the first gas blend was not correct.

Figure C-4. Dew point curves for gases used to calibrate the Varian CP-4900 GC at the Powder Wash site. Curves computed from SRK equation of state.

Figure C-5. Fidelity plot for column A of the Varian CP-4900 GC at the Powder Wash site. November 11 calibration run on DCG gas #22933AW.

Figure C-6. Fidelity plot for column B of the Varian CP-4900 GC at the Powder Wash site. November 11 calibration run on DCG gas #22933AW.

Figure C-7. Fidelity plot for column A of the Varian CP-4900 GC at the Powder Wash site. November 12 calibration run on Scott gas #ALM051559.

Figure C-8. Fidelity plot for column B of the Varian CP-4900 GC at the Powder Wash site. November 12 calibration run on Scott gas #ALM051559.

C.2.3 Powder Wash GC - Repeat Tests

The portable GC at the Powder Wash site used for the retests was calibrated on the same 1,200 Btu/scf gas as used previously. The fidelity plots for the two columns in the GC are shown in Figure C-9 and Figure C-10. As in the calibration for the November tests, the relative response factors for column A are linear, but not for column B.

Figure C-9. Fidelity plot for column A of the Varian CP-4900 GC at the Powder Wash site. December 18 calibration run on DCG gas #22933AW.

Figure C-10. Fidelity plot for column B of the Varian CP-4900 GC at the Powder Wash site. December 18 calibration run on DCG gas #22933AW.

Appendix D

Detailed Test Results

The following tables compare the analyzed compositions of each sample with an analysis of the flowing gas stream taken at approximately the same time as the sample. The contents of each sample cylinder were analyzed three times to assess the repeatability of the sample method. The results of each cylinder analysis were compared to the flowing stream analysis to assess the ability of the sampling method to reproduce the stream composition.

This page is intentionally blank.

Table D-1. Detailed results from MRF sampling tests, June 18, 2003: Fill-and-Empty method.

Sample FE1	Date	Sample Time	Mathana	Ethane	C02	Vitrogen F	Propana Is	obutane n-	Butana Is	opentane In	-Pantana N	eopertane	n-Hasana I	h-Hepterie	n-Octane	Hv dry (Btursef)
Sample Bottle GC Analysis-1 (MoYS) Sample Bottle GC Analysis-2 (MoYS) Somple Bottle GC Analysis-2 (MoYS) Max. Absolute Devision-Successie (MoVA) Max. Ansolute Devision-Coreol (MoVS)	6/18/2003	13:17 - 13:20	92.212402 92.208473 92.210626 92.210626 0.00	4.389621 4.38994 4.380337 4.380337 0.00	0.1091977 0 1.093146 0 1.093292 0 0.00	0.0000000000000000000000000000000000000	012227 0	110845 0. 110857 0. 1111003 0. 0.00	169599 0 168907 0 168909 0 18909 0 0.00	042013 0	0.037194	0.017102 0.01687 0.01687 0.010	0.018488	0.003068	0.000361 0.000126 0.000382 0.000382	1065.613169 1065.754395 1065.64963 0.14 0.14
Repeatability Criteria (± Mol%)			052 VES		998	B R	99	C C C C	210 210 210	20 S	20 20 20 20	20 20 20 20 20 20 20 20 20 20 20 20 20 2	603 613 613	201 201 201	200 210 212	1.00 VFS
Max. Absolute Devision [Mol%] Braceduation [Mol%]	E/18/2003	51:E1	92.192966	4.388204	0.00	0.00	1 986E/10	0.00	000000000000000000000000000000000000000	000	0.00	0.01	0.00	000	0.00	1056.5625 0.95
Reproducibility Acceptable?			ABS A	YES	383	K SH	383	YES .	YES 4	ta Si Si	YES H	KB,	ΥB	KES .	19 19	YES
Samole FE2	Date	Samela Tima	Mathana	Ethano	C02	Atronan F	Propana Is	obutane n-	Butano Is	opertane n	-Pantana N	econtane	n-Haxana	o-Heatane	0-Octane	Hv dry (Bturjsch
Sample Bottle GC Analysis-1 [Mot%] Sample Bottle GC Analysis-2 [Mot%]	6/18/2003	13.28 - 13.33	92.201973 92.206605	4.393944	1.094031 0	1.827652 1	074487 0	111378 0.	170047 C	042141	0.03764	0.017336	0.018581	0.010908		1065.750488 1065.701294
Sample Bottle GC Anafysie 3 [Mo1%] Max. Absolute Deviation-Successive [Mo1%]			92.20282 0.00	4.383769	1.033504	0.8263 1	074601 0	111156 0.	0.00	0.042115 0	0.037306	0.01706	0.018431	0.013161	- 8	1065.85437 0.15
Max. Absolute Deviation-Overall [Mot%] Repeatability Criteria (± Mot%]			0.00	0.00	89	88	89	88	8.6	88	88	000	000	88	88	0.15
Repeatability Acceptable? Process GC Analysis [Mot8s]	EVECTOR	13:30	YES 92.19136	YES 4.389372	YES 1.092742 (YES 0.82569	YES 07427	YES 111113 0	YES 168943 0	YES 1042405	YES 0.037619	7ES 0.029661	VES 0.023098	YES 0.011449	VES 0.002274	YES 1096.962744
Max. Absolute Deviation [Mol%] Reproductsify Criteria [± Mol%]			0.01	000	85	88	85	000	88	88	88	20	88	88	88	80 m
Reproducibility Acceptable?			ΥES	YES	ξ	YES	ΥES	YES	YES	ξE	ŝ	YES	χEX	YES	Ϋ́ES	YES
Sample FE3	Date	Sample Time	Mathana	Ethans	- C02	Vitrogen F	Propane Is	obutane n-	Butana Is	opentane n	-Pantana N	sopertane	n-Haxana	hettene	n-Octane	Hv dry (Btursct)
Sample Bottle GC Analysis-1 [Mo196]	6/18/2003	13:48 - 13:54	92.200264	4.394859	1.093965 0	1.606963 1	074673 0	111184 0.	168947	0.04212 0	0.03/7687	0.017477	0.018686	0.011306	00000	1066.850342
Sample Bottle GC Analysis-2 [MoYS] Samela Bottle GC Analysis-3 [MoYS]			92.202896	1.383884	1.093884 0 1.093684 0	1 826368 1	074293 0	111096 0.	153682	0.04252 0	0.037806	72E710.0	0.018478	0.010517	0.000919	1065.803467 1065.781616
Mae. Absolute Deviation-Successive [Mol%]			0.00	0.00	0.00		0.00		80	000	000	000	000	800	80	0.05
Max. Absolute Deviation-Overall [Mot%] Reveated the Cateria (+ Mot%)			100	8	85	88	85	88	88	86	88	88	86	88	88	0.07
Repeatability Acceptable?			λES	,ES	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	YES	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	YES	YES	λES	183	YES	λES	YES	18	AES -
Process GC Analysis [Mof8s]	EVIBCOOG	05EL	92.210426	4.381073	1.092795	1 227225	0.74885	111385 0.	163124	0.04246 0	0.037841	0.015516	0.016503	0.008821	0.001943	1055.59394
read Account Denation (monte) Reproducibility Criteria (± Mor%)			680	85	38	30	35	3 3	88	88	88	30	88	38	38	88
Reproducibility Acceptable?			ΥES	YES	ξ	YES	χES	YES	ΥES	ž	Ϋ́Ε	YES	ΥES	YES	ŝ	YES
Sample FE4	Date	Sample Time	Mathana	Ethana	C02	Vitragen F	Propana Is	obutane n	Butana Is	opentane n	-Pantana N	eopartana	n-Haxana r	heptene	n-Octane	Hv dry (Bturset)
Sample Bottle GC Analysis-1 [MoTS] Samela Bottla GC Analysis-2 (MoTS)	6/18/2003	13:58 - 14:02	92.209601	4.386804	1.090304 0	1 806/201	073769 0	0 1100111	169464 C	042034 0	105/201	0.017248	0.0184/4	0.011362	0.000282	1065.636503 1065.633667
Sample Bottle GC Analysis-3 [Mot95]			92.203665	4.39829	1.093681 0	805906 1	074405 0	111156 0	189/76 0	042248 0	0.037795	0.017267	0.018497	0.011712	0.000388	1065.826538
Max. Absolute Deviation-Successive [MolW]			0.01	88	88	88	88	88	88	88	88	88	88	88	88	019
Repeatability Criteria [± MoTS]			0250	8.8	38	38	38	88	38	38	38	80	38	38	38	1.00
Repeatability Acceptable?			ΥES	YES	ΥES	YES	ΥES	YES	ΥES	ΥES	ΥES	YES	ΥES	YES	ΥES	ΥES
Process GC Analysis [Mof8] Max Ahrohite Devition [Mof9]	EVIBCODO	14:00	92.209274	4.3871.55	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.00	1055.854858 0.22
Reproducibility Criteria [± MoTS]			0.63	EL.D	610 210	50	013	MOI	0.04	0.04	0.04	90	0.04	NO SO	0.04	000
Heproductority increased and			3	2	ß	ĝ	3	2 2	3	ß	3	2	3	2	3	ß
Sample FE5	Date	Sample Time	Mathana	Ethana	C02	Vitragen F	Propana Is	obutane n-	Butana Is	opentane n	-Pantana N	eopentane	n-Haxana n	0-Heptene	n-Octane	Hv dry (Bturscf)
Sample Bottle GC Analysis-1 [MotSi] Samela Bottle GC Analysis-1 [MotSi]	6/18/2003	14:07 - 14:12	92.2049/79 47.206249	4.392692	1.08378 0	1.827806 1 836726 1	074508 0	111267 0.	169696 C	042383 0	0.030683	111110	0.018361	0.009619		1065.868894 1065.868894
Sample Bottle GC Analysis-3 [MotSs]			92.201408	4.392963	1.094621 0	1.626268	07494 0	111313	0.17	042163 0	0.037644	0.01743	0.018783	0.012677		1065.858934
Max. Absolute Deviation-Successive [Mol %]			88	88	88	88	88	88	88	88	88	000	88	88	88	0.0
Max. Adsolute Dension-Constal [MoDe] Renestability Driteria [+ MoPS.]			86	8	89	88	39		88	88	38	88	88	88	38	100
Repeatability Acceptable?			YES	YES	YES Y	YES	YES	YES	XES .	YES	YES	YES	YES	YES	YES I	YES
Process GC Analysis [MotSs]	E/IB/2003	14:10	90.19706	4.388803	1.092462	1.806966	0742/05	111175	11687	042105 0	0.037713	6/5/2010	0.021504	0.00845	0.002209	1066.277466
Max. Absolute Uenstion [morth] Reproducibility Criteria [± Morts]			0.63	BUD	35	30	9 E E	30	80	310	380	50	360	30	80	300
Reproducibility Acceptable?			YES	YES	YES	YES	YES	YES	YES	YES	YES	YES	YES	YES	YES	YES

Table D-2. Detailed results from MRF sampling tests, June 18, 2003: Controlled Rate Purge method.

