Windshear Database for Forward-Looking Systems Certification

G. F. Switzer
Research Triangle Institute
Research Triangle Park, North Carolina
F. H. Proctor and D. A. Hinton
Langley Research Center
Hampton, Virginia
J. V. Aanstoos
Research Triangle Institute
Research Triangle Park, North Carolina

November 1993

$$
\begin{aligned}
& \text { (ASA-TM-103O12) NINDSHEAR } \\
& \text { UATAOASS FOR FODNAROLUOKING } \\
& \text { UYSTMS CFRTIFICATION (NASA) } \\
& 1 \text { H }
\end{aligned}
$$

National Aeronautics and Space Administration

Table of Contents

List of Tables ii
Abstract iii
Conversion Table iv
Glossary V
1.0 Introduction 1
1.1 Purpose 1
1.2 Overview of Documentation 1
1.3 Description of TASS Model 1
2.0 Database Description 4
2.1 Variables 4
2.2 Generation of Certification Database 7
2.2.1 Grid Spacing of Original and Final Data Sets 7
2.2.2 Interpolation 7
2.3 General Meteorological Description of Each Case 11
2.3.1 Case 1: DFW Microburst 11
2.3.2 Case 2: Orlando Microburst 11
2.3.3 Case 3: Denver Multiple Microburst Event 12
2.3.4 Case 4: Denver Warm Microburst 12
2.3.5 Case 5: Denver Dry Microburst 13
2.3.6 Case 6: Highly-Asymmetric Florida Microburst 13
2.3.7 Case 7: Montana Gust Front 14
3.0 Certification Path Scenarios 15
3.1 Path Descriptions 15
3.2 Hazards Along Path 15
4.0 Plot Descriptions. 21
5.0 Instructions for Reading Tape and Verifying Certification Database 22
6.0 Concluding Remarks 24
References 25
Appendices
A. Database Plots A-0
A. 1 Input Sounding Plotted on Skew T-log p Diagrams A-1
A. 2 North-South and East-West FBAR Contour Plots A-9
A. 3 Radar Reflectivity Contour Plots A-25
A. 4 Wind Vectors A-31
A. 5 Along Path Flight Scenario Plots A-41
B. Skew-T Diagrams B-1
C. Aircraft Hazard Factor or F-factor Equations C-1
D. Supplementary Equations D-1
E. Sample FORTRAN Program to Read and Verify the Database E-1
F. Output from Sample FORTRAN Program to Read and Verify the Database F-1

List of Tables

Table 1.1 Cloud Microphysical Interactions. 3
Table 2.1 Description of Windshear Certification Database 5
Table 2.2 List of Variables Contained in Certification Database 6
Table 2.3 Description of Original (raw) TASS Data Set 9
Table 2.4 Domain Information for Interpolated Windshear Database 10
Table 3.1 Path Scenario Definitions 16
Table 3.2. Certification Path Definitions 17
Table 5.1 Contents of 8 mm Magnetic Tape 22

Abstract

This document contains a description of a comprehensive database that is to be used for certification testing of airborne forward-look windshear detection systems. The database was developed by NASA Langley Research Center, at the request of the Federal Aviation Administration (FAA), to support the industry initiative to certify and produce forward-look windshear detection equipment. The database contains high-resolution, three-dimensional fields for meteorological variables that may be sensed by forward-looking systems. The database is made up of seven case studies, which have been gencrated by the Terminal Area Simulation System, a state-of-the-art numerical system for the realistic modeling of windshear phenomena. The selected cases represent a wide spectrum of windshear events. General descriptions and figures from each of the case studies are included, as well as equations for F-Factor, radarreflectivity factor, and rainfall rate. The document also describes scenarios and paths through the data sets, jointly developed by NASA and the FAA, to meet FAA certification testing objectives. Instructions for reading and verifying the data from tape are included.

Conversion Table

Conversion factors for metric (SI) to customary U.S. units

To Convert	Multiply by	To Get
cubic meter $\left(\mathrm{m}^{3}\right)$	35.31	cubic feet (cu ft)
gram (g)	0.035274	ounces (oz)
kilometer (km)	0.62137	statute miles
kilometer (km)	0.5396	nautical miles
meter (m)	3.2808	feet (ft)
meters per second (m/s)	196.8	feet per minute (ft/min)
meters per second (m/s)	1.9426	knots
meters per second (m/s)	2.237	9.86923210^{-4}

Glossary

bow echo:
graupel:
FBAR:
hazardous windshear:

LLWAS:
macroburst:
microburst:
performancedecreasing winds:
stable layer:

TDWR:
thunderstorm gust front:

Rapidly-moving, crescent-shaped radar echo that is convex in the direction of motion. Typically associated with strong, straight winds.

Small soft hail or snow pellets.
An average of the wind shear hazard index (F-factor) taken over a flight path segment of a specified distance (1 km in this document).

Region of performance-decreasing winds with a $1-\mathrm{km}$ averaged F-factor exceeding 0.105.

Low Level Wind Shear Alert System -- An array of anemometers located within the airport area; designed to detect windshear on and near airport runways.

Region of divergent outflow from storm downdraft(s) that has a horizontal scale greater than 4 km .

Region of divergent windshear that has a horizontal wind change of at least $10 \mathrm{~m} / \mathrm{s}$ within a $4-\mathrm{km}$ segment.

Windshear that causes a loss of aircraft performance.
A vertical thickness of air with static stability: a parcel displaced vertically within such a layer is subjected to a buoyant force opposite to its displacement.

Terminal Doppler Weather Radar -- a ground-based Doppler radar designed to detect microburst and gust front windshear along airport approach and departure paths and provide warnings to Air Traffic Control personnel

The transition zone at the leading edge of strong outflow from thunderstorm downdrafts. Often referred to as "gust front."

1.0 Introduction

1.1 Purpose

This document describes the windshear database developed for the certification testing of airborne forward-looking windshear detection systems. This database was developed by NASA Langley Research Center at the request of the Federal Aviation Administration (FAA) to support the industry initiative to certify and produce practical windshear detection equipment. The database will be used with vendor-developed sensor simulation software and vendor-collected ground clutter data to demonstrate detection performance in a variety of meteorological conditions. The database is generated by the Terminal Area Simulation System (TASS) -- a sophisticated, state-of-the-art, meteorological cloud model -- which outputs fields for meteorological variables that may be sensed by a forward-look windshear system or that may affect the performance of such a system. The fields are described in detail below and include wind, temperature, radar-reflectivity factor, water vapor, rain, and hail. The database contains a number of windshear cases that encompasses a wide range of events, suitable for testing and certification of windshear detection instrumentation. Description of the specific paths to be used to test and certify windshear detection systems are contained to insure that such systems are adequately tested. These paths represent the intent of the FAA as of this writing. Subsequent FAA certification documentation may modify the path descriptions and will take precedent over the paths described here. Also included are instructions to read the database from tape and verity the database.

1.2 Overview of Documentation

The TASS model is described in Section 1.3. Chapter 2 describes the data sets in detail, covering such characteristics as: variables, grid spacing, domain size and dimensions, initial conditions, and general meteorological descriptions of each case. Descriptions of the certification paths to be used with each data set are found in Chapter 3. Chapter 4 contains descriptions of the plots of key variables and derived values which are included in this report as Appendix A. Appendix A also contains Skew-T diagrams of the input soundings used to generate the database, and appendix B contains a brief explanation of Skew-T diagrams. Chapter 5 details the instructions for reading and veritying the database tapes. Appendix C shows the aircraft hazard factor or F -factor equations used in this document. Appendix D contains the supplementary equations for radar reflectivity factor, rainfall rate, and temperature conversion. Appendix E is a listing of a sample FORTRAN code to read and verify the database, and appendix F is the output of the code in appendix E.

1.3 Description of TASS Model

TASS, also known as the NASA Windshear Model, is a multi-dimensional numerical cloud model developed at NASA Langley Research Center for the general purpose of studying convective phenomena such as microbursts, convective rain
storms, gust fronts, and hailstorms (e.g., Proctor 1987a, 1987b). TASS implements a numerical solution of a 3-dimensional time-dependent equation set for compressible nonhydrostatic fluids. Prognostic equations are incorporated for the following 11 variables: the 3 velocity components, pressure, potential temperature, water vapor, liquid cloud droplets, cloud ice crystals, rain, snow, and hail/graupel. Subgrid turbulence closure is achieved using first-order diagnostic approximation with Richardson number dependency. The surface friction layer is parameterized using Monin-Obukhov similarity theory. Lateral boundaries are open and utilize radiation boundary conditions so as to minimize wave reflection. The treatment of the water substances (water vapor, liquid cloud droplets, cloud ice crystals, rain, snow and hail/graupel) allows for condensation, evaporation, freezing, and sublimation, including subsequent latent heat exchanges. Parameterizations for the numerous cloud microphysical interactions are similar to those in Lin et al. (1983), and are listed in Table 1.1.

TASS utilizes an efficient yet highly-accurate numerical solution of the timedependent equation set. The governing equations are approximated on a staggered three-dimensional grid, the vertical spacing of which may be either linear or stretched. The model domain may translate along with the movement of a microburst or convective storm, even at variable speeds.

Given an initial atmospheric sounding (vertical profile of ambient temperature, dewpoint, and wind velocity) and an initial triggering impulse, TASS can numericallysimulate the time-dependent life-cycle of a convective storm, including any subsequent microburst(s) that may develop (e.g., Proctor and Bowles 1992). Atternatively, the model may directly simulate the evolution of a microburst by prescribing a precipitation distribution at the model top boundary (e.g. Proctor 1988, 1989). For representative ambient conditions that are supplied as input, TASS has produced simulations of realworld events that are of reasonable comparison with observations.

The evolution of numerous windshear events have been simulated with TASS, and include both "wet" and "dry" microburst events. As defined by Fujita (1985), a "dry" microburst produces less than 0.01 inches of precipitation at the ground during the event (note however, that all microbursts are associated with precipitation, although in some cases very little or none may reach the ground); greater precipitation than this defines a "wet" microburst. Radar meteorologists prefer the terms "low-reflectivity," "moderate-reflectivity," and "high-reflectivity" microburst. These terms are defined by the associated radar-reflectivity factor being less than $35 \mathrm{dBZ}, 35-55 \mathrm{dBZ}$, or greater than 55 dBZ , respectively (e.g., Roberts and Wilson 1989). "Low-reflectivity microburst" is synonymously used for "dry microburst" , and vice versa.

