A Micro-electrochemical Study of Friction Stir Welded Aluminum 6061-T6

> Paul E. Hintze, Andrew P. Bonifas and Luz M. Calle
> Corrosion Technology Testbed
> NASA Kennedy Space Center

Overview

- Introduction
 - Micro-electrochemical cellFriction Stir Weld
- Methods
- Results
- Summary and future work

Micro-Electrochemical Cell

- Technique first described by Suter and Böhni
- Measures electrochemical properties of small areas
- Does not expose entire surface to electrolyte
- One sample can be used for many measurements

Micro-Electrochemical Cell

 Capillary tip is mounted to the bottom of a small
 Teflon electrolyte reservoir

Ports for reference and counter electrodes

 Mounted on a microscope in place of an objective

Micro-Electrochemical Cell

 Tip is approximately 500 μm in diameter (Area ~ 0.2 mm²)

 Ideal for measuring properties of welded samples or studies of localized corrosion

Friction Stir Weld

- Patented in 1991 by The Welding Institute
- Advantages
 - Lower temperature: no melting
 - Defect free weld
 - Weld zone has the same composition as bulk metal
- Disadvantages
 - Pieces must be clamped
 - 'Keyholes' at the ends of the weld

Friction Stir Weld

Picture of welds and samples

Friction Stir Weld

TIG Weld

Microstructure of FSW

- A: Bulk Metal
- B: Heat affected zone (HAZ)
- C: Thermo-mechanically affected zone (TMAZ)
- D: Weld nugget, part of the TMAZ

Microstructure

Materials and Methods

- Al 6061-T6 friction stir welds
- Al 6061-T6 TIG welds with Al 5356 filler material
 - Al 6061 nominal composition: 1.0 % Mg, 0.6% Si, 0.27% Cu, 0.2 % Cr
 - Al 5356 nominal composition: 5.0% Mg, 0.4% Fe, 0.25% Si

Materials and Methods

- Polished to 600 grit
- Linear polarization from -1 V vs. SCE to the breakdown potential

Materials and Methods

FSW

TIG

FSW Breakdown Potential

TIG Breakdown Potential

FSW Corrosion Potential

TIG Corrosion Potential

Summary

- FSW process yields a smaller "affected zone" than TIG process
 - Breakdown potential returns to that of the bulk metal closer to center of weld
 - Breakdown potentials are much more variable for TIG weld
- Corrosion potential does not change across FSW

Future Work

Compare micro-electrochemical techniques to large scale techniques
Use technique to optimize weld parameters
Work on other system where a high spatial resolution is necessary

Acknowledgements

This research is being performed while the author (PEH) holds a National Research Council Research Associateship Award at the NASA Kennedy Space Center

NASA

■ Code M

Michael Fuchs of the NASA Prototype Shop for supplying the welded samples