Canada (104	Date	Execute Time	Markey and	Tableson and	000	Manager 1	Distance Ite	which we are	Distant In	- newspapers	Distant P	Annual second	a House	o Hoston	A Orithma	the day (Directory)	
Sample Bottle GC Analysis-1 (MoTS) Sample Bottle GC Analysis-2 (MoTS) Sample Bottle GC Analysis-2 (MoTS) Sample Bottle GC Analysis-2 (MoTS) Alas: Absolute Devision-Successing (MoTS) Alas: Absolute Devision-Coreal (MoTS) Alas: Absolute Devision-Coreal (MoTS) Analysis According Alas)	8/18/2003	14:40 - 14:45	92 206361 92 20636 92 20636 0.00 0.00 0.52 VFS	4 391447 1 4 389758 1 4 380469 4 0.00 0.00 0.10 VFS	0.000 0.000 0.00 0.00 0.00 0.10 0.10 0.	0.001/462	0.1073077 0.1073032 0.100 0.100 0.100 0.100 0.100 0.100 0.100	1110972 0 1111244 0 0.00 0.00 0.00 0.00	1163605 1163605 1163685 0.00 0.00 0.00 0.00 0.00	0.04178 0.04178 0.04178 0.04178 0.04178 0.04178 0.00 0.00 0.00	0.036933 0.036933 0.037682 0.037682 0.00 0.00 0.00 0.02 0.02	0.017687 0.017687 0.017687 0.00 0.00 0.00	0.018788 0.018788 0.018788 0.018978 0.00 0.00 0.00 0.00 0.00	0.0001379	0.000622 0.0006234 0.000434 0.00 0.00 0.00 0.00	m or 1 005.054002 1065.054002 1065.71167 1065.71167 1065.71167 1055.71167 1054 1.00 VFS	
Are Abording Process GC Analysis (Mo1%) Are Abording Devision (Mo1%) Septoduceality Acceptable? Septoduceality Acceptable?	1 Er18/2003	14:40	92.157235 0.01 0.63 YES	4.387389 0.00 7/ES	0.00 0.13 7ES 7ES	0.00 YES	0.13 0.13 0.13 VES	0.00 0.00 YES	0.00 0.04	0.00 0.00 VES YES	0.00 0.00 VES YES	0.01 1.04 YES	0.021965 0.00 YES	0.011176 0.00 YES	0.00 0.00 VES	1066.436157 0.77 3.00 YES	
Sample CR2 Sample Entle CK Analysis-1 [M016] Eargia Entle CC Analysis-2 [M016] Eargia Entle CC Analysis-2 [M016] Sample Entle CC Analysis-2 [M016] Aax. Absolute Devision-Successing [M016] Aax. Absolute Devision-Coreal [M016] Aax. Absolute Devision-Coreal [M016] Canantation Accord M016]	Date 018/2003	Sampla Tima 14:63 - 14:67	Mathana 92.211464 92.221909 92.221909 0.01 0.01 0.01 VFS	Ethana Ethana 4.386292 1 4.377951 1 4.377951 1 0.01 0.01 0.01 0.01 0.01 0.01 0.01	C02 C02 C02 C02 C02 C02 C02 C02	Nitrugan 1 0.027166 1 0.0257166 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	Proparia 1s 0.072789 0 1.072789 0 1.07268 0 1.0766 0 0.100 0.100 0.100 0.100 0.100 0.100	0 butane n 1111077 0 1111584 0 0.00 0.00 0.00 0.00	Butana II 168737 (171276 (171276 (0.00 0.00 0.00 0.00 0.00 0.00	opertand / 0.042539 0.042044 0.00 0.00 0.00 0.00 0.00 0.00	0.03767 0.037695 0.037695 0.036903 0.036903 0.036903 0.036903 0.00 0.00	4eopentana 0.016813 0.014378 0.014378 0.014378 0.00 0.00 0.00	n-Havana 0.018347 0.018347 0.01816 0.00 0.00 0.00 0.00 VFS	0.010179 0.010179 0.009536 0.009536 0.000 0.00 0.00	n-Octane 0.001087 0.000931 0.00071 0.000 0.00 0.00 0.00	Hv dry (Bturlect) 1065.636289 1065.636289 1065.633691 0.29 0.29 1.00 v Fic	
Am. Absolute Deviation (Mod%) Am. Absolute Deviation (Mod%) Septeduce birty Acceptable? Reproduce birty Acceptable?	E/18/2003	14:55	92.186249 0.04 YES	4.38478 0.01 7.13 YES	0.00 0.13 VES	0.00 0.00 YES	0.00 0.13 VES	0.00 0.00 YES	168874 0.00 0.00 0.04 YES	000 000 004 VES	0137899 0.00 YES	0.031005 0.02 YES	0.023455 0.01 0.04 YES	0.01 0.01 YES	0.00 0.00 0.04 YES	1066.966576 1.43 3.00 YES	
Sample Entle CC Analysis-1 (Mol%) Sample Entle CC Analysis-1 (Mol%) Earniple Entle CC Analysis-2 (Mol%) Sample Entle CC Analysis-3 (Mol%) Aax. Absolute Devision-Successive (Mol%) data. Absolute Devision-Correl (Mol%) data.	Date 6/18/2003	Sampla Tima 15.00 - 15.07	Mathana 92.213585 92.214578 92.214578 0.00 0.00 0.52 YES	Ethana Ethana 4.38836 14.388356 14.3887156 0.000	C02 1093276 10093276 10093276 10093276 10093275 10093271 1009341 1000341 10003	Nitrogen 1 1826142 1826142 1826142 1826142 1826142 1826142 1820 1820 1820 1820 1820 1820 1820 182	Proparta 15 Proparta 15 0.072683 0 0.000 0.000 0.10 0.000 0.10	obutane n 1111221 0 1111221 0 1111041 0 0.00 0.00 0.00 1.02 YES	Butane 10 1170066 (1170066 (1169541 (1169741 (116974	opertane / 0.0418/2 10/ 0.002348 10/ 0.00 0.00 0.00 0.00 0.02	9-Pertana / 0.037391 0.03781463 0.037627 0.000 0.000 0.000 0.000 0.000	teopertana 0.017002 0.016861 0.016861 0.00 0.00 1.00 7/ES	n-Haixana 0.018594 0.018595 0.018595 0.00 0.00 0.00 0.00 0.02 YES	A-Heptane 0.01001 0.009358 0.009996 0.00 0.00 0.00 7/ES	POctane 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Hi dry (Bhulsef) 1065.624268 1065.624268 1065.621946 1065.621946 0.05 1.00 YES	
Aar. Absolute Devision 50 Analysis (norto) faprolucibility Criteria (± MOIS) teprolucibility Acceptable?	EVIBUATION	15.05	92.196091 0.02 YES YES	4.382/59 0.01 YES	013 013 7ES	0.00 1.04 YES	0.10 0.13 VES	1110es 0 0.00 7/ES	(689us 0.004 VES	000 000 VES	0.00 0.00 VES VES	0.01 0.01 YES	0.024045 0.01 VES YES	0.00 0.00 YES	0.002581 0.00 VES	1066.536.278 0.97 3.00 ΥΕS	
Sample CR4 Sample CR4 Sample Bettle GC Analysier MoTS) Eargia Bettle GC Analysier 2 MoTS, Sample Bettle GC Analysier 2 MoTS, dar. Absolute Deviation-Successing (MoTS) dar. Absolute Deviation-Coreal (MoTS) dar. Absolute Deviation-Coreal (MoTS) feet analysis Accession-Coreal (MoTS) (secondating Accession-Coreal (MoTS)	Date 6/18/2003	Eample Time 15:11 - 15:13	Mathana 92.21106 92.200589 92.200589 92.200582 0.01 0.01 0.01 VES	Ethana 4.389179 4.387454 4.387454 0.00 0.00 0.10 YES	CO2 1000015 1000015 1000015 10000015 10000015 100000000	Nitrogen 1.8265393 1.8265393 1.8256339 1.827043 1.827043 1.000 0.00 0.00	Proparea 113 1.072886 0 1.0728867 0 0.072129 0 0.000 0.100 0.100 YES	00000000000000000000000000000000000000	Butane (170198 (170046 (170046 0.00 0.00 0.00 0.02 YES	opertana 1 0.042314 0.042305 0.00 0.00 0.00 0.00 0.02 0.00	P. Partana I 0.037604 0.037464 0.037464 0.037492 0.037492 0.00 0.00 0.00 VES	4eopentane 0.017019 0.012994 0.012394 0.00 0.00 0.00 7ES	n-Harana 0.018868 0.030514 0.030514 0.03056 0.01 0.01 0.01 0.01 0.01 0.01	PHeptene 0.009767 0.012475 0.012475 0.012475 0.00 0.00 0.00 0.00 0.00	ACtarte 0.000487 0.000681 0.000681 0.00 0.00 0.00 0.00 0.00 0.02 0.02	Hi dry (Bhu/sef) 1066/892261 1066/892261 1066/143433 0.63 0.63 1.00 YES	
Process SC Analysis (Ma1%) Ann. Absolute Devision (Ma1%) Reproduceating Connea (± Ma1%) Reproduceating Acceptable?	E/18/2003	15:10	92.204984 0.01 0.63 YES	4.380719 0.01 YES YES	0.00 0.00 0.13 YES	0.00 0.00 7ES YES	0.00 0.00 0.13 YES	0.00 0.00 7/ES	0.00 0.00 0.04 VES	0.00 0.00 0.04 YES	0.00 0.00 7ES YES	0.02 0.02 YES	0.01 0.01 VES YES	0.00 0.00 YES	0.00 0.00 VES VES	1066.387207 0.69 3.00 YES	
Sample CRG Sample Bottle GC Analysis-1 [Mo15] Sample Bottle GC Analysis-2 [Mo153]	Date 6/18/2003	Sample Time 15:15 - 15:19	Mathana 92.194412 92.209785	Ethana 4.389174 1.388082	C02 093008 0.093008 0.093008 0.093008	1 000000000000000000000000000000000000	Propana Is 1.072306 0 1.072615 0	obutane n 111128 0 111294 0	Butana 1 169779 170134	opentane r 0.042518 0.041586	9-Pantana 1 0.037808 0.03748	60.017478 0.017478 0.017723	n-Haxana 0.028443 0.018889	0.014829 0.014829 0.009698	n-Octane 0.00042 0.000505	Hv dry (Btursch) 1066.361816 1065.657715	
Sample bottle GC Analytisms promov Alax, Absolute Deviation-Successive [Md/M] Alax, Absolute Deviation-Overal [Mo1%] Repeated ity, Orthone (± Mb1%]			92.2002/0 0.02 0.02 0.52 vec	0.00	0.00 0.00 0.10 0.10 0.10	000/701 0000	0.000 U/2000 U 0.000 0.000 0.000 U 0.10 0.000 V ERG	000111.000	0.00 0.00 0.00 0.00 0.00 0.00 VEC	0.00 0.	0.000 0.00 0.00 0.00 0.00 VEc	000	0.019060 0.01 0.01 0.02 0.02	00000000000000000000000000000000000000	0.000	1060./38014 0.70 1.00 1.00	
representation - Process GC Analysis (Mot%) Process GC Analysis (Mot%) Ass. Absolute Devision (Mot%)	E/18/2003	15:15	92.201523	4.382946	000	1 SZE323	0.00	0.00	168718	0.00	000	0.01	0.01	0.00	0.00	1056.391113 0.73	
Reproducibility Criteria (± Mol%) Reproducibility Acceptable?			VES VES	VES SEA	E SE	NES SEA	VES YES	e est	YES 0.04	XES 0	705 X 05	YES	VES VES	Nes Nes	XES O	300 YES	

Table D-3. Detailed results from MRF sampling tests, June 18, 2003: Helium Pop method.

County 1014	Deta:	Encode There	Linkbane .	Tabaaa	000	All Second	Theorem 1	- Andrews	Total and		Doubood 1	a na	a Harran	a Lineburg	Colored I	An other officer of the	
Sample Bottle GC Analysis-1 [MD/6] Sample Bottle GC Analysis-2 [MD/6] Sample Bottle GC Analysis-2 [MD/8] Sample Bottle GC Analysis-2 [MD/8] Marc Absolute Devision-Success [MD/6] Marc Absolute Devision-Coreal [MD/6] Marc Absolute Devision-Coreal [MD/6] Construction-Access [MD/6]	8/18/2003	11.02 - 11.04	Multialine 92.19658 92.19658 92.19658 0.00 0.00 0.00 0.00 0.00	4.396396 4.396396 4.396858 4.395858 0.00 0.00 0.10 v/FC	1.092616 1.092561 1.092361 0.00 0.10 0.10 0.10	0.634769 0.634769 0.63191 0.00 0.00 0.00	0.1079685 [010] 0.1079685 [010] 0.100 0.100 0.100 0.100 0.100 0.100	0.111243 0.111243 0.00 0.00 0.00 0.00	1169509 (169509 (169591 (169691 0.00 0.00 0.00 0.00 0.00 0.00	0.042177 0.042177 0.041993 0.00 0.00 0.00 0.00 0.00	0.037521 0.037521 0.037478 0.037478 0.00 0.00 0.00 0.00 0.00	0.016336 0.016336 0.017726 0.017726 0.00 0.00 0.00	0.018675 0.018675 0.018575 0.018509 0.00 0.00 0.00 0.00	0.010007 0.011004 0.011034 0.00 0.00 0.00 0.00	0.000269 0.000269 0.00 0.00 0.00 0.00 0.00	W ury (1800/201 1066/698232 1066/698232 1066/89932 0.07 0.17 1.00 v Field	
negrennen zwarpone G. Analysis (MoRS) Max. About Dension (MorK) Reproduce bitty Acceptable? Reproduce bitty Acceptable?	EVIECTOCA	10.59	92.182167 0.01 YES YES	4.387489 0.00 YES	0.00 0.13 YES	0.01 0.04 YES YES	0.00 0.13 VES	1111438 0.00 YES	0.16902 0.00 0.04 YES	0.00 0.00 VES VES	0.00 0.00 VES VES	0.01 0.01 YES	0.020589 0.00 YES	001168 0.00 YES	0.00 0.00 VES	1066.648193 0.06 YES	
Sample HP2 Sample Entri 6 (Ambris-1 Mr/S) Sample Entri 6 (Ambris-1 Mr/S) Sample Entri 6 (Ambris-2 Mr/S) Max Abouto Destrion-Successing (Mr/S) Max Abouto Destrion-Current (Mr/S) Max Abouto Cristia E Mr/S) Reportability Acceptable?	Date 6/18/2003	Sampla Time 11.06 - 11.08	Mathana 92 199799 92 2001111 92 200266 0.00 0.00 0.00 0.52 YES	Ethana 4.394761 4.394468 4.394468 0.00 0.00 0.10 YES	C02 1.092317 1.092317 1.092702 1.092702 0.00 0.00 0.10 7ES YES	Nitrogen 0.8321686 0.8316344 0.000 0.000 0.000 0.000 0.000 0.000	Propane II 1.074545 (0 1.0745329 (0 1.0748329 (0 0.00 0.00 0.10 YES	0.111063 0.11122 0.111063 0.00 0.00 0.00 0.00 0.00	Harana II 1168481 1168278 0.00 0.00 0.00 0.00 0.00 0.00	0.04194 0.04194 0.041953 0.041902 0.00 0.00 0.00 0.00 0.00	0.0370/95 0.0370	(eopentane 0.017282 0.017281 0.00 0.00 0.00 0.00 0.00 0.00	n-Havana 0.018211 0.01825 0.01825 0.00 0.00 0.00 0.00 0.00	0.010364 1 0.010364 1 0.011538 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00038 0.00038 0.000473 0.00 0.00 0.00 0.00 0.00 0.00	W dry (Btw/scf) 1065/897144 1065/899707 1065/899707 0.04 1.00 YES	
Ams. Absolute Devision (Marlis) Ams. Absolute Devision (Marlis) Reproduce bitly Acceptable? Reproduce bitly Acceptable?	E/18/2003	11 04	92.178398 0.02 0.63 YES	4.393802 0.01 YES	0.00 0.13 VES	0.01 0.01 YES	0.00 0.13 VES	0.00 0.00 YES YES	0.00 0.04 VES	0.00 0.00 7ES YES	0.03771 0.00 0.04 YES	0.01 0.01 YES	0.02597 0.00 0.04 YES	0.00 1.04 YES	0.00 0.00 YES	1066.647583 0.89 3.00 YES	
Sample HP3	Date	Sample Time	Mathana	Ethana	C02	Ntragan	Propana II	sobutane r	-Butana I	sopentane i	-Pantana h	leopentane	n-Haxana	0-Heptene	n-Octane	Ar dry (Bhursof)	
Symple Both 6C, Knylyse'z (MrS) Symple Both 6C, Knylyse'z (MrS) Symple Both 6C, Knylyse'z (MrS) Max. Absolute Orisitor-Successing [Md/N] Max. Absolute Orisitor-Oceal [Mo/S] Repeatability Acceptable? Repeatability Acceptable? Max. Absolute Orisitor [Md/S]	6/18/2003 6/18/2003	11:12 - 11:13	82.156969 92.156769 82.157789 0.01 0.01 0.01 0.52 YES 92.180107 0.02 0.02	4.397338 4.397302 0.00 0.00 0.00 7.55 7.55 4.398138	1.092167 1.092267 0.000 0.000 0.10 0.10 0.10 0.10 0.10 0	0.831345 7 0.82948 7 0.02948 7 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	1.075406 [1.075561 [0.00 0.10 0.10 0.10 0.10 VES 1.077085 [0.00 0.10 0.10 0.10 0.10 0.10 0.10 0.1	1.111368 1.111366 0.00 0.00 0.00 0.00 0.00 1.111384 0.00 0.00	0.1696 0.1696 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	0.04236 0.042468 0.0041619 0.00 0.00 0.00 0.00 1.02 7.65 7.65 0.00 0.00 0.00	0.037651 0.03751 0.03751 0.00 0.00 0.00 vES vES 0.00 0.00	0.017802 0.017404 0.017404 0.00 0.00 1.00 YES YES 0.01 0.01	0.018788 0.018788 0.01916 0.01 0.01 0.01 0.02 0.02 0.02 0.02 0.01 0.02 0.01	0.009466 0.012/05 0.010002 0.00 0.00 7/ES 7/ES 0.00	0.000765 0.000478 0.000239 0.000 0.00 0.00 0.00 0.00 0.00 0.00 0	1066.78625 1066.78626 1066.78488 1066.78488 0.80 1.00 YES 1086.633057 0.87 0.87	
Reproducibility Acceptable? Reproducibility Acceptable?			YES YES	0.13 YES	0.13 YES	YES	013 YES	YES YES	YES YES	9.004 YES	YES YES	YES	YES YES	YES 4	VES VES	ΥES	
Sample HP4	Date	Sample Time	Mathana	Ethana	60	Ntrogen	Propana II	pobutane r	-Butana I	sopentane	-Pantana h	leopentane	n-Haxana	n-Heptene	n-Octane	-lv dry (Bturset)	
Symple Britle GC Analyser's I Mortos Symple Britle GC Analyser's I Mortos Sample Britle GC Analyser's I Mortos Max. Absolute Deviation-Successive [Mortos] Repeatability Criteria (E. Mortos) Repeatability. Acceptable?	6/8/2003	11:15 - 11:16	92 19/243 92 200562 92 209827 0.00 0.01 0.01 YES YES	4.3869.25 4.395389 4.395389 4.393878 4.393878 4.393878 0.00 0.00 0.10 0.10	1.090527 1.0925922 1.0925922 0.00 0.10 0.10 0.10 YES	0.82/94 0.82/94 0.82/94 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	1.07586 1 1.075574 1 1.075573 1 0.00 0.00 0.10 0.10 YES	0.1113350 0.1111374 0 0.00 0.00 0.00 0.00	(168649 (168972 (168786 0.00 0.00 0.00 0.02 YES	0.042014 0.0420137 0.042137 0.000 0.00 0.00 0.00 0.00 VES	0.037349 0.037545 0.037645 0.00 0.00 0.00 0.00 0.02 VES	0.017109 0.017678 0.017346 0.00 0.00 0.00 0.00 0.00	0.01854 0.018543 0.018679 0.000 0.00 0.00 0.00 0.00	0.01126 0.011488 0.011047 0.00 0.00 0.00 0.00 7/ES	0.00038 0.00071 0.00071 0.00 0.00 0.00 0.00 0.0	1065.642/73 1065.642/73 1065.653027 0.03 0.03 1.00 YES	
Process GC Analysis [Mot%]	E//B/2003	11:14	92.178429	4.385813	1.05G144	1.825565	1.076794 0	1.111421 0	168072	0.042531	0.037808	0.029846	0.022786	21E010.0	0.002378	1056.638305	
Max. Abrohute Deviation (Mol%) Reproducibility Acceptable? Reproducibility Acceptable?			0.03 YES	0.01 YES	0.00 YES	YES 400	783 1300	0.00 YES	7ES 7ES	000 VES	0.00 VES 4	0.04 YES	0.00 YES	0.00 YES	0.00 YES	0080 3000 YES	
Sample HP5	Date	Sample Time	Mathana	Ethana	C02	Ntrogen	Propana	sobutane r	-Butane I	sopertane	-Pantana h	leopentane	n-Haxana	0-Heptene	0-Octane	Widry (Bturset)	
Sample Bottle GC Analysis-1 [Mot%] Sample Bottle GC Analysis-2 [Mot%]	6/18/2003	11:18 - 11:18	92 189812 92 194466	4.396059	1.09314	0.832621	1.079613	0.111338	1169625	0.042314 0.042216	0.037458	0.017868	0.018921 0.018481	0.015046	0.000286	1066.006005 1066.798927	
Sample Bottle GC Analysis-3 [Mot%] Max. Absolute Deviation-Successive [MotW]			92.168797 0.01	4.396568	0.00	0.83184	0.00	0 000	0.00	0.042249	0.03/603	0.017464	0.018989	10/1/01	000	1066.887451 0.21	
Max. Absolute Deviation-Overal [Mol%] Repeatability Criteria [± Mol%]			0.01	85	88	88	85	88	88	88	88	88	88	88	88	1.00	
Repeatability Acceptable?	SURFACE AND A	E Pres	YES	YES	YES	YES	YES	YES	YES	YES	YES	YES	YES	YES	YES	YES Tool Provide	
Process OU Analysis (Maria) Max. Absolute Devision (Mol%) Process Carolos & Asiasi	E/18/28/28	11	0.02	0.00	44102010	0.01	0.00	0.00	0.00	000	000	0.01	0.00	1000	000	0.84	
Reproducting Uniteria (± Morts) Oseredice 5434, Accession 42			VES 0	VES	VES 1	e di	212	e cu	v EX	VES	VES 1	APR -	VES	NTC -	VES	VES	