Table 1.1 Cloud Microphysical Interactions

Accretion of cloud droplets by rain
Condensation of water vapor into cloud droplets
Berry-Reinhardt formulation for autoconversion of cloud droplet water into rain

Evaporation of rain and cloud droplets
Spontaneous freezing of supercooled cloud droplets and rain
Initiation of cloud ice crystals
Ice crystal and snow growth due to riming
Vapor deposition and sublimation of hail/graupel, snow, and cloud ice crystals

Accretion by hail/graupel of cloud droplets, cloud ice crystals, rain, and snow

Contact freezing of supercooled rain resulting from collisions with cloud ice crystals or snow

Production of hail/graupel from snow riming
Melting of cloud ice crystals, snow, and hail/graupel
Shedding of unfrozen water during hail wet growth
Shedding of water from melting hail/graupel and snow
Conversion of cloud ice crystals into snow
Accretion by snow of cloud droplets, cloud ice crystals, and rain
Evaporation or vapor condensation on melting hail/graupel and snow

2.0 Database Description

In order to provide a wide range of scenarios for the testing of look-ahead sensors, the database is divided into nine subsets from seven TASS case-study simulations. The windshear types represented include microburst types ranging from: 1) small- to large-scale events, 2) low- to high-reflectivity events, 3) symmetrical to asymmetrical events, and 4) weak to hazardous windshear. The database also includes scenarios with: 1) growing and decaying events, 2) interacting microbursts, 3) windshear with intervening rain, 4) microburst penetrating a ground based stable layer, and 5) a gust front with hazardous shear. Several of the numerically-modelled events in this database represent real accident or incident windshear cases.

Table 2.1 summarizes each of the 7 cases utilized in generating the 9 certification data sets. Each data set contains data for the appropriate variables in threedimensional space, but frozen in time. Two of these cases, Case 3 (Denver 7/11/88) and Case 5 (Denver 7/8/89), have data sets taken from two different times of the storm evolution.

2.1 Variables

Table 2.2 lists each of the meteorological variables that are available in the database. This selection of variables represents those that may be sensed by a forward-look windshear system or that may affect the performance of such a system. Each variable is represented by an array of data in three-dimensional space. In some cases, hailwater and cloud droplet water did not occur anywhere within the domain of the data set; hence, the fields for hailwater and cloud droplet water are given only for those data sets in which either were present below 2 km above ground level (AGL).

Fields of radar-reflectivity factor, RRF, are diagnosed from the model precipltation fields and are included in each data set. An additional field, RRFI, approximates the contribution of radar-reflectivity factor from insects as well as precipitation, and is included in cases 5-7. Not unexpectedly, the difference of values between the RRF and RRFI fields is very small, except in the precipitation free areas where insects solely contribute to the radar reflectivity. The maximum difference in magnitudes between the RRF and RRFI fields are usually small and are less than a few dBZ.
Table 2.1 Description of Windshear Certification Database

$\begin{aligned} & \text { Case } \\ & \text { No. } \end{aligned}$	Simulation Description	Moder Simulation Time (minutes)	Stage of Evolution for Primary Microburst	$\begin{aligned} & \text { Approximate } \\ & \text { Peak } \\ & 1 \text {-ibometer } \\ & \text { FBAR } \\ & @ 150 \mathrm{kts} \\ & \hline \end{aligned}$	Approximate Diameter of Outflow @ Peak ΔV (km)	Approximate Microburst Core Reflectivity (dBZ)	Intervening Rain	Temp. Lapse Rate	Symmetry
1	DFW Accident Case, Wet Microburst. Rain and Hail	11	Peak Intensity	0.20	3.5	55	No	Adiabatic	Axisymmetric
2	6/20/91 Orlando, Florida, NASA Research Flight, Wet Microburst	37	Peak Intensity	0.19	3.5	50	Yes	Adiabatic	Rough Symmetry
3	7/11/88 Denver, Colorado, Incident Case. Multiple Microburst	49 51	Developing Near Peak	$\begin{aligned} & 0.08 \\ & 0.20 \end{aligned}$	$\begin{gathered} 3 \\ 1.5-3 \end{gathered}$	$\begin{gathered} 35 \\ 20-40 \end{gathered}$	$\begin{aligned} & \text { Light } \\ & \text { Yes } \end{aligned}$	Adiabatic	Varies Between Microbursts
4	7/14/82 Denver, Colorado, Stable Layer, Warm Microburst	36	Past Peak but QuasiSteady	0.29	1.0	27	No	Stable Layer	Axisymmetric
5	7/8/89 Denver, Colorado, Very Dry Microburst	40 45	Near peak 2nd Puise	$\begin{aligned} & 0.18 \\ & 0.16 \\ & \hline \end{aligned}$	3 3	$\begin{gathered} 17 \cdot 20 \\ 5 \\ \hline \end{gathered}$	No	Adiabatic	Rough Symmetry Asymmetric
6	Derived Florida Sounding, Highly Asymmetric Microburst	14	Decaying	0.16	1	50	Light	Adiabatic	Asymmetric
7	8/2/81 Adjusted Knowiton, Montana Sounding, Gust Font	27	N/A	0.14	N/A	20 (in area of largest FBAR)	No	Adiabatic	Asymmetric

Table 2.2. List of Variables Contained in Certification Database

Variable	Description	Units	Not Included in Cases
U	Eastward Component of Wind Velocity	meters per second	-
V	Northward Component of Wind Velocity	meters per second	-
W	Vertical Component of Wind Velocity	meters per second	-
TAU	Temperature	degrees Kelvin	-
RRF	Radar-Reflectivity Factor	decibels of Z (dBZ)	-
XIV	Water Vapor	grams per cubic meter	-
RAIN	Rainwater Content	grams per cubic meter	-
HAIL	Hailwater Content	grams per cubic meter	2,4, and 5
CLD	Liquid Cloud-Droplet Water	grams per cubic meter	1-6
RRFI	Radar Reflectivity Including Insects	dBZ	1-4

2.2 Generation of Certification Database

The certification data sets are processed from several archived raw data files for selected cases and simulation times. The data sets were generated from TASS case simulations conducted over the past several years, and contain a number of fields with data points located on a spatially-staggered mesh. Also, the domain and grid sizes in the raw data sets vary between cases. To make them suitable for inclusion in the windshear certification database, the data is interpolated to a common grid spacing, details of which are discussed below. The data contained in the database is reduced by windowing (extracting) only the lower 2 km of the simulation, and by excluding any unnecessary fields. The specifications for the original TASS data sets are listed in Table 2.3.

2.2.1 Grid Spacing of Original and Final Data Sets

In order to achieve a user-friendly database for certification purposes, the data is translated to a 3-dimensional grid of uniform spacing. The cell resolution chosen to retain the salient details of each event is 100 by 100 meters horizontally and 50 meters vertically. Exceptions are for cases 1 and 4 which are interpolated with a resolution of 50 meters in all three directions. These two cases require smaller grid sizes in order to maintain the identity of the small-scale features.

As noted in Table 2.3 the vertical extent of each raw data set is significantly higher than what is needed to simulate the scenarios associated with landing approach and takeoff. The database is limited to 2 km AGL in order to reduce size, but yet retain ample data for adequate certification testing. The vertical limitation of the database is more than sufficient to resolve the surface outflow of all the simulated microburst events.

The horizontal-domain size of each case is the same for the original and final data. The exception is for case 7 where the gust front domain is clipped by 6 km to reduce database size. The details of the interpolated database are given in Table 2.4.

2.2.2 Interpolation

The interpolation strategy is chosen to preserve the $1-\mathrm{km}$ averaged F-Factor, or FBAR (explained in appendix C). The interpolation strategy results in losses of 2 to 10 percent of FBAR. There are two different interpolation processes depending on whether the original data set is 2-D axisymmetric or 3-D.

For the 3-D case simulations, interpolation from the TASS model spacing to a uniform grid spacing was accomplished using calls to routines in the IMSL Math/Library (1989). The data translation consisted of a 2-step process, in which a 2-D horizontal interpolation was followed by a 1-D vertical interpolation. The 2-D interpolation was accomplished by the subroutine "QD2VL" which is quadratic in 2-space, and the 1-D
vertical interpolation was by way of the routine "CSINT" which is a cubic spline algorithm.

In the 2-D axisymmetric simulations (cases 1 and 4) the data is symmetric with regard to the vertical axis of an isolated microburst, and was transformed from a cylindrical to a cartesian coordinate system. In a two step procedure, data was first interpolated based on weighted averages in the 2-D axisymmetric plane. Data was then mapped into a 3-D cartesian grid by rotating the interpolated radial-vertical plane around the axis of the microburst. Data at grid points outside of the cylindrical sweep of the radial-vertical plane were set equal to that along the edge of the sweep.
Table 2.3 Description of Original (raw) TASS Data Set'.

Case No.	Sirnulation Description	2-D axisymmetric or 3-D?	Horizontal Grid Spacing (meters)	Vertical Grid Spacing (meters)	Number of Grid Points X, Y, Z or R, Z	Height of Top Boundary (km)	Simulates Parent Storm?	For more details of case simulation, see
1	DFW Accident Case	2-D axisymmetric	20	20	201×201	4	NO	Proctor (1988), Pp 3150-3154
2	06/20/91 Orlando, Florida, Wet Microburst	3-D	150	stretched from 70 to 440	$101 \times 101 \times 71$	18	YES	Proctor (1992)

Table 2.4 Domain Information for Interpolated Windshear Database

Data Set Name	Origin (m) X_{0}, Y_{0}	Grid Cell Size (m) $\Delta X \times \Delta Y \times \Delta Z$	Domain Size (km) $X \times Y \times Z$	Number of Grid Points $\mathrm{X} \times \mathrm{Y} \times \mathrm{Y} \mathrm{Z}$	
Case 1 11 min	-4000	-4000	$50 \times 50 \times 50$	$8 \times 8 \times 2$	$161 \times 161 \times 41$
Case 2 37 min	-8834	-8880	$100 \times 100 \times 50$	$15 \times 15 \times 2$	$151 \times 151 \times 41$
Case 3 49 min	1190	-10500	$100 \times 100 \times 50$	$18 \times 12 \times 2$	$181 \times 121 \times 41$
Case 3 51 min	2232	-10570	$100 \times 100 \times 50$	$18 \times 12 \times 2$	$181 \times 121 \times 41$
Case 4 36 min	-5000	-5000	$50 \times 50 \times 50$	$10 \times 10 \times 2$	$201 \times 201 \times 41$
Case 5 40 min	-4210	2275	$100 \times 100 \times 50$	$16 \times 16 \times 2$	$161 \times 161 \times 41$
Case 5 45 min	-3738	3639	$100 \times 100 \times 50$	$16 \times 16 \times 2$	$161 \times 161 \times 41$
Case 6 14 min	8071	-3500	$100 \times 100 \times 50$	$10 \times 10 \times 2$	$101 \times 101 \times 41$
Case 7 27 min	18510	-1500	$100 \times 100 \times 50$	$14 \times 5 \times 2$	$141 \times 51 \times 41$

2.3 General Meteorological Description of Each Case

Below is a condensed summary for each case. Soundings for each of the cases, along with figures produced from the interpolated database, are included in appendix \mathbf{A}. Further descriptions for each of the simulations, including comparison and validation with observed data, may be found in the references listed in Table 2.3. [Cases 6 and 7 were generated recently (primarily for this database) and no documentation currently exists other than below.]

2.3.1 Case 1: DFW Microburst

The 2 August 1985, Dallas-Ft. Worth (DFW) microburst was a high-reflectivity microburst that resulted in the crash of a commercial jetliner. This event is simulated with the 2-D axisymmetric TASS model by assuming an environmental sounding interpolated from observed data.

The simulated microburst is associated with high reflectivity due to rain and hail, moderate rainfall rates, pronounced temperature drop, and hazardous wind shear with strong outflow winds. The data set is taken near the time of peak intensity, at 11 minutes simulation time. Although the numerical simulation is 2-D, there is reasonable comparison with observed data taken from aircraft flight data recorders. Other details of this simulation, including comparisons with the airplane flight profiles, are in Proctor (1988).

2.3.2 Case 2: Orlando Microburst

The 20 June 1991, Orlando microburst, was encountered by a NASA aircraft instrumented with in-situ and forward-look windshear sensors, and was also measured within the Terminal Doppler Weather Radar (TDWR) test bed. The parent storm and ensuing microbursts are simulated with 3-D TASS. Comparisons of the simulation with observed data indicate a reasonable agreement.

The simulation, as verified from measurements, indicates a high-reflectivity microburst with hazardous shear and heavy rainfall rates. Although the area covered by the outflow is roughly symmetrical, complex regions of windshear hazard are embedded within the outflow. The data set is taken at a simulation time of 37 minutes, when the microburst is near peak intensity. This time corresponds to observed measurements ${ }^{1}$ at approximately 2046 Universal Coordinated Time (UTC). The microburst contains multiple downdraft cores and regions of upflow embedded within the outflow. The strongest hazard is located near the southern end of the outflow and has a peak FBAR of about 0.19 . An approach from the north would encounter intervening rain, as well as pockets of both performance increase and decrease, before

[^0]entering the area of primary hazard. The outflow near ground level is associated with a pronounced temperature change, with the maximum drop being about $6^{\circ} \mathrm{C}$.

2.3.3 Case 3: Denver Multiple Microburst Event

The 11 July 1988, Denver, storm is simulated by initializing 3-D TASS with the 2000 UTC observed special sounding. This storm is of special interest, since it produced a severe low- to moderate-reflectivity microburst of unusual intensity that was inadvertently encountered by 4 commercial jetliners trying to land at Denver Stapleton. An in-depth study of this incident, including comparisons with TDWR, surface measurements, and flight data recorder (from the four aircraft) data are presented in Proctor and Bowles (1992), and Schlickenmaier (1989). Very good agreement with observed measurements was obtained.

Model results show that multiple microbursts (with FBAR of up to 0.2) formed downstream of the main precipitation shaft, which itself was characterized by a weak microburst. The microbursts (all produced by one storm) grow and interact, eventually coalescing into a large macroburst outflow. Some of the microbursts clisplay large asymmetry. The most eastern of these microbursts is the one that was encountered by the 4 aircratt.

Data sets are given at two simulation times: 49 and 51 min. The first is near the time of initial ground contact for the downstream eastern microburst. Several minutes latter it grows into a hazardous microburst, which is captured in the second data set. At 51 minutes, the eastern microburst is near peak intensity. It is near this time that the first two encounters takes place. Low-level outflow from this microburst has peak ΔV (velocity change) of up to $40 \mathrm{~m} / \mathrm{s}$. The most westward microburst, which is associated with the storms primary rainshaft, remains weak although associated with moderate values of radar reflectivity. Temperature drops in the microburst outflows are only a few degrees C.

2.3.4 Case 4: Denver Warm Microburst

Data for this case is from a 2-D axisymmetric simulation of a narrow, lowreflectivity, microburst occurring in an environment characterized by a low-level stable layer. This simulation does not attempt to model a particular observed event, but uses an input sounding (14 July 1982) measured during the Joint Airport Weather Studies (JAWS). The temperature profile from the sounding has been modified for an isothermal temperature profile between the ground and 500 m , resulting in a groundbased stable layer.

Relative to the size and intensity of other microbursts, this event contains a strong narrow-core downdraft, shallow outflow, and very large FBAR. However, the region occupied by the hazardous shear is small in horizontal scale compared to most other events. This simulated microburst also is characterized by warm outflow (positive temperature change from ambient). The time-freeze used for this case is when the
microburst is in a quasi-steady state, at 36 minutes, some 13 minute after peak intensity. Similar microburst that were characterized by downwerd-protruding, stalactite-appearing radar echoes were observed during JAWS (see Fujiia and Wakimoto 1983). Numerous warm microburst were measured by ground-based instruments during JAWS (Bedard and LeFebvre 1988).

2.3.5 Case 5: Denver Dry Microburst

On 8 July 1989, a very strong microburst was detected by LLWAS, minin the approach corridor just north of Denver Stapleton Airport. The microburst was encountered by a Boeing 737-200 in a "go around" configuration and was reported to have lost considerable air speed and altitude during penetration (Wilson et ai. 1991; Hughes 1990). LLWAS data revealed a pulsating microburst with peak strength associated with the first pulse. Interviews indicated that the microburst was accompanied by no apparent visible clues such as rain or virga, alihough blowing dust was reported. A National Center for Atmospheric Research (NCAR) research Doppler radar was operating, although poorly sited for low-level wind shear detection at Stapleton. Meaningful velccity could not be measured at the lowest radar scan due to very low reflectivity factor. This case attracts special interest since is may represent a dangerous microburst that is difficult to detect with Doppler radar.

The lifa-cycle of the microburst-producing storm is simulated with the 3-D version of TASS. Environmental conditions are taken from a sounding observed near the time and location of the event. Results from the numerical simulation show a low-reflectivity microburst with three distinguishable pulses. Data sets are generated from the simulation at two times: i) at 40 minutes, which is near peak intensity; and ii) 5 minutes later, which is near the time of the second microburst pulse. The first and strongest pulse (at 40 minutes) is associated with a peak velocity differential ($\Delta \mathrm{V}$) of $37 \mathrm{~m} / \mathrm{s}$ and a peak horizontal wind speed of $26 \mathrm{~m} / \mathrm{s}$. At this time, radar reflectivity in most of the microburst outiow is less than -5 dBZ , and reflectivity exceeding 10 dBZ is confined to a $1-2 \mathrm{~km}$ diamater area within the core of the microburst. By the time of the second pulse (45 minutes), there is even less precipitation at low levels, yet hazardous levels of wind shear are maintained. The outflow from the first pulse has expanded into a macroburst and grown more asymmetric with time. The microburst associated with the second pulse is embedded within this larger scale outflow. The temperature change between the environment and outflow remain small at all times, never more than $2.5^{\circ} \mathrm{C}$.

2.3.6 Case 6: Highly Asymmetric Florida Microburst

A translating microburst with highly-asymmetric outflow is simulated with the 3-D model, by allowing an isolated precipitation shaft to fall through a prescribed ambient wind with vertical shear. The same ambient temperature and humidity profile from Case 2 is used in this simulation. The model simulation produces a wet microburst, with a bow-shaped radar-reflectivity pattern. Strong horizontal winds are generated along the leading edge of the translating outflow. The microburst contains high values of radar reflectivity, large rainfall rates and a pronounced temperature drop. The data
of radar reflectivity, large rainfall rates and a pronounced temperature drop. The data set chosen for certification testing is at 14 minutes, within the period of decaying intensity. Hazardous windshear exists, but is located in a very small region. The diameter of the hazardous shear is about 1 km with a peak FBAR of about 0.16. Other regions of performance decreasing F-factor exist within the asymmetric outflow, but generally contain weak values. Movement of the microburst is to the east at $17.5 \mathrm{~m} / \mathrm{s}$.

2.3.7 Case 7: Montana Gust Front

Thunderstorm gust fronts are characterized by a region of performanceincreasing shear and turbulence, but usually pose little hazard due to performance decreasing shear. Surges and secondary discontinuities within the outflow behind gust fronts have been observed (Goff 1976), and may be associated with hazardous windshear. The case described below is selected because it has both a strong gust front (with performance-increasing shear) and a "discontinuity" in the outflow associated with hazardous windshear.

A gust front is simulated with 3-D TASS using the 2 August 1981, Knowiton special sounding with modified ${ }^{2}$ winds. For this case the model assumes periodic north/south boundaries, and a gust front is generated from a north-south oriented line of precipitation.

At the simulation time chosen for this data set, the gust front is well developed and is translating toward the east at about $21 \mathrm{~m} / \mathrm{s}$. The gust front is characterized by strong performance-increasing shear (negative F-factor), pronounced temperature change, very-low radar reflectivity, and upward motion. A region of hazardous windshear is located within the outflow some distance behind the gust front. It is associated with a horizontal roll-vortex that is located at the edge of the precipitation shaft.

[^1]
3.0 Certification Path Scenarios

3.1 Path Descriptions

The certification test paths through the simulation database have been carefully chosen to encounter a range of windshear alert situations. Table 3.1 summarizes the scenarios to be applied, and the certification path definitions are detailed in Table 3.2. These paths are subject to change in subsequent FAA certification documents.

The following assumptions are used for these path definitions:

1. Glide slope angle $=3^{\circ}$ (flight path angle $=-0.0524$ radians).
2. Runway length $=3 \mathrm{~km}$.
3. Glide path intercept point $=300$ meters down runway.
4. Middle marker is 900 meters from runway threshold.
5. The above conditions produce a glide path height of 63 meters at the middle marker.
6. Go-around maneuvers are begun at an altitude of 30 meters, at a position 300 meters from runway threshold.
7. Takeoff ground roll length $=2 \mathrm{~km}$.
8. Flight path angle after takeoff or go-around $=0.10$ radians $\left(5.73^{\circ}\right)$.
9. Radius of turn, 25 degrees bank, at $103 \mathrm{~m} / \mathrm{s}(200 \mathrm{knots})=2.32 \mathrm{~km}$.
10. The curved approaches are flown at a constant altitude of 1000 feet (305 meters) above ground level (AGL).