Sample CR1	Data	Sample Time	nitrogen	methane	athana	propane ja	o-butana n	-butana -	pantana n	- pertane	haxanea	haptanas	octanes	nonanas	8	H2S	W dry (Btursch)	Hv sat (Btu/scf)
Sample Bottle GC Analysis-1 [Mot%] Sample Bottle GC Analysis-2 [Mot%]	11/10/2004	15:00 - 15:01	0.8941 D.915	84.3722 84.3715	7.1083	4.0723	0.9692	1.1375	0.3926	0.2769	0.1781	0.1145	0.032		0.4388		1199.1834 1199.0634	1179.6214
Sample Bottle GC Analysis-3 [Mot%]			0.6689	84.3709	7.112	4.0738	0.9634	1.1405	0.3946	0.2766	0.1798	0.1176	0.0343	-	0.4394	0	1199.9216	1180.3374
Max. Adsount Lowation-Buccassive [Monse] Max. Adsount Deviation-Overal [Monse]			80		88	100	8.8			88		88	88	88	88		80	0.84
Repeatability Criteria [± Mol%] Records and Account also			2010	0.62	0.18 VEG	010	0.02	0.10	200	002	0.00	0.02	002	0.02	002	00	1.00	1.00 VEG
Process GC Analysis [Mot66]	11/10/2003	15:04	0.8714	84,7068	7.0919	4.0171	0.9396	1.0965	0.9582	0.2461	0.1329	0.0782	0.0216	0	0.4368	20	1191.1378	1171,7004
Max. Absolute Deviation [MoRs]			90	0.34	012	0.05	6.0	8	8	0.03	90.0	0.04	100	8	8	80	8.78	8.64
reproducesity Acceptable? Reproducibility Acceptable?			2	YES	e si	YES	YES	YES	YES	YES (9 <mark>9</mark>	YES	YES	YES	τΩ,	YES I	N ON	9
Sample CR2	Date	Samela Tima	nitropan	methane	athana	aroane	o-butano	-butane i-	contano n	- aertene	hexanea	hadanas	octanes	nonanas	8	R2H	Widry (Bturjsch	Hv sat (Btu/sch
Sample Bottle GC Analysis-1 [MotS] Sample Bottle GC Analysis-2 [MotS]	11/10/2004	15:09 - 15:11	- 		5												fina and the second	
bample dome ou Anaryster I paros Max. Absolute Deviation-Successive [Mol%] Max. Absolute Deviation-Overal [Mol%]																		
Repeatability Criteria (± MolW)) Repeatability Acceptable?																		
Process GC Analysis [Mof%] Max. Absolute Deviation [Mof%]	11/10/2003	15:08	0.68	84.7329 64.73	7.0826	4.0134	0.9329	1.0884	0.366	0.24	0.1345	0.084	0.02	- 8	0.4301	08	1190.7341 1190.73	1171.3036 00.1711
Reproducibility Criteria (± Mol%) Reproducibility Acceptable?			900	0.63	99 0	013	0.04	E1.0	50	0.04	M	0.04	0.04	0.04	100	100 100	300	88
2017 T	ė				,										8	8		
Sample CK3 Sample Bottle GC Analysis-1 [MoPSJ]	11/10/2004	53mple lime 15:15 - 15:18	D BS44	R4 5588	7.0881	d CBSC	0.9429	1.1082	0.3772	P pentane 0 2827	0.1641	0.1023	0.008H	DINIE	0.4325	20	1196,4847	11.755.9846
Sample Bottle GC Analysis-2 [Mots.]			0.9068	84.5266	7.0962	4.0384	0.9468	1.1105	18/20	0.2637	0.1663	0.1047	B:0036		14331		1195.6415	1176.1269
Sample Dottle GC Analysis-J [Mof8] Max. Absolute Deviation-Successive IMof91			0000	0.03	4000 0000	0.00	20010 0010	5000	0.3/62	0.00	0.00 0.00	900 00 0	000	- 80	04323		1180.0811	0.25
Max. Absolute Deviation-Overall [MoDS]			900	900	8	8	8	8	8	8	800	8	8	8	8	8	80	0.28
Repeatability Criteria (± Mol%)			00	39	018	0 <u>10</u>	0.0	0.10	80	89	0.00	200	30	30	88	200	0.1 Vev	0.1 2022
Process GC Analysis [Mot6.]	11/10/2003	16:17	0.8774	84.8252	7.1822	3.9892	0.947	1095	0.9583	0.2432	0.1361	0.0761	0.0168	<u> </u>	0.4747	<u>0</u> 0	1190.5899	1171.1717
Max. Absolute Deviation [MoT94]			908	E C	200	19 ç	0.0	2010	88	002	800	800	100	88	100	800	105	96 4 6
Reproducibility Acceptable?			8	ΥES	K K S	283	,ES	YES	YES	KES \	YES	YES	ΥES	t S⊒≻	1	YES	9	9
Sample CBM	Data	Sample Time	nitropan	methane	athana	propane is	o-butana n	vbutane I-	pantana n	- pentane	havanes 2 450 -	hoptanes	octanes	nonanas	60	H SZH	Widry (Bhurson)	Hv sat [Btu/scf)
Sample Dottle GC Analysis-1 MotSJ Sample Bottle GC Analysis-2 [MotSJ]	PU02/01/11	10:22 - 10:20	0.6669	84.5287	7,1402	4.0608	0.9427	1.0975	0.3678	8920	0.1526	0.0823	0.0042		0.4506		1180.064/	1174.4896
Sample Bottle GC Analysis-3 [MoTs.]			D. 889	84.5255	7.138B	4.0635	0.9431	1.088	368	BE52.D	0.1527	0.0923	0.0245	-	0.4508		1194.0671	1174.571
Max. Absolute Denation-Successive [Mol%] Max. Absolute Deviation. Descal Mol%]			88	88	88	88	88	88	88	88	80	88	88	88	88	88	012	012
Repeatablity Criteria ± Mol%			2010	0.62	0.18	010	0.02	0.10	8	005	000	005	000	005	200	8	100	8
Repeatability Acceptable? Process GC Analysis (MotSc)	11/10/2003	15.22	YES	YES 84.9187	7.0804	7ES 38158	7ES 0.9354	YES 1.0862	YES 0.3544	YES 0.2418	YES 0.1337	YES 10752	YES 1019		163 04354	ŝ	YES 1186.9911	YES 1167,6233
Max. Absolute Deviation [MoI%]			50	80	990	89	0.01	5	50	100	000	002	0.01	88	0.02	80	7.07	98 g
reproducibility Acceptable?			YES	YES	S SI	38	XES	YES	YES	YES	YES	YES	YES	YES	, ES	YES	0 9	9
Sample CR5	Oate	Sample Time	ritrogen	methane	ethane	propane is	so-butane r	houtane F	pentane n	-pentane	hexanes	heptanes	octanes	nonanes	8	±	hr dry (Btu/scf)	Hir sat (Btu/sct)
Sample Bottle GC Analysis-1 [Mot93] Sample Bottle GC Analysis-2 [Mot93]	PULL WILLIE	12:41 - 57:41	0.8538	84,4258	7.1159	4.0832	0.9619	11088	10/200	5550	0.146	0.0059	50000		0.458		1154,3281	1174,8374
Sample Bottle GC Analysie 3 [Mot%]			0.8945	84.4706	7.1169	4.0947	0.9644	1.1125	0.3715	0.2645	0.1481	0.0864	0.006		0.458	0	1194.8291	1176.33
Max. Absolute Deviation-Successive [Mol%]			800	80	88	88	88	88	88	88	800	88	88	88	88	8	050	610
max. Addute Lemanon-Uneral (moto) Repeatability Criteria (± Mol%)			88	0.52	88	88	8 6	88	38	38	800	88	88	38	88	38	100	1007
Repeatability Acceptable?			YES	ΥES	VES	VES	VES	YES	YES	ΥES	VES	VES	YES	YES	VES	YES	VES	VES
Process GC Analysis [Mot6] Mov. Absolute Deviation [Mot94]	11/10/2003	16.31	0.8784	0.35	7.1025	3.9607	0.9242	1.0689	0.3486	0.237	0.1326	10/61	0.0173	- 80	0.4355	08	1188.2162	1168.8278
Reproducibility Criteria (± Mol%)			00	0.63	0.08	013	0.04	0.13	8	0.04	80	0.04	0.04	0.04	0.04	8	300	38
Remote hilly Accepted 2			YES	ΥES	VES	ş	9	VES	VES	VES	VES	VES	YES	VES	VES	YES	8	Ŷ

Ĕ
ge
'n
Ъ
ate
Ř
led
5
nt
ບິ
S
2
10,
ы
ą
en
6
Ž
sts
te
ng B
jl
am
S
asl
≥
er
Μ
Po
Ξ
Ľ0
Sf
ult
res
۲p
uile
eta
Ω
4
Ò
0