Paths are specified by direction of takeoff or approach, X or Y coordinate of flight path, and runway threshold coordinates. The path direction is specified by either compass direction or flight direction. North, East, South, West correspond to flight direction or track $360,90,180$, and 270, respectively. The coordinates are specified with respect to the microburst data set and are in metric units. Microbursts are static during each simulation run. Drift angle runs are accomplished by biasing the orientation of the sensor, not through the presence of any ambient crosswind.

3.2 Hazards Along Path

In addition to specifying the details of each of the certification paths, Table 3.2 includes the values of peak FBAR and peak radar reflectivity along the path, as well as comments noting path-specific hazard details.
Table 3.1 Path Scenario Definitions

Scenario	Location of icon leading edge (where FBAR $=0.10$)	Airspeed (Knots)	Used with Data Sets
1. Aligned for takeoff, near microburst	2 km from brake release	0^{*}	Case 3 at 51 minutes Case 4 at 36 minutes Case 7 at 27 minutes
2. Aligned for takeoff, far microburst	5.5 km from brake release	0^{*}	Case 1 at 11 minutes Case 3 at 51 minutes Case 5 at 40 minutes
3. Straight approach 3 degree glide slope	near the middle marker	150	Case 1 at 11 minutes Case 2 at 37 minutes Case 3 at 49 minutes Case 3 at 51 minutes Case 4 at 36 minutes Case 5 at 40 minutes Case 5 at 45 minutes Case 6 at 14 minutes Case 7 at 27 minutes
4. Curved approach		Case 3 at 51 minutes Case 5 at 40 minutes Case 6 at 14 minutes	
5. Straight approach with drift 25 degree drift angle 3 degree glide slope	near the localizer intercept point	200	Case 4 at 36 minutes Case 5 at 40 minutes
6. Go-around the runway threshold	120	Case 2 at 37 minutes Case 5 at 40 minutes	

Table 3.2 Certification Path Definitions

Data Set	Scenario	Windshear Penetration Path	Approximate Peak FBAR	Approximate Peak RRF (dBZ)	Notes
$\begin{aligned} & \hline \text { Case } 1 \\ & 11 \mathrm{~min} \end{aligned}$	2	Takeoff toward east along $Y=0$ axis Brake release at $X, Y=(-6.8,0) \mathrm{km}$	0.2	57	Takeoff roll occurs outside domain of data set, with sensor looking into the data set.
	3	Approach toward east along $Y=0$ axis Place runway threshold at $X, Y=(0,0)$	0.14	55	Approach may begin outside the boundary of the data set.
Case 2 37 min	3	Approach toward south along $X=-1.8 \mathrm{~km}$ line Place runway threshotd at $X, Y=(-1,8,-1,9)$	0.14	50	About 4 km of intervening rain on path prior to encountering hazard.
	6	Approach toward west along $Y=-1.4 \mathrm{~km}$ line Place runway threshold at $X, Y=(2.2,-1.4)$ Go-around point is $X, Y=(2.5,-1.4)$	0.19	50	Runway touchdown zone is in clear air with microburst and 50 dBZ precipitation at far end of runway.
	3	Approach toward east along $Y=1.1 \mathrm{~km}$ line Place runway threshold at $X, Y=(-1.8,1.1)$	0.06	50	Below-alert threshold case. FBAR of .08 exists 500 m right of path; 0.17 exists 2.5 km right of runway touchdown zone.
$\begin{aligned} & \text { Case } 3 \\ & 49 \text { min } \end{aligned}$	3	Approach toward east along $Y=-4.5 \mathrm{~km}$ line Place runway threshold at $X, Y=(8.6,-4.5)$	0.08	25	Microburst strength is below alent threshold.
	3	Approach toward north along $X=8.5 \mathrm{~km}$ line Place runway threshold at $X, Y=(8.5,1.9)$	0.13	37	Light precipitation about 2 km from event with moderate to heavy occurring about 1 km to right of max shear.
Case 3 51 min	1	Takeoff toward north along $X=16.2 \mathrm{~km}$ line Brake release at $X, Y=(16.2,-7.6) \mathrm{km}$	0.17	24	
	2	Takeoff toward east along $Y=-5.0 \mathrm{~km}$ line Brake release at $X, Y=(8.5,-5.0) \mathrm{km}$	0.19	37	Takeoff is in very weak shear with 20 to 35 dBZ precipitation, followed by about 1 km of clear air before encountering a 0.19 FBAR shear in 25 dBZ precipitation.
	3	Place runway threshold at $X, Y=(12.2,-3.0)$ Orient runway on true heading of 360	0.15	42	Mostly clear view of threat, with rain on each side of path.

Table 3.2 Certification Path Definitions (continued)

Data Set	Scenario	Windshear Penetration Path	Approximate Peak FBAR	Approximate Peak RRF (dBZ)	Notes
Case 3 51 min	3	Place runway threshold at $X, Y=(12.2,-3.0)$ Orient runway on true heading of 045	0.18	42	Path between 2 small rain cells (30-35 dBZ) about 3 km short of rumway.
	3	Place runway threstrold at $X, Y=(12.2,-3.0)$ Orient runway on true heading of 090	0.17	41	Passes through intervening cell (20-30 dBZ and FBAR $=.08$) for last 4 km of approach to primary threat (FBAR=.17).
	3	Place runway threshold at $X, Y=(12.2,-3.0)$ Orient runway on true heading of 135	0.13	42	Passes along edge of adjacent precipitation cell before primary threat. Strong shear exists at far end of runway.
	3	Place runway threshold at $X, Y=(12.2,-3.0)$ Orient runway on true heading of 270	0.17	41	3 km from runway path touches edge of strong shear to south producing weak shear and 5-10 dBZ on path.
	3	Place runway threshold at $X, Y=(12.2,-3.0)$ Orient runway on true heading of 315	0.2	42	Penetrates 0.2 FBAR shear $3-4 \mathrm{~km}$ short of nunway, with $\mathbf{2 5 d B Z}$ precipitation. Primary shear has peak FBAR of 0.13 along path. Should detect both.
	4	Localizer course eastward on $Y=-3.1 \mathrm{~km}$ line Center of turn at $X, Y=(11.5,-5.42)$. Fly north along $X=9.18 \mathrm{~km}$ line to $X, Y=(9.18,-5.42)$; then turn right to intercept localizer at $X, Y=$ (11.5,-3.1)	0.15	43	Path encounters precipitation about 1 km prior to beginning the turn, completes turn in moderate to heavy precipitation. Turn goes through FBAR of 0.12 prior to primary threat.
$\begin{aligned} & \text { Case 4 } \\ & 36 \text { min } \end{aligned}$	1	Takeoff toward east along $Y=0$ axis Brake release at $X, Y=(-2.7,0) \mathrm{km}$	0.23	27	Mircoburst has very small rain shaft: diameter of 5 dBZ contour is less than 1 km at 50 m altitude.
	3	Approach toward east along $Y=0$ axis Place runway threshold at $X, Y=(0.2,0) \mathrm{km}$	0.24	27	
	5	Approach toward east along $Y=0$ axis Place runway threshold at $X, Y=(-0.7,0) \mathrm{km}$	0.19	27	Worst-case dritt approach at 120 Knots.

Table 3.2 Certification Path Definitions (continued)

Data Set	Scenario	Windshear Penetration Path	Approximate Peak FBAR	Approximate Peak RRF (dBZ)	Notes
Case 5 40 min	2	Takeoff toward west along $Y=10.6 \mathrm{~km}$ line Brake release at $X, Y=(10.1,10.6) \mathrm{km}$	0.18	22	Diameter of 5 dBZ contour $\sim 1.6 \mathrm{~km}$. About 1 km to each side of primary shear is FBAR of about .12-.15, with reflectivity of less than 0 dBZ .
	3	Approach toward north along $X=3.8 \mathrm{~km}$ line Place runway threshold at $X, Y=(3.8,10.9) \mathrm{km}$	0.16	17	
	5	Approach toward north along $X=3.8 \mathrm{~km}$ line Place runway threshold at $X, Y=(3.8,10.0) \mathrm{km}$	0.12	18	Peak along-path FBAR occurs after landing, with little or no vertical component. During approach, sensor would likely see the higher FBAR values above the runway.
	6	Approach toward north along $X=3.8 \mathrm{~km}$ line Place runway threshold at $X, Y=(3.8,6.8) \mathrm{km}$ Go-around point at $X, Y=(3.8,6.5) \mathrm{km}$	0.17	23	Go-around maneuver.
	4	Localizer course westward on $Y=10.6 \mathrm{~km}$ Center of turn at $X, Y=(4.4,8.28)$ Fly north along $X=6.72 \mathrm{~km}$ line to $X, Y=$ (6.72,8.28); then turn left to intercept localizer at $X, Y=(4.4,10.6) \mathrm{km}$	0.16	21	Curved approach at 200 knots.
	4	Localizer course westward on $Y=10.6 \mathrm{~km}$ Center of turn at $X, Y=(4.4,12.92)$ Fly south along $X=6.72 \mathrm{~km}$ line to $X, Y=$ (6.72,12.92); then turn right to intercept localizer at $X, Y=(4.4,10.6) \mathrm{km}$	0.16	21	Curved approach at 200 knots.
Case 5 45 min	3	Approach toward north along $X=4.67 \mathrm{~km}$ line Place runway threshold at $X, Y=(4.67,12.2)$ km	0.15	7	2nd microburst pulse, extremely dry. Zero dBZ contour diameter <1 km. Core penetration at 100 m altitude.
Case 6 14 min	4	Localizer course southward on $X=14.33 \mathrm{~km}$ Center of turn at $X, Y=(12.01,1.08)$ Fly east along $Y=3.4 \mathrm{~km}$ line to $X, Y=$ (12.01,3.4); then turn right to intercept localizer at $X Y=(14.33,1.08)$	0.11	52	Higher FBAR (0.15) region exists 200 m to left of localizer. Localizer is offset slightly from microburst core to bring core into 25 degree minimum field of view early in turn.