Sample HP1	Data	Sample Time	nitropan	methane	athana	propane is	o-butana n	-butane -	pentane n	antana	hasanaa	haptanas	octanes	nonanas	60	1 SZH	W dry (Btursch)	Hy sat (Btu/scf)
Symple Bottle GC Analysis-1 (Mol%) Earning Battle GC Analysis-2 (Mol%) Symple Bottle GC Analysis-3 (Mol%) Max. Absolute Devlation-Diccessing (Mol%) Max. Absolute Devlation-Ownal (Mol%) Max. Absolute Devlation-Ownal (Mol%) Repeatability Accessible 2	11/10/2003	15.5å - 15.55	0.959 0.9522 0.9722 0.01 0.01 0.01 7.02 VES	84.6484 84.6324 84.6324 84.6267 0.02 0.02 0.62 VES	7.0669 7.0636 7.0656 0.00 0.10 0.10 0.18 VES	4.0194 4.0211 4.0224 0.00 0.10 0.10 VES	0.9328 0.9345 0.9342 0.9342 0.00 0.00 0.02 VES	1.0747 1.0747 1.0749 1.0749 0.00 0.10 0.10 VES	0.3557 0.3563 0.3565 0.3585 0.3585 0.3585 0.3585 0.3585 0.00 0.00 0.00	0.2415 0.2415 0.2416 0.00 0.00 0.00 0.00 0.00 0.00	0.1402 0.1405 0.1405 0.1402 0.00 0.000 0.000 VES	0.0824 0.0823 0.0825 0.0825 0.00 0.00 0.00 0.02 VES	0.0009 0.0006 0.0248 0.0248 0.00 0.00 0.00		0.4581 0.4584 0.4584 0.00 0.00 0.00 VES	000888	1169.4113 1189.4208 1169.5854 0.15 0.17 1.00 VES	1170.0032 1170.0125 1170.1744 0.15 0.17 1.00 YES
Max Absolute Devices GC Analysis (Mol6) Max Absolute Deviation (Mol9) Reproductifity Contaria (= Mol95) Reproductifity Acceptable?	11/10/2003	16.67	0.9018 0.07 0.04 NO	84.8619 0.25 0.63 YES	7.033 0.04 0.25 YES	3.9684 0.13 YES	0.9204 0.01 YES	1.0597 (0.02 YES	0.3443 0.01 7/ES	0.2323 0.01 0.04 YES	0.1266 0.01 0.04 YES	0.0691 0.01 YES	0.019 0.014 VES YES	0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.4245 0.4245 0.03 YES	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1167.0873 2.50 3.00 YES	1167.7178 2.46 3.00 YES
Sample HP2 Sample Bothe GC Analysis-1 (MoTS) Sample Bothe GC Analysis-1 (MoTS) Sample Bothe GC Analysis-3 (MoTS) Max. Absolute Deviation-Successine (MoTS) Max. Absolute Deviation-Successine (MoTS) Repeatably. Acceptable? Repeatably. Acceptable? Repeatable? Acceptable?	046 11/10/2003 11/10/2003	Sample Time 15:58 - 15:59 15:57	nitrogen 1.0057 1.0255 1.0285 1.038 0.02 0.02 0.03 YES VES 0.13	methane 84.5459 84.519 84.5189 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.0	9thane 9thane 7.0697 7.0697 0.00 0.00 0.18 0.18 0.18 0.18 0.18	Properte 16 4.0327 4.0328 4.0328 4.0328 0.00 0.00 0.10 0.10 0.10 0.10 0.10 0.1	0.09413 0.09413 0.09423 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	Nutrame Huttame Huttam	Pentana h 2013624 h 2013624 h 2013627 h 2013627 h 201362 h 201362 h 201364 h 201365	9 2454 0 2454 0 2454 0 2453 0 2453 0 2453 0 2453 0 2453 0 2453 0 2453 0 2453 0 200 0 0 0 0 2423 0 2423 0 2423 0 242 0 244 0 242 0 242 0 244 0 24	Navanes 0.1435 0.1435 0.1433 0.1433 0.00 0.00 0.00 VES VES	Mptanss 0.0851 0.0851 0.085 0.09 0.09 0.09 0.00 0.00 0.00 0.00 0.0	001antes 0.0216 0.0216 0.0216 0.00 0.00 0.00 0.00 0.00 0.019		0.451 0.451 0.451 0.451 0.050 0.451 0.050 0.451 0.00 0.02 0.0245	H0000888908	M dry (Blwfed) 1190 285 1190 282 1190 0688 0.20 0.20 0.20 1.00 1.00 1.00 1.00	ht sat [Btw/sc0] 1170_8167 1170_8789 1170_6478 0.19 0.19 0.19 1.00 1.00 1.00
Report Scorage Constant I Not 24 Reproduce Mary Acceptable? Reproduce Mary Acceptable?			00 100	NES VES	1026 VES	013 V 013	0.06 7/ES	0.13 YEB	VES 104	VES	VER	0.04 VES	VES VES	VES VES	104 YES	VES 104	900 8	300 NO
Sample HP3 Sample Bidle CC Analysis-1 (MoRS) Sample Bidle CC Analysis-2 (MoRS) Sample Bidle CC Analysis-3 (MoRS) Max. Absolute Deviation-Diceasing (MoRS) Max. Absolute Deviation-Orenal (MoRS) Max. Absolute Deviation-Orenal (MoRS) Receitability Accentability Receitability Accentability	0.46e	Sample Time 16.02 - 16.03	nitrogen 0.9106 0.9118 0.913 0.913 0.00 0.00 VES	methane 84.6395 84.6395 84.6396 0.01 0.01 0.01 VES	ethane 7.0759 7.0969 7.0796 0.00 0.00 0.18 0.18 VES	Proparte 15 4.0227 4.0288 4.0274 0.01 0.01 0.10 VES	0-butane n 0.9938 0.9411 0.9411 0.00 0.00 0.00 0.02 VES	Houtame Ho Houtame Houtame	pertane 0.3805 0.3804 0.3603 0.3603 0.00 0.00 0.00	pertane 0.2444 0.2442 0.00 0.00 0.00 0.00 0.00	hexanes 0.1427 0.1429 0.1429 0.00 0.00 0.00 0.00 0.00	heptanes 0.0844 0.0846 0.0851 0.000 0.00 0.00 0.00 0.00	octanes 0.0248 0.0248 0.0256 0.00 0.00 0.00 0.00 0.00	00000000000000000000000000000000000000	0.4633 0.4633 0.4632 0.4632 0.00 0.00 0.00 0.00	¥0000888	M dry (Brufsof) 1190 (3897 1190 (3897 1190 (3127 1190 (3127 0.013 0.013 1.00 VES	1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1
Mar Aboute Process GC Analysis (MotS) Mar Absolute Deviation (MotS) Reproduct Mar Sciences (E MotS) Reproduct Mar Acceptable?	11/10/2003	16.01	0.8965 0.04 7ES	84.8736 0.23 0.63 YES	7.0427 0.04 0.06 YES	3.9997 0.13 VES YES	0.9181 0.04 YES	0.13 7/ES	0.3437 0.04 YES YES	0.2321 0.04 VES	0.1266 0.004 YES	0.0690 0.014 VES	0.0168 0.01 VES	- 000 00 0	0.4248 0.04 YES	0 808 0 0	1167.1226 3.82 3.00 NO	1167.7524 3.75 3.00 NO
Sample Reft C. Analysis-1 (MoKS) Sample Bothe CC. Analysis-1 (MoKS) Sample Bothe CC. Analysis-2 (MoKS) Earryle Bothe CC. Analysis-3 (MoKS) Max. Absolute Deviation-Storessine (MoKS) Max. Absolute Deviation-Overal (MoKS) Max. Absolute Deviation-Overal (MoKS) Converted by Accord.	11/10/2003	16.06 - 16.07 16.06 - 16.07	nitrogan	methano	athana	propane is	o-butano	- eutrane	entana entana	pertane	20 La Contra Con	haptarras	octanes	serection	8	뙷	Withy (Bluckor)	ik sat (Blufsch)
negrounder Programmer Process GC Analysis (MoRS) Max. Absolute Denation (MoRS) Reproductatify Criteria <u>1</u> MoRS) Reproductatify Acceptable?	11/10/2003	16:06	0.8924 0.69 0.04	84.8756 84.88 0.63	7.0449 7.04 0.25	3.9985 4.00 0.13	0.9167 0.82 0.04	1.0548	15#C0 1000	0.23	0.1275 0.13 0.0M	0.07 0.07 0.04	0.0157 0.02 0.04	- 8 1	0.4247 0.42 0.04	088	1187 3406 1187.34 3.00	1167.9668 1167.97 3.00
Sample HP5	Oate	Sample Time	nitrogen	methane	ethane	propane is	o-butane n	Houtane H	pentane n	pentane	texanes.	heptanes	octanes	nonanes	õ	ŝ	k dry (Btu/scf)	Hr sat (Btu/scf)
Eample Bottle GC Analysis-1 MotS) Eample Bottle GC Analysis-2 MotS) Sample Bottle GC Analysis-3 MotS) Max. Absolute Deviation-Successive [MotV]	11/10/2003	16:10 - 16:11	0.9664 0.9664 0.9907 0.02	84.7939 84.7638 84.7433 0.03	7.0261 7.0238 7.0215 0.00	3.9763 3.9763 3.976 3.00.0	0.9125 0.9196 0.9187 0.00	1.0571	0.3557 0.3575 0.3571 0.00	0.2403 0.2415 0.2416 0.00	0.1418 0.1421 0.1431 0.00	0.0857 0.0677 0.069 0.000	0.024		0.4339 0.4344 0.4344	0008	1188.4007 1188.7327 1168.2908 0.45	1169.0034 1169.3359 1168.8916 0.44
Max. Absolute Deviation-Overal [Mo1%] Repeatability Oritaria <u> 4 Mo1%]</u> Repeatability Acceptable?			888	0.05 7 10 10 10 10 10 10 10 10 10 10 10 10 10	0.00 180 0.00	0.0 10 10 0.0	0.00 K	000 VES	VES 000	000 460	000 VES	000 1000	001 VES	000 400 600	0 10 00 10 0 00	0 0 0 00 0 0 0 00	0.45 1.00 VES	0.44 1.00 VES
Process GC Analysis (Mo1%) Max. Absolute Daviation (Mo1%)	11/10/2003	16:10	0.6903	0.20	7,0602	3.9617	0.911	1.0471	0.3386	0.2268	0.1249	0.0697	0.0181	- 8;	0.425	083	1106.9443	1168.694 2.74
Reproducibility Criteria (± Mol%) Democratica Secondation			500	0.63 VEC	0.26	013	0.04	0.13	100	0.04	ND 0	0.04	0.04	0.04	0.04	0.04	200	3.00

Table D-5. Detailed results from Powder Wash sampling tests, November 10, 2003: Helium Pop method.

Sample EF1	Disto	Sample Time	nitrogen	methana	athana	propane	so-butana] s	n-buttane }	i-pantana t	n-pentane	hasanea	haptanes	DC12m63	nonanas	8	H 122H	W dry [Btursch]	Hv sat (Btu/sct
Sample Bottle GC Analysis-1 [Mot6]	11/10/2003	16:30 - 16:33	0.8944	84.7343	7.0823	3.953	0.9063	1.0719	0.3755	0.2699	0.168	011	0.0392	0.0013	0.4366	0	1190-2324	1173.7803
Sample Bottle GC Analysis-2 [Morso] Samata Bottle (2) Analysis-3 [Morso]			0.8943	84.74.28	7.0345	3.953	0.0060	1.0707	5/200	0.2508	0.16/3	0.1103	0.0311		0.4368		1192.7186 1103.0472	2927 E711
Max. Absolute Deviation-Buccassive [Mol%]			000	0.12	800	0.01	8.0	00	00	800	0.00	000	0.01	8	8	8	0.51	0.51
Max. Absolute Deviation-Overal [Mor%]			00	6	100	100	8	8	00	8	0.00	80	100	8	8	0	0.51	0.51
Repeatability Criteria (± Mol%) Economication Accountience			88	0.62	018	010	0.0	0.10	88	005	0.00	0.02	280	200	38	88	19 19	9. 19
Process GC Analysis [Mot6]	11/10/2003	18.34	0.866	84.8867	7,0839	3,9892	0.9063	1008	0.3233	0.2159	0.1175	0.065	0.0182	10	0.4636	10	1184.73	1166.4001
Max. Absolute Deviation [MoPM]			101	0.16	900	50	0.02	901	90	0.04	0.05	90	0.02	80	60	8	850	836
Reproducibility Critaria ± Mol%) Reproducibility Acceptable?			YES	SB YE	×88	ΥB ΥΒ	7E8	YES A	2 <mark>2</mark>	10 00 10 00	9 <mark>9</mark>	10 10 10	YES YES	YES 4	19 SE	YES	O N M	8 <mark>9</mark>
							+											
Sample EF2	Dete	Sample Time	nitrogen	methame	othane	propane	so-butana	n-butane 1	-pentane	n-pentane	hexanea	heptanes	octanes	nonanas	ĝ	1 22 1	W dry (Etursci)	Hv set (Eturisof)
Sample Bottle GC Analysis-1 [Morss] Samela Pretia (3C Analysis-3 [MorS3]	11/10/2003	16:37 - 16:39	0.8685	84.7175	7,0803	2305.E	0.9274	CE/0.1	0.3634	0.2542	0.1586	0.1047	62010	0,0011	0.4408		1192.792	2125-5111
Sample Bottle GC Analysis-3 [MofS]]			0.8687	84,7033	7.0836	DEBC E	0.9276	1.0738	1690.0	0.7544	0.1601	0.1061	D62010	-	0.4401		1990.0611	8585-6711
Max. Absolute Deviation-Successive [Mol%]			00.0	0.01	0.00	000	0.0	000	000	80	0.00	000	0.01	80	80	000	0.64	0.63
Max. Absolute Deviation-Overall [Mot%]			000	0.01	80	0.01	0.0	80	80	80	0.00	800	0.01	80	8	8	0.54	0.53
Repeatability Criteria [± Mol%]			8	53	80	99	6	8	8	0.02	80	0.02	0.02	00	6	8	8	1.00
Repeatability Acceptable?	DOWN NO. 11	Mar at	YES	YES A	33 ×	Υ Σ	LES .	YES	YES	122	YES	YES -	2000 A	£.	μ. E	ĘS,	XES STOR	YES
Process of Analysis (Markel)	5002/mL/LL	85.01	0.00	0.00		200	500	690	100	74U-0	200	0.04	800	- 8	0.00	5	0.02	0.16
man, musurur usmanur (mura) Bannduchdeu Critaria Ie Mol ⁹ 6.1				8 6	3	50	20.0C	0.12	30			100	700	300	80	32	A DD	
Reproducting Acceptable?			YES	VES	VES /	VE8	VES /	YEB	50	YES	3 9	e e e	YES	YES	YES	YES	9 9	9 9
000 0	10	F T		-											ş	201	1.1.00.1.0	11-1-1 (Do. 1-1)
Semple [1-3	Uste 1 An Proven	Cample lime	retrogen	methane	010000	propane	o mont	1-0003100 1	- pertane	n-pentane	nexanes n arms	heptanes a amon	octanes a coror	nonanes	200	g,	N Dry (DDU/SCI)	Thr sat (Dfursc)
Sample Bottle GC AnalysisP1 [MoDs]	2002/01/11	16:44 - 16:46	010010	64,3508	//3//	4.073	0.9600	2211	5.492 D	61/2/D	1997	SCULU 2	10000	-	0.4708		113/1/9/8	7178.2492
Sample Dure Co. Analysis-2, Multo, Sample Britle (20, Analysis-3, Multo)			0.8613	84 3800	7 1368	24 00 P	0.0011	11265	0.3084	0.2229	0.1805	0 1046	00000		0.6769		1108 1057	1178 5510
Max. Absolute Deviation-Successive (Mol%)			000	0.01	80	080	00.0			800	0.00	000	000	, 80	00		020	070
Max. Absolute Deviation-Overall [Mot%]			000	0.01	8	8	8	8	8	8	800	8	8	8	8	8	0.31	030
Repeatability Criteria [± Mol%]			0.0	0.62	018	610	0.02	0.10	8	280	800	200	80	80	8	8	8	8
Repeatability Acceptable?			YES	YES	YES	ΥES	YES	YES	YES	ΥES	YES	YES	YES	ΥES	YES	YES	ΥES	YES
Process GC Analysis [Mot%]	11/10/2003	16:43	0.891	86.0036	7,0408	3,9674	0.8996	1.0244	0.3246	0.2161	0.1161	0.0646	0.0178		0.434	0	1163.8436	1164.5263
Max. Absolute Deviation [Mo194]			8	3	8	5	10.0		0	0.00	8	0.04	0.01	8		8	14.25	14.02
Reproducibility Criteria (± Mol%)			3	88	8	613	0.04	0.13	3	100	30	0.04	0.04	100	5	8	89	800
Reproducibility Acceptable?			YES	33	ŝ	ŝ	2	YES.	2	Ŷ	Ŷ	Ŷ	ŝ	33 X	2	ÆS	e.	8
Sample EF4	Diate	Sample Time	nitrogen	methane	athana	propere	so-butana 1	n-buttane 1	i-pantana	n-pentane	hasanea	haptanas	octanes	nonanas	8	H23	Withy (Bhursef)	Hv sat (Btursof)
Sample Bottle GC Analysis-1 [MotSc]	11/10/2003	16:50 - 16:52	0.0636	84.4207	20028	4.0437	0.9639	1.1224	0.4216	628	0.1965	0.1171	00080	-	0.4454		1200.7421	1181.1441
Cample Dotte GC Analysis 2 (M076)			00000	04,4002	67/07 A	1000	0.9645	10211	7740	00%7TD	0.19V2	10110	00000		0940		1201 2020	1101./041
bien Absolute Double Out Analysis-4 [Mutso]			0.00	Ber 48	5.00	0014	0.00	000	0.00			000	-000	8		8	1401 101	101.0404
Max. Personale Lemanor curversme (more) Max. Alsoning: Deviation, Discall (More)					38	100	8			38		80	100	38	88	38	200	062
Repeatability Criteria ± Mol%			000	0.62	018	010	0.02	0.10	8	200	000	000	000	00	20	201	8	00;
Repeatability Acceptable?			YES	YES	ΥES	ΥES	ΥES	YES	YES	ΥES	YES	YES	ΥES	ΥES	YES	YES	YES	ΥES
Process GC Analysis [MotS]	11/10/2003	16:52	D.879	B5.0436	7,0685	E106'E	0.8963	1.0203	0.3264	0.2174	117	0.0655	10191	-	0.4396		1183.2745	1163.9689
Max. Absolute Dewation [MoT%]			200	8	50	88	20.0	1.0	0.10	800	800	990	200	88	50	8	18.10	17.80
Reproducibility Criteria (± Molfa) Oscinducibility, Accessibility			ND0	640	802	210 9		ELU Any	5		5		0.04		t ou	ND OIL	8	8
and the second sec			Ē	2	3	2	2	2 L	2	2	2	2	3	3	3	2	2	2
		ŀ		-											3	-	1.1.00.1.0	11 - 12 - 1 - 1
Semple CF3 Excels Datis CC Sectors 4 (Marcul	Ustre 14 ctri Ctrict	Cample lime	retrogen	methane av poco	athane 7 cena	1 oport	o parect	1 10013109	- pertane	n-pertane	n 177	n serves	octanes n cost	nonanes	2020	ŝ.	W dry (btw/sct)	Thr sail (Dfurisci)
Sample Bottle GC Analysis-1 [mutter]			0.000	1000110	7.055	10000	0,9460	11002	0.4011	2001	0.1775	0.1120	0.010		0.4311		9792 2976	1177.7573
Sample Bottle GC Analysis 3 [MotSo]			0.0643	84.5841	7 0666	4.0017	0.949	1.103	0.4017	0.2819	0.1789	0.1166	0.0318		0.4316		1190 5322	1177.9879
Max. Absolute Deviation-Successive [Mol%]			00	0.01	800	80	8	80	00	80	0.00	000	80	8	8	8	0.23	0,23
Max. Absolute Deviation-Overall [Mot%]			000	0.01	80	80	0.0	80	000	80	0.00	000	80	80	8	000	0.32	0.32
Repeatability Criteria [± Mol%]			8	0.52	0,18	0.10	0.02	0.10	8	0.12	00	0.02	0.02	0.02	002	8	1.00	1.00
Repeatebilty Acceptebia?	10000 CON	54 57	VES	VES	VES	VES	VES 1 2000	VEB .	YES	VES	VES	YES	VES	SE .	VES 1997	KES (VES 1100 NUM	VES
Process GC Analysis [MoDs]	11/10/2003	16:06	0.8756	84,9519	7,0854	3,9617	968/0	1.0163	0.300	0.2168	0.1153	0.064/	0.0161		0.4591	0	1183.7/08	1164.45/1
Max. Absorute Lormaton process Reamducibility Criteria (± Mol ³ 5)			100	0.63	920	013	50.0	0.13	00	0.04	000	000	0.04	100	104	80	300	300
Renoducibility Acceptable?			YES	YES	VES	YES	2	VES .	2	ę	2	2	YES	YES	VES	VEB	ę	Ŷ
														1				

Ę
e
Ш
nt
Je
- Le
ತ
la
sp
Ö
Ξ
E
ij
[e]
Ξ
re
Ŋ
ŝ
Ĕ
P -
Å,
ij
Ξ
6
2
10
5
)e
ľ
er
2
Z
Z
sts, N
tests, N
g tests, N
ing tests, N
pling tests, N
npling tests, N
ampling tests, N
sampling tests, N
sh sampling tests, N
Vash sampling tests, N
Wash sampling tests, N
er Wash sampling tests, N
der Wash sampling tests, N
wder Wash sampling tests, N
Powder Wash sampling tests, N
n Powder Wash sampling tests, N
om Powder Wash sampling tests, N
from Powder Wash sampling tests, N
s from Powder Wash sampling tests, N
ults from Powder Wash sampling tests, N
sults from Powder Wash sampling tests, N
results from Powder Wash sampling tests, N
d results from Powder Wash sampling tests, N
led results from Powder Wash sampling tests, N
ailed results from Powder Wash sampling tests, N
etailed results from Powder Wash sampling tests, N
Detailed results from Powder Wash sampling tests, N
6. Detailed results from Powder Wash sampling tests, N
-6. Detailed results from Powder Wash sampling tests, N
D-6. Detailed results from Powder Wash sampling tests, N
le D-6. Detailed results from Powder Wash sampling tests, N
able D-6. Detailed results from Powder Wash sampling tests, N

Sample PP1	Disto	Sample Time	nitrogen	methane	athana	propane	so-butana r	o-butane -	-pentane n	9-pentane	havanes	haptanes	octanes	nonanas	00	H2S	-Iv dry [Btursch]	Hv sat (Btu/scf)
Sample Bottle GC Analysis-1 [Mot83]	11/10/2006	17:31 - 17:32	1.802	84.9715	6.5166	3.5043	0.8843	1.0264	0.3619	0.2509	0.1455	0.0977	0.0163	-	0.4117	0	1168.3057	1149.2627
Sample Bottle GC Analysis-2 [MoISs]			5.683	E1.6073	6.2219	3.365B	0.8671	0.9973	0.362	0.2457	0.1448	880.0	0,0183	-	0.4088	•	1122.3556	1104.0757
Max. Absolute Deviation-Buccassive (Mol%)			2,68	8161	6.22	337	0.87	8	50	20	0.14	0.09	0.02	80	1.41	000	1122.36	1104.08
Max. Absolute Deviation-Overal [Mof%]			2 68	84.97	652	65	68.0	8	82	20	0.15	0,0	0.02	8	141	8	1168.31	1149.25
Repeatability Criteria [± Mol%]			0.10	0.62	0.18	010	0.02	0.10	0.00	0.02	0.02	0.02	0.02	0.02	0.02	0.02	1.00	100
Repeatability Acceptable?			2	ş	¥	ş	¥	2	2	¥	2	¥	YES	ΥES	2	YES	Ŷ	Ŷ
Process GC Analysis [Mo156]	11/10/2000	17.38	0.8963	84,9848	7,0005	3,9658	0.9041	1.0313	0.3443	1162.0	0.1183	0.0606	0.0128	- 8	0.4316	0 8	1184,5002	1105.174
Press, Material Deviation [NULTS]			2.5	8 6	3	R C			12			800						
Reproducibility Acceptable?			8	9	9	2	2	2	2	2	2	9	YES	YES -	2	,ES	9	N
Sample PP2	Olife	Sample Time	nitrogen	methane	ethane	propere	so-butane r	hbutane +	-pentane n	1-pentane	hexanes	heptanes	001iim169	nonanes	ĝ		H dry (Etu/sci)	Hv set (Btu/scf)
Sample Bottle GC Analysis-1 [Morss]	11/10/2003	17.39 - 17.41	0.8572	84,8614	7120217	3.9074	0.9188	1.0534	0.3796	0.2646	0.166	0.1035	10085		0.4279		1191.8962	1172,4463
Sample Bottle GC Analysis 2 [Mo154]			00000	04,0013	11201/	3,9023	0.01610	1.0039	10000	1007.0	0.1680	0.1044	110000	-	0.4279		1192.04	11/2/02/12
Mare Absolute Devision-Surrassian (Mrd%)						000		100	7norn		000	100		.8		8	0.18	0.17
Max. Absolute Deviation-Overal [Mo[56]			800	80	80	100	8	80	80	80	000	800	80	80	8	8	019	019
Repeatability Criteria [± Mol%]			2010	0.52	0.18	0,10	0.02	0.10	20	0.02	0.00	0.02	0.02	0.02	202	201	1.00	1.00
Repeatability Acceptable?			YES	ΥES	ΥES	ž	ξÊ,	ΥËS	ΥËS	ž	YES	ΥES	χES	ž	βį	ΥËS	ΥES	ΥES
Process GC Analysis [MotSs]	11/10/2003	17:41	0.8739	84.9585	7.0635	1956	0.9049	1.0279	0.3423	1052.0	0.1191	8090.0	6110	-	0.4487	-	1184.6345	1165.3651
Max. Absolute Demation (Mo1%)			200	3		80	5.0	3	5	100	8	990	200	8	2000	B	- 29 	121
Reproducibility Criteria (± Mi07a) Reproducibility Acceptable?			YES	VES	ΛES	YES	VES V	VES VES	YES	YES		1	VES	VES	YES	VEB	900 NO	3.00 No
Sample PP3	Date	Sample Time	nitrogen	methane	ethane	propane	so-butane n	h-butane i-	-pentane n	+pentane	hexanes	heptanes	octames	nonanes	ğ	±	Hr dry (Bhu/scf)	Hir sat (Btu/sct)
Sample Bottle GC Analysis-1 [Mot93]	11/10/2006	1 17:47 - 17:49	0.8997	85.1878	8.8855	3.7851	0.8984	1.0322	0.3708	0.2569	0.1582	0.1033	0.0006	-	0.4426		1185.4833	1168.1213
Sample Bottle GC Analysis-2 [Mot%]			0.9005	B5.2072	6.867	3.7964	68.0	1.0238	0.3678	9552.0	0.1602	0.1011	1.00.0	-	0.4434	0	1185.2027	1165.8651
Sample Bottle GC Analysis 3 [Mot%]			0.9017	85.2184	6.8712	3.7801	0.0816	101	0.3644	0.2631	0.1599	0.1004	0.0314		0.4438	0	1184.8726	1166.6406
Max. Absolute Deviation-Buccassive [Mol%]			000	800	88	0.01	1.0	69	88	88	0.00	88	0.01	88	88	88	E	032
Max. Addoute Levador-Uretar (Morts)				30	8 9 0	5	31.0	2010	50	3	88	38		3	3 3	8	607	89
Repeatability Accentable?			VEB	AES V	AES V	AES V	VES	VE8	VEB	VES	VE8	VES	AE8	VES	VE8	YES	VES	VES
Process GC Analysis [Mot84]	11/10/2008	17:50	0.0686	84,9807	7.0732	3,9176	0.9109	1.0341	0.3452	0.2311	0.1209	0.0627	0.0122	-	0.4449	0	1184,825	1166.4834
Max. Absolute Deviation [MoT%]			8	0.24	0.21	0.16	EI .	201	83	0.03	80	0.04	0.02	80	8	8	0.64	89
Reproducionity Criteria (± Moria) Descriteration Accountable?			and and	2017	80 AB0	23	t nit	NEC O	ND OIL	AEC N	AEC N		NEC	AEC 4	t ou	a out	NE0	200
uppersonant and an			2	3	3	2	3	2	2	3	2		3	3	3	3	3	2
Fdd oluneS	Date	Same Time	retronen	methana	athana	dimmin 1	oubutano o	whitene L	n ontana.	Linertene	havanpa	hantanaa	octorios	nonanao	8	H N	Andra (Bhulach)	He cat (Bhulterf)
Samala Britle (20. Analysis-1 Mar86)	11/10/2018	17-55 - 17-58	0.8544	84.9579	70.00	3 2046	0.8927	1 0200	0.882	0.2406	0.1537	0.0951	0.0917		0.4265		1169 0774	1169 6247
Sample Bottle GC Analysis-2 [Mot96]			0.0545	84,9441	7,0498	3.9168	0.6906	1000	0.3609	0.249	0.1542	0.0967	0.0321	00000	0.4267		1189.2432	1169.6378
Sample Bottle GC Analysis-3 [Mot%]			0.8551	B5.0417	7.0726	21:00 E	0.B471	0.9754	0.3433	0.2369	0.1469	0.0917	0.0309	-	0.4272	0	1185.9632	1166.6127
Max. Absolute Deviation-Successive [Mol%]			88	99	88	88	50.0	88	88	100	88	88	88	88	88	88	8	323
Max. Adsource Levelator-United [works]							9 8	99	38	5				3			89	100
Repeated in June 12 months Repeatshipty Arrentship?			VES	VES	AFS VES	APS APS	7 Q	AFS.	YES	VES	VES	VES	VES	VES	7ES	VES		0
Process GC Analysis [MofSs]	11/10/2003	17:55	0.8603	B5.0213	7,0387	3317E	16.0	1.0395	0.3508	1235	0.1228	0.0631	10131	-	0.4278	2	1185.3275	1165.5874
Max. Absolute Deviation [MoD%]			60	800	0.03	0.01	0.06	90.0	60	0.01	0.09	0.03	0.02	80	80	000	3.82	385
Reproducibility Criteria [± Mol%]			800	690	80	010 210	1.04	E1.0	8	10	MO	0.04	100	10	101	NO CO	00%	00%
Keptoducontry Acceptable?			2	2	2	3	2	2	2	3		2	3	2	2	g	2	2
Sample PP5	Date	Sample Time	nitrogen	methane	ethane	propane ji	so-butane r	r-butane i-	-pentane n	h-pentane	hexanes	heptanes	octanes	nonanes	200	H2S	Hr dry (Btu/scf)	Hir sat (Bou/scf)
Sample Bottle GC Analysis-1 [MofSs]	11/10/2003	18:02 - 18:03	0.9034	B5.2614	6.8268	3.745B	0.9012	1.0315	0.3609	0.2485	0.1557	0.1017	EOEO/O	-	0.4328		1184.8462	1165.5146
Sample Bottle GC Analysis-2 [Mof8]			0.9018	BE 2580	6.828	3.7480	/20610	1.0342	0.3627	8	0.1528	0.1047	0.0020	-	0.433		1184.7194	1165.3898
Sample Bottle GC Analysis-3 [MoDS]			0.9047	96.2162	6,0033	3.7806	0.9068	1.0389	0.3683	9920	9991.0	801.0	9000	- 6	0.4348	0	1105.0604	1108.224/
Marc. Advantation Deviation: Councerson of Market.			8	500	100	100	8			88		100	100	88	38	8	990	80
Repeatability Criteria [± MolW]			2010	0.52	0.18	0,0	0.02	110	20	0.02	000	0.02	0.12	0.02	102	20	1.00	1.00
Repeatability Acceptable?			YES	λE3	YES	YES	VES	YES	KES	VES	YES	VES	ΥES	VES	VES	YES	YES	YES
Process GC Analysis [Mot95]	11/10/2006	18:04	0.8827	84.976	20150	3.9042	0.9112	1.0446	0.3613	0.2454	0.1314	0.0673	0.0141		0.4466	0	1106.8753	1168.5261
Mae. Absolute Dewation [Morts] Recorducibility Criteria [+ Mol%]			00	890	0.75	013	10.0	10.13	50	100	200	0.04	700	800		83	300	300
Propriotoconstructures particular Remoducibility, Accountable?			YEB	NES A	VES	2	VES	VEB	VEB /	VES	VES /	9	YES	VES	VEB	VEB	VES	VES

Table D-7. Detailed results from Powder Wash sampling tests, November 10, 2003: Pitot and Bypass method.