Table 3.2 Certification Path Definitions (concluded)

Data Set	Scenario	Windshear Penetration Path	Approximate Peak FBAR	Approximate Peak RRF (dBZ)	Notes
Case 6 14 min	3	Localizer on $X=14.6 \mathrm{~km}$ line. Runway threshold at $X, Y=(14.6,4.9)$ Orient runway on true heading of 360	0.15	52	Clear view of windshear during approach. Microburst core near $X, Y=(14.2,0.5)$
	3	Localizer on $Y=(X-13.9) \mathrm{km}$ line. Runway threshold at $X, Y=(17.2,3.3)$ Orient runway on true heading of 045	0.18	50	Microburst core near $X, Y=(14.2,0.5)$
	3	Localizer on $Y=0.5 \mathrm{~km}$ line. Rurway threshold at $X, Y=(15.1,0.5)$ Orient runway on true heading of 090	0.10	52	FBAR of 12 exists near path. Intervening rain at 2.5 km prior to peak. Microburst core near $X, Y=(14.2,0.5)$
	3	Localizer on $X=14.5 \mathrm{~km}$ line. Runway threshold at $X, Y=(14.5,-3.5)$ Orient runway on true heading of 180	0.15	52	2 km of intervening rain prior to peak. Microburst core near $X, Y=(14.2,0.5)$
	3	Localizer on $Y=(X-13.9) \mathrm{km}$ line. Runway threshold at $X, Y=(11.6,-2.3)$ Orient runway on true heading of 225	0.19	50	Clear view of windshear during approach. Microburst core near $X, Y=(14.2,0.5)$
	3	Localizer on $Y=0.5 \mathrm{~km}$ line. Runway threshold at $X, Y=(13.3,0.5)$ Orient runway on true heading of 270	0.13	52	Clear view of windshear during approach. Microburst core near $X, Y=(14.2,0.5)$
	3	Localizer on $\mathrm{Y}=-(\mathrm{X}-14.67) \mathrm{km}$ line. Runway threshold at $\mathrm{X}, \mathrm{Y}=(12.87,1.80)$ Orient runway on true heading of 315	0.13	52	Clear view of windshear during approach. Microburst core near $X, Y=(14.2,0.5)$
Case 7 27 min	1	Takeoff toward west along $Y=1.0 \mathrm{~km}$ line Brake release at $X, Y=(25.5,1.0)$	0.12	50	Peak FBAR occurs about $X=22.3 \mathrm{~km}$. Reflectivity in shear about 20 dBZ .
	3	Approach toward west along $Y=1.0 \mathrm{~km}$ line Place runway threshold at $X, Y=(21.5,1.0) \mathrm{km}$	0.13	26	

4.0 Plot Descriptions

Appendix A. 1 contains vertical atmospheric sounding plots for each of the case studies. [Ambient wind profiles are not used in the axisymmetric cases (cases 1 and 4), and therefore are not included in Figs. A.1.1 and A.1.4.] An explanation of how to read the soundings is in appendix B.

Appendix A. 2 contains contour plots of North-South and East-West FBAR plotted at two elevations, 50 m and 300 m . The plots at 50 m show the F-factor field at the lowest elevation above the ground, while the plots at 300 m display the fields near the altitude at which detection sensors must activate. Many of the certification paths encounter the peak shear near these altitudes. Contour plots for East-West FBAR are shown for each case, and North-South FBAR for cases 2, 3, 5 and 6 . The NorthSouth FBAR in cases 1 and 4 is not shown, but does not differ from the structure and magnitude of the East-West FBAR because of axial symmetry. Definitions of EastWest and North-South FBAR are contained in appendix C.

Appendix A. 3 contains contour plots of radar reflectlvity factor plotted at 150 meters elevation for all cases. The radar reflectivity field is shown only at the one altitude; however, variations between the ground and 300 m are usually small.

Two-dimensional wind-vector fields are displayed for all cases in appendix A.4. Fields are given for both a horizontal and vertical cross section, with the horizontal slice taken at 50 meters elevation. The location of the vertical cross section varies between case to reflect the most hazardous plane of the flight scenarios.

Appendix A. 5 contains the plots of parameters along specific flight path scenarios. The parameters consist of FBAR, radar reflectivity, along-path wind speed, and altitude. For the curved-approach scenarios the altitude is omitted since it is constant at 304.8 meters (1000 ft).

5.0 Instructions for Reading Tape and Verifying Certification Database

The database is in alpha-numeric format on an 8 mm Exabyte data cartridge (2.5 gigabyte capacity), and created by the UNIX utility tar. Each data set is a separate tar volume on the tape.

The suggested tar extraction command is:
tar XV "tape device"
This will extract the files in their original name. The tape device must be a nonrewinding tape drive 4 . Repeat the above command until all desired volumes are extracted. In the last tar volume and in appendix E is a sample FORTRAN program "datachk.f" to check the consistency of the database. Appendix F has the output from this program for each data set. Table 5.1 gives the file names, size and description of each of the tar volumes on the magnetic tape.

Table 5.1 Contents of 8 mm Magnetic Tape

File Name	Size (bytes)	tar volume \#	Description
c1_11.faa.for	$86,084,361$	1	Case \#1 at 11 minutes simulation time
c2_37.faa.for	$66,257,496$	2	Case \#2 at 37 minutes simulation time
c3_49.faa.for	$72,733,937$	3	Case \#3 at 49 minutes simulation time
c3_51.faa.for	$72,733,937$	4	Case \#3 at 51 minutes simulation time
c4_36.faa.for	$117,400,896$	5	Case \#4 at 36 minutes simulation time
c5_40.faa.for	$86,084,361$	6	Case \#5 at 40 minutes simulation time
c5_45.faa.for	$86,084,361$	7	Case \#5 at 45 minutes simulation time
c6_14.faa.for	$38,113,011$	8	Case \#6 at 14 minutes simulation time
c7 27.faa.for	$29,852,511$	9	Case \#7 at 27 minutes simulation time
datachk.f	11,250	10	FORTRAN code to read and verify the database

Access to the variables within each data set is accomplished by modifying the datachk.f program. The necessary information to read the database is as follows:

The files are read by first reading the title header as follows (FORTRAN code):
read(1,1000) title
1000 format(a80)

[^2]and then each variable by using:
$\operatorname{read}(1,2000)$ var, ix, iy, iz,time,xstart,ystart,dxy,dz,
$1 \quad(((q(i, j, k), i=1, i x), j=1, i y), k=1, i z)$
2000 format(a4,/,3i4,/,5e12.4,/,(8e10.4))
The codes (4-character name in var) for the variables are explained in Table 2.2 and are as follows:

The variables ix,ly, and iz are the size of the 3-D data set and correspond to x, y, and z directions, respectively. The variable time is simulation time in seconds, and xstart and $y s t a r t$ are the locations of the minimum x and y values for the grid. The variable $\mathbf{d x y}$ is the horizontal spacing, and dz is the vertical spacing. Figure 5.1 shows the relationship among computational and physical dimensions. For a given \mathbf{i}, j, and k location the physical position is:

$$
\begin{aligned}
& X(i)=x \operatorname{start}+(i-1)^{*} d x y \\
& Y(j)=y \operatorname{start}+(j-1)^{*} d x y \\
& Z(k)=(k-1)^{* d z}
\end{aligned}
$$

Figure 5.1 Relationship Among Computational and Physical Dimensions (note that North is into the page).

6.0 Concluding Remarks

The NASA Langley Research Center, at the request of the FAA, has developed a database of hazardous windshear phenomena to support the certification of airborne forward-look windshear detection and alerting systems. The database contains highresolution, three-dimensional fields for meteorological variables that may be sensed in windshear environments by forward-looking systems. Six microburst case studies and one gust front are provided. Also defined are the scenarios required to test forwardlook systems using the database and various takeoff and landing flight paths. The database and scenarios represent a wide range of ambient meteorological conditions, microburst reflectivity, size, intensity, intervening precipitation, and symmetry. The scenarios provide cases for windshear detection during takeoff roll, initial climb, straight-in approach, curved approaches, go-around maneuvers, and landings with significant wind drift angles. This document has described the database formulation, the ambient conditions and resultant windshear for each case study, the scenarios and certification testing paths through the data sets, and instructions for reading the database from magnetic tape.

References

Bacon, D. B., T. J. Dunn, M. R. Sands, and R. A. Sarma, 1991: Single burst nuclear cloud database, Volume I -- cloud rise and stabilization modeling. DNA-TR-90-36-V1, 151 pp.

Bedard, A. J., Jr., and T. J. LeFebvre, 1986: Surface measurements of gust fronts and microbursts during the JAWS project: Statistical results and implications for wind shear detection, prediction, and modeling. NOAA Tech. Memo. ERL WPL-135, Wave Propagation Laboratory, Boulder, CO, 112 pp. [Available from the National Technical Information Service, Springfield, VA, 22161.]

Bowles, R. L., 1990: Reducing windshear risk through airborne systems technology. The 17th Congress of the ICAS, Stockholm, Sweden, 27 pp.

Federer, B., and Waldvogel, 1975: Hail and raindrop size distributions from a Swiss multicell storm. لApol. Meteon, 14, 91-97.

Fujita, T. T., 1985: Ihe Downburst. Microburst, and Macroburst. University of Chicago Press, , 122 pp.

Fujita , T. T., and R. M. Wakimoto, 1983: JAWS microbursts revealed by tripleDoppler radar, aircraft, and PAM data. Preprints, 13th Cont. on Severe Local Storms, Tulsa, Amer. Meteor. Soc., 97-100.

Goff, R. C., 1976: Vertical structure of thunderstorm outflows. Mon. Wea. Rev, 104, 1429-1440.

Gunn, R. and G. D. Kinzer, 1949: The terminal velocity of fall for water drops in stagnant air.

Hodson, M. C., 1986: Raindrop size distribution. ل. Climate Appl. Meteor, 25, 1070-1074.

Huffman, P., and P. Haines, 1984: Visibility in heavy precipitation and its use in diagnosing high rainfall rates. AIAA Paper 84-0541.

Hughes, D., 1990: LLWAS credited with helping 737 survive major microburst. Aviation Week \& Space Technology, 133, July-16, pgs. 91 \& 93.

IMSL Math/Library 1989, Users Manual, IMSL Math/Library collection of FORTRAN Subroutines and Functions, Version 1.1. IMSL, Houston, TX.

Kessler, E., 1969: On the distribution and continuity of water substance in atmospheric circulations. Metor. Monogr. No.32, Amer. Meteor. Soc., 84 pp.

Lin, Y-L., R. D. Farley, and H. D. Orville, 1983: Bulk parameterization of the snow field in a cloud model. ل.Climate Appl_Meteor, 22, 1065-1092.

List, R., N. R. Donaldson, and R. E. Stewart, 1987: Temporal evolution of drop spectra to collisional equilibrium in steady and pulsating rain. L.Atmos. Sci., 362-372.

Marshal, J. S., and W. M. Palmer, 1948: The distribution of raindrops with size. L.Meteon, 5, 165-166.