Sample FE1	Date	Sample Time	nitrogen	mathana	athana	propana	so-butana	n-butana	i-pentane	n-pentane	haxanas	heptenes	octanes	nonanes	C02	B2H	Hv dry (Btu/scf)	Hv sat (Btu/scf)
Sample Bottle GC Analysis-1 [Mol%]	12/19/2003	13:57 - 14:03	0.7613	83,9976	7.2188	4,2871	1.0213	1.1721	0.4463	0.3121	0.2041	0.1097	0008	0.0007	0.441	0	1210.6705	1190,9059
Sample Bottle GC Analysis-2 [Mof8]			E157.0	5555	7.2185	4,2661	1.022	1.1724	0.4435	13124	0.2044	0.1089	10054	0.0015	0.4411	•	1210.7835	1191.0168
Sample Dottle GU Analysterd (MODA) about a Doubtion Succession Balance			61070	29/202	10177	4.20/3	971	1011	0.469	6712 n	1000		20000	2000	0.461	- 5	1210./306	11/21 10/08
essantie Densitier-Course Morkel Manual Devision-Course Morkel			88		38		38	8	38	88	88		38		38	8	0 13	1
tability Criteria (± MorSa)			80	32	380	8	89	8	38	88	80	88	88	38	80	38	100	1.00
tability Acceptable?			λES	YES	ΥES	YES	λES	YES	ΥES	YES	ΥES	YES	ΥES	YES	γES	YES	KES.	YES
Process GC Analysis [Mol%]	12/19/2003	14:02	1,7557.0	1686-08	7.1917	4.3322	1.0294	1.1826	0.4664	0.3193	0.1996	0.0941	0.0058	0	1,4341	-	1210.8973	1191.1287
Absolute Deviation [Mol%]			80	0.0	0.03	900	0.01	10 ^{.0}	0.02	0.01	0.01	0.02	0.01	000	0.01	000	0.23	0.22
ductaity Criteria (± Mol%)			0.04	191	8	E1.0	0.13	EL.O	0.04	0.04	0.04	50	10	8	0.04	9	DOIE	00%
ducibility Acceptable?			ŝ	ΥES	ŝ	YES	33	YES	ŝ	83,	ΥE	YES	83,	YES	33	YES	YES	YES
Sample FE2	Date	Sample Time	nitragen	mathana	athana	propane	iso-butana	n-butana	i-pentane	n-pentane	havanas	heptenes	octanes	nonanes	C02	52H	Hv dry (Btu/scf)	Hv sat (Bturscf)
Sample Bottle GC Analysis-1 [Mol%]	12/19/2003	14:10 - 14:15	0.7872	84,0245	7 2797	4,3586	1,0025	1.1304	0.4017	0.2726	0.1739	0.0987	1900	0.0021	0.433	•	1206.3388	1186.6468
Sample Bottle GC Analysis-2 [Mof8]			0.7968	84.0248	7.2805	6699 Y	1002	1.1305	0.4017	5//2	0.1736	0.0582	0.0348	1000	14331	•	1205.2522	1186.5615
Sample Dottle GU Analysis-J (MODS)			200/in	801160	00/77/	1974 1975	/7001	1921		/7/70	BC/10	9991D		7000	0.4352	- 2	12005351	1108.0391
Absolute Deviation Consult Market			38	8	38	8	38	88	38	38	38		38	8	38	8	800	900
MOSOULE LEMISTICIT-LATER (MODS) tokultu Datado (+ ModS)			88	39	80	0,0	89	8	38	86	38	88	88	8	8	88	800	100
tshifty Accentable?			AFS.	KEY.	28	NES.	2.52	i SHA	193	NEX.	1 SH >	NES.	18	KES.	184	KES.	KES.	YES
Process GC Analysis (Mol%)	12/19/2003	14:13	BE77.0	84.0674	7.2166	4,2988	1.0108	1.1478	0.4224	1670	0.19	0.1018	51.0010	0.0005	0.4459	20	1207.2201	1187.5133
Absolute Deviation [Mol%]			0.01	90	0.08	90.0	0.01	0.02	0.02	0.02	0.02	000	80	000	0.01	000	080	0.95
ductifity Criteria [± Mol%]			0.04	63.0	80	E1.0	0,13	E1.0	0.04	0.04	0.04	90	0.04	9	0.04	90	DOIE	3.00
ducibility Acceptable?			ΥES	YES	χES	YES	ΥES	YES	χES	ΥES	ΥES	YES	χES	YES	ΥES	YES	YES	YES
Sample FE3	Date	Sample Time	nitragen	mathana	athana	propana	so-butana	n-butana	Hentene	n-pentane	haxanas	heptenes	octanes	nonanes	C02	52H	Hv dry (Btu/scf)	Hv sat (Btu/scf)
Sample Bottle GC Analysis-1 [Mot96]	12/19/2003	1421 - 1426	0.7778	83,9004	7.2676	4,4334	1.011	1.1436	0.4092	0.2778	0.1826	0,1079	0.0991	0.0008	0.4291	0	1209.2762	1169.534
Sample Bottle GC Analysis-2 [Mot%]			0.7776	83.500E	7.2668	4.4336	1.0107	1.1433	0.408	0.2776	0.1824	0.1079	16E010	0.002	0.4294	0	1209.3245	1189.5824
Sample Bottle GC Analysis-3 [Mot96]			0.7774	83,922	7.2664	4,4309	1,0108	1.1429	0.4089	0.2776	0.1824	0108	600	0.004	0.4293	0	1209.2112	1169.471
Absolute Deviation-Successive [Mol%]			80	8	80	8	8	0	8	80	80	00	8	8	80	00	0.11	0.11
Absolute Deviation-Overall [Mot%]			8	8	8	8	8	8	8	8	8	8	8	8	8	8	0.11	011
12010Y Uniteria (± Morsa) Artesta Arcenteria			200	39	VE0	1.10	010	1.1			200	305		39	700	39	002	1.00
taoring metroprotrier Proninge Gr. Analysis (Market)	FT/MA/2001	14:24	0.7749	SA DRF	3 12	1 100	300	1128	130	32	11997	0 Det	C D D	00017	1434	2	1205 2252	1155 4517
Absolute Deviction (Mul%)				0.17	18	200	100	00	100	100	0.01	00	100	000		8	410	4.03
ductative Criteria (± Mol%)			0.04	3	1920	EI.O	0.04	El O	100	0.04	0.04	101	0.04	100	0.04	50	DOF	300
ducibility Acceptable?			ΥES	YES	ΥES	YES	ΥES	YES	ΥES	ΥES	ΥES	YES	ΥES	YES	YES	YES	9	N0
Samulo FE4	Late	Same Time	nitmon	mathana	athana	000000	anhutana	chitana	Linertone	outoutouto	havanao	hertoneo	ortones	N ON DATES	000	R2H	He dor (Bhulson)	He cat (Bhuforf)
Samale Bottle GC Analysis-1 [MotSc]	12/19/2003	14.31 - 14.36	0.7475	83.89	7,2667	4.4428	1.0018	1,1262	0.3836	0.2669	0.1761	0.1085	000	0.0018	0.4283	0	1208.5965	1168.6665
Sample Bottle GC Analysis-2 [Mof8]			0.748	E192.E8	7.2702	4.4443	1,0007	1.124	0.3992	0.2686	0.1758	0.1082	0.043	0.0021	0.4286	0	1208.9608	1188.8314
Sample Bottle GC Analysis-3 [Mot%]			0.7474	83,9871	7.2696	4,4428	1.0015	1.135	0.3898	0.289	0.1761	0.1085	900 00	0.0019	0.4283	0	1208.8267	1168.6963
absolute Deviation-Successive [Mol%] Attention Orderics County Net 60			88	8	88	88	88	88	88	88	88	8	88	88	88	88	2010	900
resolute density increase (marke) tability (bitatis (+ MolSa)			80	32	80	010	39	8	36	80	36	8	88	8	88	88		80
tability Acceptable?			λES	YES	λES	YES	λES	YES	ΥES	YES	λES	YES	KB/	YES	γES	YES	KES.	YES
Process GC Analysis [Mot5s]	12/19/2003	14.35	0.7772	84.0451	7.2526	4.3918	1.0018	1.1246	0.3976	0.2687	0.1755	0.1021	0.0348	0.0003	0.4279	0	1206.4897	1186.795
Absolute Deviation [Mol%]			80	8	88	88	8	8	8	88	8	80	60	8	8	8	2.12	210
succentry Unitaria (± Morts) Huchelèvi Acrimitation			AES VES	VEC 19	83	NES	VES	NES VES	VES 4	VES	VES V	NEX.	ters XEX	APR -	VES VES	VES	NES	VES
LANDAGON J. THERMORE			3	2	3	2	3	2	3	3	3	2	3	2	3	2	2	3
Sample FE5	Date	Sample Time	ntragen	mathana	athane	propane	so-butana	n-butana	i-pentane	n-pentane	haxanas	heptenes	octanes	nonanes	C02	SZH.	Hv dry (Btu/scf)	Hv sat (Btu/scf)
Sample Bottle GC Analysis-1 [Mot%]	12/19/2003	14:43 - 14:48	0.7524	839104	7,2854	4.5104	1.0018	11204	0.3067	0.2682	0.1742	0.1064	0.0427	0.0027	0.4265		1209.452	1189.7077
Sample Bottle GC Analysis-2 [MorSs Samela Bottle GC Analysis-3 [MorSs)			0.7629	81.00.08	7,2800	4,5137	1,000	11212	0.3001	0.2663	0.1742	0.1062	0.0424	0.0027	0.4265		1,200,4603	1189-8055
Absolute Deviation-Successive [MolW]			000	101	0.00	100	000		0.00	080	000	00	000	000	000	00	0.10	0.10
Absolute Deviation-Overal [Mot%]			8	8	8	8	8	80	8	8	80	80	8	8	8	8	0.10	010
dability Criteria (± MorSa) a-1934: A-construction			002	32	0.18 VE0	010	010	0.10	002	012	002	200	012	80 S	0.02	00 201 201	100	1.00
tiability Addeptabler Envices GC Andreis Merica	CITICUPITICE I	14-46	1200	od Dana	COL 1	1 4694	1000	1112		1250	100	200			1076	ů c	1CO	153
FIRE STATE AND ADDRESS IN A DREED AND A DR	1411-740-00-0	100	la rance	1000	1000	toot t	240010		1000	7407.0	2	2010		1	a set a	,	- 100 - 100	100 - 20 - 20

Fill-and-Empty method.
, 2003:
19.
December
°.
tests
sampling
ash
3
Powder
rom
S f
result
ed
ail
et:
Ω
ø
Á
le
ab