Proctor, F. H., 1987: The Terminal Area Simulation System, Volume I: Theoretical formulation. NASA Contractor Rep. 4046, NASA, Washington, DC, 176 pp. [Available from the National Technicat Information Service, Springfield, VA, 22161.]

Proctor, F. H., 1987: The Terminal Area Simulation System, Volume II: Verification Experiments. NASA Contractor Rep 4047, NASA, Washington, DC, 112 pp . [Available from the National Technical Information Service, Springfield, VA, 22161.]

Proctor, F. H., 1988: Numerical simulations of an isolated microburst. Part I: Dynamics and structure. لAtmos.Sci, 45, 3137-3160.

Proctor, F. H., 1989: Numerical simulations of an isolated microburst. Part II: Sensitivity experiments. لAtmos. Sci, 46, 2143-2165.

Proctor, F. H., 1992: Three-dimensional numerical simulation of the 20 June 1991, Orlando Microburst. Fourth Combined Manufacturers' and Technologists' Airborne Wind Shear Review Meeting, Williamsburg, VA, 214-242.

Proctor, F. H., 1993: Case study of a low-reflectivity pulsating microburst: Numerical simulation of the Denver, 8 July 1989, Storm. To appear in Preprints, 17th Conference on Severe Local Storms, St. Louis, Amer. Meteor. Soc.

Proctor, F. H. and R. L. Bowles, 1992: Three-dimensional simulation of the Denver 11 July 1988 microburst-producing storm. Meteorol and Atmos. Phys., 47., 107-124.

Roberts, R. D., and J. W. Wilson, 1989: A proposed microburst nowcasting procedure using single-Doppler radar. لـAppl Meteor. 28, 285-303.

Schlickenmaier, H. W. (editor), 1989: Windshear Case Study: Denver, Colorado, July 11, 1988. Final Report, DOT/FAADSS-89/19, Federal Aviation Administration, 552 pp. [Available from the National Technical Information Service, Springfield, VA, 22161.]

Sekhon, R. S., and R. C. Srivastava, 1971: Doppler radar observations of dropsize distributions in a thunderstorm. لAtmos.Sci, 28, 983-994.

Wilson, F. W., Jr., R. C. Goff, and R. H. Gramzow, 1991: An intense microburst at Denver's Stapleton International Airport. Preprints, Fourth_ntl_Conf. on the Aviation Weather System, Paris, Amer. Meteor. Soc.

Appendix A

Database Plots

Appendix A. 1

Input Sounding Plotted on Skew T-log p Diagrams

Figure A.1.1 Skew-T diagram of atmospheric sounding for case \#1; sounding interpolated from data observed at Dallas, Ft. Worth, 3 August 1985, (KOK) UTC. [See appendix B for explanation of Skew-T diagram.]

Figure A.1.2 Same as Fig. A.1.1, but for case \#2. Modified from special sounding observed at Orlando, Florida based, 20 June 1991, 2035 UTC. Wind barbs are pointed along the compass direction of the wind. Each full wind barb equals $5 \mathrm{~m} / \mathrm{s}$ (10 knots).

Figure A.1.3 Same as Fig. A.1.2, but for case \#3. Special sounding observed at Denver, Colorado, 11 July 1988, 2000 UTC, modified for latest surface observations.

Figure A.1.4 Same as Fig. A.1.1, but for case \#4. From observed sounding at Denver, Colorado, 14 July 19822000 UTC, but modified for a 500 m deep surface-base isothermal layer.

Figure A.1.5 Same as Fig. A.1.2, but for case \#5. Sounding observed at Denver, Colorado, 9 July 1989, 0000 UTC.

Figure A.1.6 Same sounding as Fig. A.1.2, but observed winds replaced by hypothetical winds. Environmental winds modified in order to create asymmetric microburst in case \#6.

Figure A.1.7 Same as Fig. A.I.2, but for case \#7. Modified from special sounding observed at Knowlton. Montana. 3 August 1981, (0XX) UTC. Only the northern component of the observed ambient wind is used and is shifted 90°.

Appendix A. 2

North-South and East-West $\overline{\mathrm{F}}_{\mathrm{Km}}$ Contour Plots

Case $1-11$. DFW Accident Case. Wet Microburst $E-W 1 \mathrm{Km}$ Averaged F Factor at $Z=300.0$ meters

Figure A.2.1 Data Set \#1-11: East-West $\overline{\mathrm{F}}_{\mathrm{Km}}$ at 300 meters elevation. The contour interval is 0.025 . Contours with a negative value are dashed. Maximum value is about 0.20 .

```
Case \#1-11: DFW Accident Case, Wet Microburst \(E-W 1 \mathrm{Km}\) Averaged F Factor at \(Z=50 . \emptyset\) meters
```


Figure A.2.2 Data Set \#1-11: East-West \bar{F}_{Km} at 50 meters elevation. Contours as in Figure A.2.1 with maximum value of about 0.15.

Case *2-37. 06/20/91 Orlando - NASA Event *143 N-S 1 Km Averaged F Factor at $Z=300.0$ meters

Figure A.2.3 Data Set \#2-37: North-South $\bar{F}_{\text {Km }}$ at 300 meters elevation. Contours as in Figure A.2.1 with maximum value of about 0.17.

$$
\begin{aligned}
& \text { Case \#2-37: Ø6/20/91 Orlando - NASA Event } 143 \\
& \text { N-S } 1 \mathrm{Km} \text { Averaged F Factor at } Z=50.0 \text { meters }
\end{aligned}
$$

Figure A.2.4 Data Set \#2-37: North-South $\overline{\mathrm{F}}_{\mathrm{Km}}$ at 50) meters elevation. Contours as in Figure A.2.1 with maximum value of about 0.17.

Figure A.2.5 Data Set \#2-37: East-West \bar{F}_{Km} at 300 meters elevation. Contours as in Figure A.2.1 with maximum value of about 0.18.

Case \#2-37: 06/20/91 Orlando - NASA Event \#143 $E-W 1 \mathrm{Km}$ Averaged F Factor at $Z=50.0$ meters

Figure A.2.6 Data Set \#2-37: East-West $\overline{\mathrm{F}}_{\mathrm{Km}}$ at 50 meters elevation. Contours as in Figure A.2.1 with maximum value of about (). 17 .

Figure A.2.7 Data Set \#3-49: North-South $\overline{\mathrm{F}}_{\mathrm{Km}}$ at 300 meters elevation. Contours as in Figure A.2.1 with maximum value of about 0.19 .

Figure A.2.8 Data Set \#3-49: North-South $\overline{\mathrm{F}}_{\text {Kın }}$ at 50 meters elevation. Contours as in Figure A.2.1 with maximum value of about 0.13.

$$
\text { Case "3-49: } 07 / 11 / 88 \text { Denver - Multiple Microburst }
$$

$$
E-W 1 \mathrm{Km} \text { Averaged } F \text { Factor at } Z=300.0 \text { meters }
$$

Figure A.2.9 Data Set \#3-49: East-West $\overline{\mathrm{F}}_{\mathrm{Km}}$ at 300 meters elevation. Contours as in Figure A.2.1 with maximum value of about 0.17 .

Case *3-49, 07/11/88 Denver - Multiple Microburst $E-W 1 \mathrm{Km}$ Averaged F Factor at $Z=50.0$ meters

Figure A.2.10 Data Set \#3-49: East-West $\overline{\mathrm{F}}_{\mathrm{Km}}$ at 50 meters elevation. Contours as in Figure A.2.1 with maximum value of about 0.11 .
Case \#3-51, 07/11/88 Denver - Multiple Microburst

$$
\text { N-S } 1 \mathrm{Km} \text { Averaged F Factor at } Z=300.0 \text { meters }
$$

Figure A.2.11 Data Set \#3-51: North-South $\overrightarrow{\mathrm{F}}_{\mathrm{Km}}$ at 300 meters elevation. Contours as in Figure A. 2.1 with maximum value of about (0.24 .

Case "3-51. 07/11/88 Denver - Multiple Microburst $\mathrm{N}-\mathrm{S} 1 \mathrm{Km}$ Averaged F Factor at $Z=50.0$ meters

Figure A.2.12 Data Set \#3-51: North-South $\bar{F}_{\text {Km }}$ at 50 meters elevation. Contours as in Figure A. 2.1 with maximum value of about 0.20 .

```
Case *3-51, 07/11/88 Denver - Multiple Microburst
```


Figure A.2.13 Data Set \#3-51: East-West $\bar{F}_{\mathrm{K} m}$ at 300 meters elevation. Contours as in Figure A.2.1 with maximum value of about 0.18 .

Figure A.2.14 Data Set \#3-51: East-West $\overline{\mathrm{F}}_{\mathrm{Km}}$ at 50 meters elevation. Contours as in Figure A.2.1 with maximum value of about 0.20 .

Case \#4-36. 07/14/82 Denver - Temperature Inversion $E-W 1 \mathrm{Km}$ Averaged F Factor at $Z=300.0$ meters

Figure A.2.15 Data Set \#4-36: East-West $\bar{F}_{\text {Km }}$ at 300 meters elevation. Contours as in Figure A.2.1 with maximum value of about 0.18 .

Case *4-36: 07/14/82 Denver - Temperature Inversion $E-W 1 \mathrm{Km}$ Averaged F Factor at $Z=50.0$ meters

Figure A.2.16 Data Set \#4-36: East-West $\overline{\mathrm{F}}_{\mathrm{Km}}$ at 50 meters ele vation. Contours as in Figure A.2.1 with maximum value of about 0.29.

```
Case #5-40: DRY - Microburst NASA Derived
    N-S 1 Km Averaged F Factor at Z= 300.D meters
```


Figure A.2.17 Data Set \#5-40: North-South $\overline{\mathbf{F}}_{\text {Km }}$ at 300 meters elevation. Contours as in Figure A. 2.1 with maximum value of about 0.21 .

Case "5-40. DRY - Microburst NASA Derived $\mathrm{N}-\mathrm{S} 1 \mathrm{Km}$ Averaged F Factor at $\mathrm{Z}=50.0$ meters

Figure A.2.18 Data Set \#5-40: North-South $\overline{\mathrm{F}}_{\mathrm{Km}}$ at 50 meters elevation. Contours as in Figure A.2.1 with maximum value of about 0.18.

```
Case #5-40. DRY - Microburst NASA Derived
E-W 1 Km Averaged F Factor at Z= 300.0 meters
```


Figure A.2.19 Data Set \#5-40: East-West \bar{F}_{Km} at 300 meters elevation. Contours as in Figure A.2.1 with maximum value of about 0.18 .

```
Case *5-40, DRY - Microburst NASA Derived
    E-W 1 Km Averaged F Factor at Z= 50.0 meters
```


Figure A.2.20 Data Set \#5-41): East-West $\vec{F}_{\text {Kin }}$ at 5() meters elevation. Contours as in Figure A. 2.1 with maximum value of about (). IX.

Case \#5-45: DRY - Microburst NASA Derived
N-S 1 Km Averaged F Factor at $Z=300.0$ meters

Figure A.2.21 Data Set \#5-45: North-South $\overline{\mathrm{F}}_{\mathrm{Km}}$ at 300 meters elevation. Contours as in Figure A.2.1 with maximum value of about 0.16 .

Figure A.2.22 Data Set \#5-45: North-South $\overline{\mathrm{F}}_{\mathrm{Km}}$ at 50 meters elevation. Contours as in Figure A.2.1 with maximum value of about 0.15 .

Case *5-45: DRY - Microburst NASA Derived $E-W 1 \mathrm{Km}$ Averaged F Factor at $\mathrm{Z}=300.0$ meters

Figure A.2.23 Data Set \#5-45: East-West $\overline{\mathrm{F}}_{\mathrm{Km}}$ at 300 meters elevation. Contours as in Figure A.2.1 with maximum value of about 0.20 .

```
Case #5-45. DRY - Microburst NASA Derived
    E-W 1 Km Averaged F Factor at Z= 50.0 meters
```


Figure A.2.24 Data Set \#5-45: East-West $\overline{\mathrm{F}}_{\mathrm{Km}}$ at 50 meters elevation. Contours as in Figure A.2.1 with maximum value of about (0.16.

Case \#-14, Highly asymmetric Microburst

$$
\text { N-S } 1 \mathrm{Km} \text { Averaged } F \text { Factor at } Z=300.0 \text { meters }
$$

Figure A.2.25 Data Set \#6-14: North-South $\overline{\mathrm{F}}_{\mathrm{Km}}$ at 300 meters elevation. Contours as in Figure A.2.1 with maximum value of about (0.16.

Figure A.2.26 Data Set \#6-14: North-South $\overline{\mathrm{F}}_{\mathrm{Km}}$ at 50 meters elevation. Contours as in Figure A.2.1 with maximum value of about 0.17 .

Case \#6-14: Highly asymmetric Microburst

Figure A.2.27 Data Set \#6-14: East-West $\overline{\mathrm{F}}_{\mathrm{Km}}$ at 300 meters elevation. Contours as in Figure A.2.1 with maximum value of about 0.12 .

```
Case #6-14: Highly asymmetric Microburst
    E-W 1 Km Averaged F Factor at Z=5 \. Ø meters
```


Figure A.2.28 Data Set \#6-14: East-West $\overline{\mathrm{F}}_{\mathrm{Km}}$ at 50 meters elevation. Contours as in Figure A.2.1 with maximum value of about 0.13 .

Figure A.2.29 Data Set \#7-27: East-West $\bar{F}_{\text {Km }}$ at 300) meters elevation. Contours as in Figure A.2.1 with maximum value of about 0.16 .

Figure A.2.30 Data Set \#7-27: East-West $\bar{F}_{\text {Km }}$ at 50 meters elevation. Contours as in Figure A.2.1 with maximum value of about 0.13 .

Appendix A. 3

Radar Reflectivity Contour Plots

Case \#1-11: DFW Accident Case. Wet Microburst
Radar Reflectivity (Dbz) at $Z=150 . \emptyset$ meters

Figure A.3.1 Data Set \#1-11: radar reflectivity. The contour interval is 5.0. Maximum value is about 56 .

$$
\text { Case \#2-37: } 06 / 20 / 91 \text { Orlando - NASA Event } \# 143
$$

$$
\text { Radar Reflectivity }(\mathrm{Dbz}) \text { at } Z=150.0 \text { meters }
$$

Figure A.3.2 Data Set \#2-37: radar reflectivity. Contours as in Figure A.3.1 but contours with a negative value are dashed. Maximum value is about 53 .

Case *3-49: 07/11/88 Denver - Multiple Microburst Radar Reflectivity (Dbz) at $Z=150.0$ meters

Figure A.3.3 Data Set \#3-49: radar reflectivity. Contours as in Figure A.3.2 with maximum value of about 37 .

Figure A.3.4 Data Set \#3-51: radar reflectivity. Contours as in Figure A.3.2 with maximum value of about 43.

```
Case #4-36: 07/14/82 Denver - Temperature Inversion
    Radar Reflectivity (Dbz) at Z= 150.0 meters
    M,0,
```

Figure A.3.5 Data Set \#4-36: radar reflectivity. Contours as in Figure A.3.2 with maximum value of about 28.

```
Case #5-40: DRY - Microburst NASA Derived
Radar Reflectivity (Dbz) at Z= 150.\emptyset meters
```


Figure A.3.6 Data Set \#5-40: radar reflectivity. Contours as in Figure A.3.2 with maximum value of about 20 .

```
Case #5-45: DRY - Microburst NASA Derived
    Radar Reflectivity (Dbz) at Z= 150.D meters
```


Figure A.3.7 Data Set \#5-45: radar reflectivity. Contours as in Figure A.3.2 with maximum value of about 8 .

```
Case *6-14: Highly asymmetric Microburst
    Radar Reflectivity (Dbz) at Z= 150.0 meters
```


Figure A.3.8 Data Set \#6-14: radar reflectivity. Contours as in Figure A.3.2 with maximum value of about 52 .

Case \#7-27. Gust Front
Radar Reflectivity (Dbz) at $Z=150.0$ meters

Figure A.3.9 Data Set \#7-27: radar reflectivity. Contours as in Figure A.3.2 with maximum value of about 54 .

Appendix A. 4

Wind Vectors

Case \#1-11. DFW Accident Case. Wet Microburst Velocity Vectors at $Z=50.0$ meters

Figure A.4.1 Data Set \#1-11: horizontal wind vectors at 50 meters elevation.

Case \#1-11: DFW Accident Case. Wet Microburst

Figure A.4.2 Data Set \#1-11: East-West vertical wind vectors at $\mathrm{y}=0 \mathrm{Km}$.

Case "2-37. 06/20/91 Orlando - NASA Event *143 Velocity Vectors at $Z=50.0$ meters

Figure A.4.3 Data Set \#2-37: horizontal wind vectors at 50 meters elevation.

Figure A.4.4 Data Set \#2-37: East-West vertical wind vectors at $y=-1.4 \mathrm{Km}$.

Figure A.4.5 Data Set \#3-49: horizontal wind vectors at 50 meters elevation.

Figure A.4.6 Data Set \#3-49: North-South vertical wind vectors at $\mathrm{x}=8.5 \mathrm{Km}$.

Figure A.4.7 Data Set \#3-51: horizontal wind vectors at 50 meters elevation.

Case \#3-51: 07/11/88 Denver - Multiple Microburst Velocity Vectors at $Y=-5.070$ Kilometers

Figure A.4.8 Data Set \#3-51: East-West vertical wind vectors at $\mathrm{y}=-5.1 \mathrm{Km}$.

```
Case *4-36. 07/14/82 Denver - Temperature Inversion Velocity Vectors at \(Z=50.0\) meters
```


Figure A.4.9 Data Set \#4-36: horizontal wind vectors at 50 meters elevation.

Figure A.4.10 Data Set \#4-36: East-West vertical wind vectors at $\mathrm{y}=0 \mathrm{Km}$.

Figure A.4.11 Data Set \#5-40: horizontal wind vectors at 50 meters elevation.

Case \#5-40: DRY - Microburst NASA Derived Velocity Vectors at $X=3.790$ Kilometers

Figure A.4.12 Data Set \#5-40: North-South vertical wind vectors at $\mathbf{x}=3.8 \mathrm{Km}$.

Figure A.4.13 Data Set \#5-45: horizontal wind vectors at 50 meters elevation.

Figure A.4. 14 Data Set \#5-45: North-South vertical wind vectors at $x=4.3 \mathrm{Km}$.

Figure A.4.15 Data Set \#6-14: horizontal wind vectors at 50 meters elevation.

Case \#6-14. Highly asymmetric Microburst Velocity Vectors at $X=14.471$ Kilometers

Figure A.4.16 Data Set \#6-14: North-South vertical wind vectors at $x=14.5 \mathrm{Km}$.

Figure A.4.17 Data Set \#7-27: horizontal wind vectors at 50 meters elevation.

Case \#7-27: Gust Front
Velocity Vectors at $Y=1.0 \emptyset 0$ Kilometers

Figure A.4.18 Data Set \#7-27: East-West vertical wind vectors at $y=1.0 \mathrm{Km}$. U velocity is biased by $21 \mathrm{~m} / \mathrm{s}$ to show winds relative to translation of gust front.

Appendix A. 5

Along Path Flight Scenario Plots

Figure A.5.1 Data Set \#1-11: aligned for takeoff scenario (far microburst) on track 90. The solid line represents the 1 Kilometer averaged F factor, the short-dashed line represents the reflectivity in dBZ, the long dashed line represents the altitude of the sensor, and the dash-dot line represents the wind speed along the flight path.wind speed.

Data Set \#1: DFW Accident Case, Wet Microburst

Figure A.5.2 Data Set \#1-11: as in figure A.5.1 but for ILS approach scenario on track 90.

Figure A.5.3 Data Set \#2-37: as in figure A.5.1 but for ILS approach scenario on track 180.

Figure A.5.4 Data Set \#2-37: as in figure A.5.1 but for go-around scenario on track 270.

Figure A.5.5 Data Set \#2-37: as in figure A.5.1 but for ILS approach scenario (below alert threshold shear) on track 90.

Figure A.5.6 Data Set \#3-49: as in figure A.5.1 but for ILS approach scenario (below alert threshold shear) on track 90 .

Figure A.5.7 Data Set \#3-49: as in figure A.5.1 but for ILS approach scenario (must alert) on track 360.

Figure A.5.8 Data Set \#3-51: as in figure A.5.1 but for aligned for takeoff (near microburst) scenario on track 360 .

Figure A.5.9 Data Set \#3-51: as in figure A.5.1 but for aligned for takeoff scenario (far microburst) on track 90.

Figure A.5.10 Data Set \#3-51: as in figure A.5.1 but for ILS approach scenario on track 360.

Figure A.5.11 Data Set \#3-51: as in figure A.5.1 but for ILS approach scenario on track 45.

Figure A.5.12 Data Set \#3-51: as in figure A.5.1 but for ILS approach scenario on track 90 .