Cample EE4	Date	Eamsta Time	otroop	mothana	athana	months in	A history	huttan In	Lotten 0	a notion 1	000000	heat on on	outouto:	DO NO INCIDA	600	100	the day (Briden)	the cost (Disc
Sample FET Samala Bottle GC Arabreis-1 [Mar960]	12/19/2010	5ample Time 13-67 - 14-09	0.7613	Realized Sector	2 2168	4 2671 IS	1 0013 1	0 1721 0	Latera n	1 S121	0 2041	0 1087	0.066	0 007	0.441	₽ ₽	1210 8705	1150 305
Sample Bottle GC Analysis-2 [Mot%]			E127.0	15665 ES	7.2185	4.2861	1.022	1724	1486	13124	0.2044	0.1089	0.0364	0.0015	0.4411		1210.7835	1191.016
Sample Bottle GC Analysis-3 [Mot96]			0.7514	69/963	7.2181	4.2679	1.0225	1731 (0.449	0.3126	0.2047	0.1101	0.0963	0.0003	0.441	•	1210.7966	1191.028
Max. Absolute Deviation-Successive [Mol%]			0.00	8	8	8	8	00	0.00	0.0	8	80	8	8	80	0	0.11	611
Max. Absolute Deviation-Overal [Mot9s]			88	85	88	8	88	8	88	88	88	88	88	88	88	88	0.13	012
representating contents (± Morros) Representability Acceptable/2			YES	AES AES	AES C	AES AES	XES C	VES A	YES	VES	VES A	VES	YES	YES	VES	YES	VES	1
Process GC Analysis [MofSs]	12/19/2003	14:02	17557	1636.08	7.1917	4.3322	1.00294	11826	14864	D615.0	0.1996	0.0941	8500.0	-	14341	-	1210.8973	1191.128
Max. Absolute Deviation [Mol%]			8	8	80	90	0.01	50	200	0.01	0.01	8	100	8	100	8	0.23	022
Reproductnicy Uniteria (± Morts) Reproductnički Accentivite?			YES VES	VES	82	VES 4	AES C	VES	VES 4	VES 4	t Si A	YES	t Si A	KES	t Si A	a Sily	VES	R K
																	8	
Samulo ED	Date	Same Time	otroom	mothana	athana	monana la	chitana n	buttono Lo	testero o	a pertono - P	0.0000	hertoneo	orteneo	00100100	000	No.H	He day (Bhulsen)	He cat (Brui
Samula Pottla CC Anabujart (Ma/901	10400013	14-10 - 14-15	0.787.0	SHOORE	7 2002	1 9496	1 0026	1304	4017	90.00	0.1730	0.0087	0.0951	0.000	0.439		1206 9368	1168 646
Sample Bottle GC Analysis-2 [Mol56]	00000101071		0.7868	84.0248	7.2805	4 3589	52001	1306	14017	52/20	0.1736	0.0982	0.0348	1000	14331	0	1206.2522	1186.561
Sample Bottle GC Analysie-3 [Mot%]			0.7867	84.0259	7.2796	4.367	1.0027	1307 0	.4018	0.2727	0.1738	0.0985	0.0354	0.002	0.4332	0	1206.331	1166.639
Max. Absolute Deviation-Successive [Mol%]			0.0	8	80	8	80	0.0	80	8	80	8	80	0	80	0	801	0.03
Max. Absolute Deviation-Overal [Mot%]			8	8	8	8	8	8	88	8	8	88	8	8	8	8	80	88
Repeatablity Criteria (± Morsa)			002	2 ý	0 19 0	200	010	0.10			202	89		89		89	80,	8
Inspectation by Acceptators Process GC Andreis Michael	STICE NOT	E1-F1	17738	24 0574	7 2465	17040	300	1472	14234	12817	30	01018	310		14459	2	1207 2201	1187 512
Mare Absolute Deviction (Mul54)	CHOOK I IN	ŗ	001		000	0.06	001	0.00	500	100	200	000			001	8	0.97	1900
Renducibility Criteria (± Mol%)			0.04	19	80	ELO	013	EL.D	0.04	0.04	0.04	101	0.04	50	0.04	50	DOE	800
Reproducibility Acceptable?			YES	YES	ΥES	YES	ΥES	YES	YES	YES	ΥES	YES	ΥES	YES	ΥES	YES	YES	ΥES
						1	+	+	+	+	+							
Sample FE3	Date	Sample Time	nitrogen	methane	athana	propana is	o-butana n	butana i-p	tentane n-	antane 1	exanes	hestenes	octanes	nonenes	602	SZH	Hv dry (Btu/scf)	HV sat [Btu/
Sample Bottle GC Analysis-1 [Mot86]	12/19/2003	1421 - 1426	0.7778	83,9004	7.2676	4.4334	1.011	11436	1,4092	0.2778	0.1826	01009	0.091	0000	0.4291	0	1209.2762	1189.534
Sample Bottle GC Analysis-2 [MotSc]			0.7776	80.9005	7.2669	4,4336	1.0107	1433	0.408	3775	0.1824	0.1079	1660.0	0.002	0.4294		1209.3245	1189.582
Sample Bottle GC Analysis-3 [Mot%]			0.7774	83.9222	7.2684	4.4329	1.0108	11429 0	1,4069	0.2776	0.1824	0.1078	0.039	0.0004	0.4293	0	1209.2112	1169.471
Max. Absolute Deviation-Successive [Mol%]			80	80	80	8	80	80	80	80	80	00.0	80	80	80	00	0.11	011
Max. Absolute Deviation-Overal [Mot96]			80	80	80	80	8	000	80	80	8	80	80	00	80	80	0.11	011
Repeatability Criteria (± Mol%)			0.02	5	0,18	0.10	0;0	0.10	0.12	013	012	201	00	8	012	8	9	8
Repeatability Acceptable?			λES	YES	93 j	YES .	۲	YES	93 j	<u>ال</u>	ŝ	YES	3	YES	3	ξĘ,	YES	XES
Process GC Analysis [Morss]	12/15//2013	14:24	0.000	241,800	R a	fi 20	8550	1238	199	997-0	0.04	1950.0	1010	1000	14134	- 20	1412,4121	1102-021
men, records Octation (mone) Remoducibility (rateria (+ MoPS)				2	8 10	200	100	200	700	100	100		100		300	3	1	8
Reproducibility Acceptable?			ΥES	YES	ž	KES	ž	YES	χES	ΥES	ž	YES	ž	YES	ΥES	YES	9	¥
Sample FE4	Date	Sample Time	nitrogen	mathana	athana	propana is	o-butana n	butana ka	ientene n-	aentane 1	astanas	hestenes	octanes	nonenes	602	SZH	Hv drv (Btu/sch	HV sat (Btu/
Sample Bottle GC Analysis-1 [Mot86]	12/19/2003	14/31 - 14/36	0.7475	83.89	7.2667	4.4426	1.0018	11262	9696	0.2669	0.1761	01085	0.043	0.0018	0.4263	0	1208.6965	1168.689
Sample Bottle GC Analysis-2 [MofSs]			0.748	E1982.ES	7.2702	4.4443	1,0007	1.124 0	2662	1.7686	0.1758	0.1082	600	0.0021	0.4286		1208.9608	1158.8311
Sample Bottle GC Analysis-3 [Mof%]			0.7474	1/19/12	7.2896	4,4428	1001	8	8680	697	19/110	9000	500	6003	0.4263	-	1208.6267	1108.096
Max. Adsolute Deviation-Successive [Morks] Max. Absolute Deviation-Overal [Morks]			88	88	38	38	38		38	38	38	88	38	88	38	8	200	80
Reneatebility Criteria (± Mol%)			200	3	80	110	99	0.10	300	300	200	200	200	80	30	30	100	8
Repeatability Acceptable?			ΥES	YES	ΥES	YES	ΥES	YES	ΥES	YES	ΥES	YES	ΥES	YES	YES	YES	YES	YES
Process GC Analysis [Motis]	12/19/2003	14:35	2777.0	84.0451	7.2526	4.3918	1.0018	1,1246	3876	7887	0.1755	0.1021	8460.0	0.0003	0.4279		1206.4897	1186.795
Max. Absolute Deviation [Mol%]			80	88	88	88	88	8	88	88	88	50	50	88	88	88	100	510
Reproducibility Acceptable?			YES	YES	88	AES:	3	VES	λES	λES	KES A	VES -	λES	KES SEA	λES	K SH	YES	1 (F)
																		1
Sample FE5	Date	Sample Time	nitrogen	mathana	athana	propana is	o-butana n	butana i-p	ientene n-	pertane 1	astanas	heptenes	octanes	nonanes	68	EST.	Hv dry (Btu/scf)	HV sat [Btu/
Sample Bottle GC Analysis-1 [Mor3e]	12/19/2005	14:43 - 14:48	0.7524	83.9104	7,2864	4,6104	1,0016	1204	13967	0.2662	0.1742	0.1064	/2000	0.0027	0.4205		1209.452	1189.70/
Sample Bottle UC Analysis-z (Murso) Parecia Bottle CC Areholder (Mur90)			1.03/2 P	20000	2, 2007	4,5137	1.000	1212	1 2001	7997	0.174	01082	0.0418	0.0000	0.4765		1.405.5001	1160.545
Max. Absolute Deviation-Successive Photos			000	100	X007	70104		1771	1000			000					0.10	010
Max. Absolute Deviation-Overal [Mot95]			8	5	8	8	8	8	8	8	8	8	80	8	8	8	0.10	650
Repeatability Criteria [± Mol%]			0.02	251	0.18	0.10	0,10	0.10	0.02	0.02	0.02	201	0.02	8	0.02	201	1,00	1.00
Repeatability Acceptable?		!	ŝ	YES	33	YES	ŝ	YES	ŝ	XEX X	ŝ	YES	ž	YES	ŝ	YES	YES	ž
Process GC Analysis [more] http://doi.org/0010000000000000000000000000000000000	12/19/2005	14:45	0.7509	84.040B	2010	4.4584	0.9842	1124 0	1 888	592	B0/1/0	0102	8/601	0.0016	0.4276	۰ş	1207.0844	1187.375
Remoducibility Criteria [± MotS]			200	1 19	380	970 E1:0	0.04	EVO	0.04	100	200	200	200	30		30	300	38
Reproducibility Acceptable?			YES	YES	ΥES	YES	χES	YES	YES	YES	ΥES	YES	ΥES	YES	YES	YES	YES	χES

Press in 1974	100	County There	allocates.	and the second	and the second	and the second se	a bridera a	- I									A des (Thursday)	An and Plantership
Sample Both C. Analysis-1 (MMS) Sample Both C. Analysis-1 (MMS) Sample Both C. Analysis-3 (MMS) Sample Both C. Analysis-3 (MMS) Maz. Absolute Deviator-Disert (MMS) Repeatably Acceptable Repeatably Acceptable Process (Analysis (MMS) Maz. Absolute Deviator (MMS) Maz. Absolute Deviator (MMS) Reproductive Control & MMS) Reproductive Control & MMS Reproductive Control & MMS	12/19/2003	sampa ima 16:12 - 16:16 16:16	natrogan 0.8212 0.8302 0.8197 0.08197 0.00 0.00 0.00 0.7632 0.7632 0.7632 0.7632 0.7632 0.7632 0.7632	methane 83.9711 83.9711 0.00 0.62 0.62 84.0296 84.0296 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.0	affarra 7.1867 7.1867 7.1867 0.00 0.00 0.16 7.116 7.2116 7.2116 7.2116 7.2116 7.2116 7.2116	Propare is 4.4699 4.4699 0.00 0.10 0.10 0.10 1.4645 4.4645 4.4645 1.4645 1.4645 1.4645 1.4645 1.4645 1.4645 1.4645 1.4645 1.4645 1.4645 1.4669 1.0000 1.00000 1.00000 1.00000000		Puestion 1489 11482 11482 0010 0100 11482 11482 0010 11482 11482 0100 11482 11482 0100 11482 111	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 2801 0.2801 0.2801 0.2801 0.2801 0.2801 0.2801 0.2801 0.026 0.026 0.026 0.026 0.026 0.026 0.026 0.020 0.02	Maranes 0.1694 0.1694 0.1693 0.1693 0.1693 0.1693 0.1693 VES 0.1674 0.1674 0.1674 0.1674 0.1674 0.16574 0.16574 0.16574 0.16574 0.16574 0.16574 0.0000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000000	Maplements 0.1026 0.1026 0.1026 0.1026 0.002 0.002 0.002 0.02 0.02 0.02 0.0	0.0411 0.0413 0.0413 0.0413 0.0403 0.0406 0.0406 0.0406 0.0406 0.0406	00026 0 00026 0 00026 0 00035 0 00035 0 00035 0 00035 0 00035 0 00035 0 00035 0 00035 0 0003 0 0000 0 0003 0 0000 0 0003 0 0000 0 00000 0 0000 0 000000	0.02 0.4318 0.43318 0.433 0.4333 0.4333 0.020 0.02 0.02 0.02 0.02 0.02 0.02		VERY (18/05/11) 1/20/06/13 1/20/11/3/ 0/03 1/20/11/3/ 0/03 1/20/12/72 0/05 7/20/12/72 0/05 7/20/12/72	x sai 1802e0 1187.3627 1187.3627 1187.362 0.03 103 103 103 103 103 103 200 753 700 753 700 753 700 755 700 755 700 755 700 755 750 750
Sample HZZ Sample HZZ Sample Bothe GC Analysis-1 (Morts) Sample Bothe GC Analysis-2 (Morts) Sample Bothe GC Analysis-3 (Morts) Max. Absolute Deviation-Successing (Morts) Repeatability Creasis J: Morts) Repeatability Acceptible? Max. Absolute Deviation (Darbid) Max. Absolute Deviation (Darbid) Max. Absolute Deviation (Morts) Reproducibility Creasis J: Morts) Reproducibility Creasis J: Morts) Reproducibility Acceptible?	046 12/19/2003	Sample Time 15:18 - 15:19 15:21	nitrogen 0.909 0.008 0.008 0.008 0.008 0.008 0.00 0.00 0.00 0.01 0.13 0.13 0.04 0.04 0.04	methame 83.9014 83.9014 83.8014 83.8014 0.00 0.00 0.02 0.02 0.01 84.0413 0.14 0.14 0.14 0.13 YES	4thame 7.1578 7.1586 7.1586 0.00 0.00 0.00 0.18 7.1817 7.1817 7.1817 7.1817 7.1817 7.1817 7.1817 7.1817 7.1817	Proparte 16 4.4655 4.4656 0.00 0.10 2.10 2.10 2.10 0.10 0.11 0.13 VES VES	e-butane 1.0037 1.0027 1.0042 0.00 0.10 0.10 0.10 0.10 0.10 0.10 0.1	Automo H 11522 0 11522 0 11522 0 11522 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 7 441 0 7 755 0 7 1522 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Perfame Perfame 0.0305 0.035	Pentiane 1 2518 0.2518 0.2619 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.1725 0.1725 0.1726 0.1728 0.1728 0.1728 0.1728 0.1728 0.1728 0.1682 0.1682 0.1682 0.1682 0.1682	n 105 100 105 105 105 105 105 105 105 105	0018464	00000000000000000000000000000000000000	CO2 14287 14287 14289 1022 1022 1022 1022 1022 1022 1022 102	H H H H H H H H H H H H H H H H H H H	V 4/V (BW/sch) 1 1206 515 1206 538 1206 5383 1206 5782 0.11 1.00 1.00 0.11 1.00 0.13 0.25	A 641 (BW/ecf) 1186 8168 1166 8411 1166 8411 1166 8411 1166 8411 1166 8411 1166 8411 1166 8411 1166 8411 1167 878 1187 878 1188 818 1188 82 1188 85 1188 85 1188 85 1188 85 1188 85 1188 85 1188 85 1188 85 118
Sample Bothe (PC) Symple Bothe CC Analysis-1 (MoRS) Earnighe Bothe CC Analysis-2 (MoRS) Sample Bothe CC Analysis-2 (MoRS) Max. Absolute Deviation-Eucoscase (MoRS) Repeatability Criteria J. MoRS) Repeatability Acceptiable? Max. Absolute Deviation (MoRS) Repeatability Acceptiable? Max. Absolute Deviation (MoRS) Reproduce bitty Acceptiable?	0.44e 12/19/2003 12/19/2003	Sample Time 16:23 - 15:26 16:27	ritrogen 0.7675 0.7675 0.7675 0.7675 0.7675 0.7675 0.7641 0.00 0.00 7661 765	methane 84.0376 84.0376 84.0239 0.01 0.02 0.02 0.02 0.02 0.05 0.05 0.05 0.05	ethane ethane 7.1643 7.1644 0.00 0.00 0.18 7.1617 0.00 0.00 0.18 VES VES VES VES	Piroparte la 4.4875 4.4772 0.00 0.00 0.00 0.00 0.00 0.10 0.10 0.1		blutame 1.1522 1.1534 1.1534 0.10 0.10 0.10 0.13 VES VES	Pentane 2 3964 2 3964 0 3964 0 3963 0 3000 0 3003 0 300	Pertiane 1 1.282 1.282 0.2624 0.000 0.00 0.00 0.00 0.00 VES VES	Pexanes Pexanes 0.1726 0.1726 0.1726 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	heptanes 0.1048 0.1048 0.1048 0.000 0.000 0.000 0.001 0.1011 YES YES	octanes 001anes 001410 0.0414 0.0414 0.0414 0.0414 0.000 0.02 0.000 0.000 0.000 0.000 0.000	010021 00021 00021 00025 00025 00025 00025 0002 0002	000 000 000 000 000 000 000 000 000 00	H	x dry (Bulech) 1307 808 1307 808 1307 808 1306 689 1306 689 142 142 142 142 142 142 142 142 142 142	Y test [Bu/scf) 1188.0913 1188.0913 1188.1846 1188.3478 0.05 158.9624 1.40 1.40 1.40 Y 53 Y 530 Y 530 Y 530
Sample Bette SC Analysis-1 (Mol%) Sample Bette SC Analysis-1 (Mol%) Sample Bette SC Analysis-2 (Mol%) Sample Bette SC Analysis-2 (Mol%) Max. Absolute Deviation-Successine (Mol%) Repeatability Cateria J. Mol%) Repeatability Acceptable 2	12/19/2009	Sampla Tima 16:30 - 15:32	nitrogen 0.7513 0.7513 0.7513 0.7513 0.7513 0.7513 0.7513 0.00 0.00 0.00 0.00 0.00 0.00	methana 84,174 84,1561 84,1397 0.02 0.02 0.62 YES	athana 7.0631 7.0722 7.077 0.00 0.16 0.18 0.18	Proparte la 4.3969 4.4014 4.4014 0.00 0.01 0.10 VES	0-butana 1.0226 1.0248 0.00 0.10 0.10 0.10	Abutane H 11755 0 11755 0 0.00 0.00 0.00 0.00 0.10	Pentana 0.4038 0.4043 0.4049 0.00 0.00 0.00 0.00	0 2962 0 2962 0 2962 0 2962 0 0 2968 0 0 0 0 12 VES	0.1736 0.1736 0.1737 0.1744 0.000 0.000 0.000 0.000 0.000	haptanas 0.1036 0.1045 0.1045 0.000 0.00 0.00 0.00 0.00	octanes 0.04 0.004 0.000 0.000 0.00 0.00 0.00	00000000000000000000000000000000000000	000 000 000 000 000 000 000 000 000 00		v dry [Bu/scn] 1 1207 2987 1207 2429 1207 5722 0.45 0.45 0.67 1.00 Y E3	V sat [Btu/scf] 1187.5866 1188.5972 1188.2517 0.44 0.44 0.85 1.00 1.00
Max. Absolute Deviation [MoNs] Reproducting ty create [= MoNs] Reproducting Acceptable?	5002161/21	25.32	0.01 0.04 YES	84.0851 0.09 7ES 7ES	7.1554 0.09 YES	4.4566 0.06 7ES 7ES	0.03 0.03 YES	0.08 0.03 YES	000 J300	0.01 VES YES	0.00 0.04 YES	0.00 VES YES	VES 400	× 1000 000 000	100 101 101	- 00 00 	1.09 1.09 YES YES	118/.1/62 1.08 YES
Sample HP5 Bample Bottle GC Analysis-1 [Mof8] Bample Bottle GC Analysis-2 [Mof8] Sample Bottle GC Analysis-3 [Mof8]	0ate 12/19/2003	Sample Time 15:37 - 15:38	nitrogen D.8751 D.8755 D.8749	methane 84.009 83.9994 84.0037	ethane 7.146 7.1491 7.1498	4.4518 4.4503 4.4503 4.4518	a-butane n 0.9941 0.9827 0.9827	-butane H 1.1366 0 1.1367 0 1.1362 0	pentane n 0.3923 0.3922	pentane 0.2557 0.2559 0.2666	hexanes 0.1648 0.1649 0.1645	heptanes 0.0956 0.0926 0.0931	octanes 0.0404 0.0334	0.003 0.003	0.4382	1 2000	v dry (Bhu/sch) 1204.8445 1204.8381 1204.8381	hr sat (Btu/scf) 1185.1776 1186.334 1186.334 1186.1713
Mar. Absolute Lowation-successive [murre] Mar. Absolute Deviation-Onenal [MoRS] Repeatablity Criteria [± MoRV] Repeatablity Acceptable?			000 VES	0.01 VE3 VE3	400 000 000 000 000 000 000 000 000 000	×8000	A 10 0 0	VES 0.00	1000 1000 1000	VES 000	× 000	A 0 0 0 0	800 800 800 800 800 800 800 800 800 800	483 0 00 10 0 0 0	8868	1000 1000 1000	0.17 1.00 VES	0.16 1.00 VES
Process GC Analysis [Mof8] Max. Absolute Deviation [Mo184] Reproducibility Criteria <u>Ja</u> Mo185]	12/19/2003	15.38	0.752	84.094 0.09 0.63	7.1545 0.01 0.26	4.4586 0.01 0.13	0.9958	1.1415 0.13 0.13	0.03	0.2697	0.1705	0.1028	0000 0000 000	0000	0.04	088	1206.9624 2.15 3.00	1167 2893 2.12 3.00
Contraction in the second s							1000	-	-	2002	-	- DEA	-			-	NEG.	VEG V

Table D-9. Detailed results from Powder Wash sampling tests, December 19, 2003: Helium Pop method.

Sample PP1	Dizto	Sampla Tima	nitrogen	methana	athana	propane is	o-butana r	Nutane I-	pantana n	1-pentane	havanes	haptanas	octanes	nonanas	8	52H	Hv dry (Btursch	Hv sat (Btu/scf)
Sample Bottle GC Analysis-1 [MoT6] Essents Bottle GC Analysis-1 [Mot63]	12/19/2003	16.01 - 16.04	0.7618	84.1764	2112	4.3466	0.9962	1.1214	0.4	0.2608	210	0.102	0.0398	52000 92000	0.4408		1204.6868	1184.9242 1164.00042
Sample Bottle GC Analysis 3 [Mot6]		Ī	0.7812	84.1721	7.1728	4.349	0.9664	1.1216	0.4002	0.2611	0.1701	0.1023	0.0399	0.0024	0.4409		1204.6818	1166.0176
Max. Absolute Deviation-Buccassive [Mol%]			00.0	0.00	0.00	80	8.	001	000	80	0.00	0.00	0.00	0.00	80	001	0.08	0.07
Max. Absolute Deviation-Dwinal [Mof85]			000	88	88	88	88	000	8	88	800	88	88	88	88	88	600	600
Hepestability Uniteria (± Mol?a) Henestehilta Accentehio?		T	200	200	210		70.UZ	NEG VEG			AER V	700	7III	700	700		NES V	UD:
Process GC Analysis (Mot6)	12/19/2003	18.06	0.7288	84.1841	7,1909	43466	0.9907	11383	0.4033	0.2649	0.1743	0.1041	0.0884	0.0019	0.4374	10	1208.0743	1166.3858
Max. Absolute Deviation [MoI%]			90.0	0.01	0.02	80	8	101	00	80	0.00	000	0.00	0.0	8	001	1.49	1.45
Reproducibility Criteria (± Mol%) Reproducibility Acceptable?			90 90	ς KES	YES YES	013 YES	VES Y	E1.13 YES	YES Y	YES V	YES	VES YES	YES YES	VES Y	YES	YES	300 YES	3.00 YES
Sample PP2	Date	Sample Time	nitrogen	methane	othane	propane is	o-butana n	Houtane H	pentane n	1-pentane	hexanea	heptenes	octanes	sevenor 0	8		Hv dry (Btursed)	Hv set (Bturscf)
Sample Bottle GC Analysis-1 [MofSs]	12/19/2003	16:11 - 16:14	0.8003	84,2558	7.1537	4.2983	0.9784	1.1066	0.3951	657.0	0.1631	0.1019	9650.0	0.0024	0.4404	•	1202.749	1183.117
Sample Bottle GC Analysie-2 [Mo15] Second Bottle GC Analysie-3 (Marson			8.0	84,2464	7.1538	4.3016	0.90%6	1.10/4	0.3964	N9270	0.1689	9701.0	90600	/7000	0.4403		7200.00467	1103.4058
Mare Absolute Deviation-Succession (ModS)			000	0.01	0.00	1000		80	aver 0					000		5	0.34	0.34
Max. Absolute Deviation-Overal [Mol%]			000	BD	80	100	88	000	80	88	000	800	80	80	88	800	0.64	0.63
Repeatability Criteria [± Mol%]			2010	0.52	0.18	0,0	0.02	0.10	201	0.02	0.00	0.02	0.02	0.02	102	201	1.00	1.00
Repeatability Acceptable?			YES	χEX	ŝ	ž	ŝ	YES	ΥËS	ŝ	YES	ΥES	χES	ž	ŝ	YES	ΥES	YES
Process GC Analysis [MotSs]	12/19/2003	16:10	0.7804	84,2213	7.1584	4,333	0.9826	1.1186	0.3961	0.2594	1.1631	1017	6801	00022	0.4399	-	1203.8474	1184.1971
Max. Absolute Deviation [Mot%]			88	88	8	100	8.2	5	8	8	80	8	8	8	8	8	1.10	1.08
Reproducibility Criteria (± M076) Reproducibility Screentable?			NER VER	190 190	85	013 VES	VES 0.04	0.13 VFR	ND N	VES V	M REV	VES	VES	NES V	100	N N	300 VES	300 VES
			2	2	2	1	2	2	2	1	2				2	2		1
1000		ŀ	,			ĥ									2002	5	1 1 W 1	1
Sample PV3	an An America	Cample lime	natrogen	methane ou soon	ethane 7 apon	a negati	o pace	- totale -	pentane n	-pentane	n struct	n ana7	octanes n oren	0013165	280	2 a	the dry (Dtw/sct)	The sat (DBU/Scf)
Cample Dotte GC Analyster [More]	0002/81/21	10:22 - 10:24	01/034	27,2222	7 1028	1007	0.900	1,1034	0.000		9110	104/1	71600	070000	0.4412		1200.000	1103.4180
Sample Doute Co. Analysis-Analysis [MoPS]			0.7520	84,3266	7 167	2000 P	0.0806	1 1001	0.3087	0.2611	0.1724	0 1045	0.000	0.007	0.4414		1203 0839	1189.4960
Max. Absolute Deviation-Successive (Mol/M)		Í	000	0.01	000	000	8	000	000	000	0.00	000	000	000			0.04	0.04
Max. Absolute Deviation-Overall [Mot%]			000	100	80	8	8	800	000	80	000	80	80	8	8	80	0.04	0.04
Repeatability Criteria [± Mol%]			000	0.62	018	010	0.02	0.10	80	000	000	0.02	0.02	800	80	8	8	100
Repeatability Acceptable?			YES	ΥES	ΥES	ΥES	YES	YES	YES	ΥES	ΥES	YES	γES	YES	YES	YES	YES	YES
Process GC Analysis [Mot%]	12/19/2003	18.21	62.0	84.3453	7.1389	42732	0.9725	1.0967	0.3878	0.2546	0.1845	999070	0.0377	0.0023	0.4389	•	1201.2078	1181.6017
Max. Absolute Deviation [Mo1%]			500	80	88	60	10.0	50	000	100	100	0.01	88	88	88	83	687	1.86
Heproductority Litteria (± Midra)		Ť	500	2022	892	232	10.01	0.10	500			100	100	100	100	500	80	000
Heproductority Acceptioner			2	ß	ß	ß	2	2	2	ß	2	ß	ŝ	ß	ß	ĉ	ŝ	ŝ
Sample PP4	an up and a	Sample Time	nitrogen	methane	athana	propane is	o-butana t	o-butane -	pantana n	s-pentane	haxanea	haptanes	octanes	nonanas	8	또 또	Hv dry (Btu/scr)	Hv sat (Btu/scf)
Sample Dottle GC Analyster Morse	2002/81/21	10:01 - 10:01	80/m	01,4000	7,1007	822	U.BVD/	1.0913	19081	ign of	0.1007	2011.0	100	/70000	0.4400	•	1201.0048	1101./1002
Cample Dottle GC Analysis 2 (MOTA)		Ť	8/0/m	04, 3992	7 1008	1012	0.9/100	1.0913	0,000	200	0.1007	1701.0	n costa	770000	0.4400		C180, 1021	2797.1011
Mare Absolute Decision Surrareas Decision			000	000				1000	000			000				9	0.03	0.03
Max. Absolute Deviation. Owerall (MoTS.)		Í		80	80	8	8	000	000	80		800	80	80	88		000	003
Repeatability Criteria ± Mol%			0.02	0.62	018	010	0.02	0.10	2010	0.02	0.00	0.02	0.02	0.02	002	8	100	1.00
Repeatability Acceptable?			YES	χĘ	χE	χES	Ę,	YES	YES	χES	YES	YES	ΥES	χES	ŝ	ΥËS	ΥES	YES
Process GC Analysis [MotSs]	12/19/2003	16.32	0.7502	84.4198	7.1477	4.2257	0.9727	1.0906	0.3883	0.7963	0.1689	D68010	0.0376	0002	0.4405	- 2	1201.0583	1181.4547
Max, Adsource Levendon (NODA) Devector states (Creacio 1+ Modes)			5		5	500	8.8	000	32	3	8	80		8	8	33	2002	000
Reproducibility Acceptable?			KES .	YES	χ. Ε	122	KES A	YES	KES .	KES /	YES	YES	YES	YES	SEX.	, se	YES	YES
Samula PP5	Date	Sample Time	ritmovn	methane	athorse	arrasan F	n-hitana n	shutane i-	contaria n	- armane	hearing	herbares	notaneo.	TOTOTOPE	600	SCH SCH	Hiv dev (Phrotech	Ho set (Protech
Samele Bottle GC Analysis-1 (MotSc)	12/19/2003	16,41 - 16,43	0.7351	84.5245	7,1417	4.1737	0.9729	1.0806	0.3833	0.252	0.1647	0.0968	0.0956	0.0008	0.4374	-	1159.4834	1179,5061
Sample Bottle GC Analysis-2 [Mof%]			0.735	84,5233	7.1413	4.172	0.9731	1.0807	0.3834	0.2520	0.165	0.0974	0.0367	0.0016	0.4373		1199.6214	1180.0418
Sample Bottle GC Analysis-3 [Mot%]			0.7349	84.6216	7.1438	4.1742	0.9728	1.0807	0.3634	0.2631	0.1647	0.0969	0.0959	00000	0.4374	0	1199.5434	1179.9651
Max. Absolute Deviation-Successive [MolW]			000	80	80	80	8.0	001	0010	80	0.00	000	0.00	80	8	000	0.14	0.14
Max. Absolute Deviation-Overall [Mot%]			00	8	8	8	8.	8	00	8	80	8	8	8	8	8	014	014
Repeatability Criteria [± MolW]			201	650	010	0.0	<u>-</u>		8	000	0.00	0012	0.02	00	201	8	001	1.00
Repeated by Accepted 87 December 0.0 Accelute 144-800	1140,000	07:01	122	2100	7 1010	112	C 00010	1 017£	100	1000	10 4010	10000	153	10000	10000	a o	1100.0010	1120 4010
Max. Absolute Deviation [MoRM]	12/15/2004	24.01	2010	04.00.00	0.01	000	0.01	000	80	0.00	0.00	0,00	000	0.00	200		0.57	0.95
Reproducibility Criteria (± Mol%)			0.04	0.63	0.28	013	0.04	0.13	90	0.04	900 0	0.04	0.04	0.04	0.04	100	300	300
Remainingly Accertable?			NTS V	VES	VES	VES	VES	VES	VES	VES	NEC N	VEG	VES	VES	VES	VES V	VES	VES

Ĕ	
SS	
'pa	
A	
р	
ar	
tot	
Ä	
ë	
00	
ē,	
19	
er	
qu	
cer	
De	
л С	
este	
ž	
ing	
Id	
am	
S	
asl	
3	
er	
٧d	
5	
nF	
10.	
ŝĥ	
ult	
est	
- T	
ilec	
tai	
De	
_	
Ę	
Õ	
_ <u>_</u>	