Figure A.5.13 Data Set \#3-51: as in figure A.5.I but for ILS approach scenario on track 135.

Figure A.5.14 Data Set \#3-51: as in figure A.5.1 but for ILS approach scenario on track 270.

Figure A.5.15 Data Set \#3-51: as in figure A.5.1 but for ILS approach scenario on track 315.

Figure A.5.16 Data Set \#3-51: curved approach flight scenario (right turn) with localizer on track 90 . The solid line represents the 1 Kilometer averaged F Factor, the dashed line represents the Reflectivity in dBZ , and the dash-dot line represents the wind speed along the flight path.wind speed.

Figure A.5.17 Data Set \#4-36: as in tigure A.5.I hut for aligned for takeoff scenario (near microburst) on track 90.

Data Set \#4: 7/14/82 Denver, Temperature Inversion

Figure A.5.18 Data Set \#4-36: as in figure A.5.I but for ILS approach scenario on track 90).

Data Set \#4: 7/14/82 Denver, Temperature Inversion

Figure A.5.19 Data Set \#4-36: as in figure A.5.1 but for worst-case drift ILS approach on track 90.

Data Set \#5: 7/8/89 Denver, Very Dry Microburst
Aligned tor Takeoff, Far Microburst
Time $=40 \mathrm{~min}$.

Figure A.5.20 Data Set \#5-40: as in figure A.5.1 but for aligned for takeoff scenario (far microburst) on track 270.

Figure A.5.21 Data Set \#5-40) as in figure A.5.1 but for ILS approach on track 360.

Data Set \#5: 7/8/89 Denver, Very Dry Microburst
Worsl-case Dritt Approach at 120 knots
Time $=40 \mathrm{~min}$.

Figure A.5.22 Data Set \#5-40: as in figure A.5.I but for worst-case drift ILS approach on track 360 .

Data Set \#5: 7/8/89 Denver, Very Dry Microburst

Figure A.5.23 Data Set \#5-40: as in figure A.5.1 but for go-around scenario on track 360.

Figure A.5.24 Data Set \#5-40: as in figure A.5.16 but curved approach flight scenario (left turn) with localizer on track 270.

Data Set \#5: 7/8/89 Denver, Very Dry Microburst

Figure A.5.25 Data Set \#5-40: as in figure A.5. 16 but curved approach flight scenario (right turn) with localizer on track 270.

Figure A.5.26 Data Set \#5-45: as in figure A.5.1 but for ILS approach on track $\mathbf{3 6 0}$.

Figure A.5.27 Data Set \#6-14: as in figure A.5. 16 but curved approach flight scenario (right turn) with localizer on track 180.

Figure A.5.28 Data Set \#6-14: as in figure A.5.1 but for ILS approach scenario on track 360.

Figure A.5.29 Data Set \#6-14: as in figure A.5.1 but for ILS approach scenario on track 45.

Figure A.5.30 Data Set \#6-14: as in tigure A.5.I but for ILS approach scenario on track 90).

Figure A.5.31 Data Set \#6-14: as in figure A.5.1 but for ILS approach scenario on track 180.

Data Set \#6: Highly Asymmetric Microburst
ILS Approach (Track 225)
Time $=14 \mathrm{~min}$.

Figure A.5.32 Data Set \#6-14: as in figure A.5.1 but for ILS approach scenario on track 225.

Figure A.5.33 Data Set \#6-14: as in figure A.5.1 but for ILS approach scenario on track 270.

Figure A.5.34 Data Set \#6-14: as in figure A.5.1 but for ILS approach scenario on track 315 .

Data Set \#7: Montana Sounding, Gust Front
Aligned for Takeoff
Time $=27 \mathrm{~min}$.

Figure A.5.35 Data Set \#7-27: as in figure A.5.1 but for aligned for takeoff scenario (gust front near departure end of runway) on track 270.

Figure A.5.36 Data Set \#7-27: as in figure A.5.1 but for ILS approach scenario on track 270.

APPENDIX B

SKEW-T DIAGRAMS ${ }^{1}$

The chief data source for upper atmospheric data is the twice-daily (0000 and 1200 UTC) release of balloon-borne radiosondes from rawinsonde sites all over the globe. This data is collected and archived by the World Meteorological Organization (WMO - a part of the United Nations). A radiosonde is a balloon-borne package which contains temperature, humidity and pressure sensors. Data measured from these sensors is transmitted back to the ground station by telemetry. Altitude information is not explicitly measured, but is derived from the radiosonde data by use of the ideal gas law and integration of the hypsometric equation. The tracking of the balloons position by the rawinsonde system's radar or radio direction finder, allows for the trigonometric computation of upper-atmospheric wind data. The wind speed and direction, temperature, dewpoint, pressure, and altitude data is used by weather forecasters and is input into weather models, as well as being forwarded to the WMO.

To analyze rawinsonde data, a Skew-T (formally a Skew-T/Log-P) diagram is used. This type of thermodynamic chart, which is widely used in meteorology, has its ordinate proportional to in P and it abscissa proportional to ($\mathrm{T}+\ln \mathrm{P}$), where P is atmospheric pressure and T is temperature. In order to understand the wealth of information that it provides, we shall construct a Skew-T diagram by overlaying its parts. The left side of Fig. B. 1 shows the base of the Skew-T diagram --- the isobars (constant pressure levels), the isotherms (lines of constant temperature), and the dry adiabats. The isobars are represented on a logarithmic scale in order to approximate a linear altitude axis:

$$
\begin{align*}
& \frac{d P}{d z}=-\rho g=-\frac{g P}{R T} \\
& \frac{d P}{P}=-\frac{g}{R T} d z \tag{B-1}
\end{align*}
$$

where z is height, ρ is air density, g is acceleration due to gravity, and R is the gas constant for dry air. If g/RT is assumed constant (a reasonable zeroth-order assumption), then:

$$
\begin{equation*}
\ln P \propto z \tag{B-2}
\end{equation*}
$$

${ }^{1}$ The following text is extracted with minor modification from Appendix A of Bacon et al. (1991).

The isotherms are "skewed"' to improve the readability of the diagram. Finally, the dry adiabats represent the decrease in temperature that a dry air parcel should experience if it were to be expanded via an adiabatic process:

$$
\frac{P}{P_{0}}=\left(\frac{\rho}{\rho_{0}}\right)^{\frac{1}{r}}
$$

where: $\gamma=\frac{C_{p}}{C_{v}}$, the ratio of the specific heats of dry air,

$$
\begin{equation*}
\Rightarrow P=P_{0}\left(\frac{T}{T_{0}}\right)^{\frac{r}{r-1}} \tag{B-3}
\end{equation*}
$$

Note that in Fig. B. 1 that the dry adiabats (dotted lines in left figure) are not straight lines, but are slightly curved and run from the lower right to the upper left corner of the diagram. The angle between isotherms and dry adiabats is nearly 90°.

Vertical profiles of atmospheric temperature through clouds rarely follow that of a dry adiabat because of the presence of moisture. At a given temperature and pressure, there exists a maximum amount of moisture which can remain in the atmosphere as vapor; the remainder must condense out, and in doing so release latent heat. The right side of Fig. B. 1 shows lines that represent this process. Lines of constant mixing ratio (a mixing ratio is the amount of a given quantity divided by the amount of dry air) are shown as straight dashed lines. [The vapor mixing ratio of a parcel of air is conserved in absence of turbulence mixing, condensation, and evaporation.] Because of the large number of lines which appear on a typical Skew-T diagram, we show the lines of constant mixing ratio at regular multiplicative increments of a factor of two starting at $0.5 \mathrm{~g} / \mathrm{kg}$ (grams of water vapor per kilogram of dry air). Thus the dashed line which starts just above $10^{\circ} \mathrm{C}$ near the surface represents a constant mixing ratio of $8 \mathrm{~g} / \mathrm{kg}$.

As we mentioned, the water vapor in excess of the saturation mixing ratio must condense out of the atmosphere releasing latent heat. Thus if we start with a saturated air parcel and expand it adiabatically it would not have the temperature behavior of the dry adiabat; the latent heat release would tend to make the saturation adiabat warmer. This is shown by the gently-curved solid lines on the left side of Fig. B.2. Note that at cold temperatures where the amount of water vapor in the air parcel must be small, the saturation adiabats asymptotically approach the dry adiabats.

Finally, on the right side of Fig. B. 2 we show the Skew-T diagram for the 1200 UTC sounding taken at Moscow on July 18, 1974. Note that once the temperature (solid line) and dewpoint (dashed line) are known as functions of pressure, then it is possible to determine an altitude axis to go along with the sounding. Starting from the
surface, we note that the surface air was very humid, but that it was not saturated. Thus the temperature lapse rate of the atmosphere near the surface was approximated by a dry adiabat. If we extend the surface dewpoint along a line of constant mixing ratio, the point at which it intersects this dry adiabat represents the altitude at which condensation would begin (approximately cloud base). If you look closely at this sounding, you will see that this is precisely where the temperature begins to diverge from a dry adiabat and begin to follow a saturation adiabat. A region from 4 to 5 km altitude where the temperature and dewpoint are nearly the same is indicative of existing cloud cover. Above roughly 5.5 km there is virtually no measurable water vapor as indicated by the dew point profile.

Figure B. 1 Skew-T diagrams with isobars, isotherms, and dry adiabats (left) and isotherms and saturation mixing ratios (right).

Figure B. 2 Skew-T diagram with isobars, isotherms, and both dry and saturation adiabats (left). The right shows a full Skew-T diagram of the 1200 UTC sounding from Moscow on July 18, 1974.

Appendix C

Aircraft Hazard Factor or F-factor Equations

The primary threat of microbursts to aircraft is the single or combined effect of the horizontal velocity shear and downdraft motion. Either of these effects can penalize the performance of an aircraft, and possibly result in a critical loss of altitude for arriving or departing aircraft. A nondimensional index based on the fundamentals of flight mechanics that quantifies the effect of wind shear on the aircraft energy state is the Ffactor (Bowles 1990):

$$
\begin{equation*}
F=\frac{1}{g} \frac{D U_{H}}{D t}-\frac{w}{\left|\vec{V}_{a}\right|} \tag{C-1}
\end{equation*}
$$

where g is gravitational acceleration, U_{H} is the horizontal component of wind velocity along the flight path, w is the vertical component of wind velocity, and \bar{V}_{a} is airplane velocity relative to the air mass. For the data shown in this document the term U_{H} is calculated by the dot product of the horizontal wind velocity and a unit vector that is the aircraft velocity unit vector constrained to the horizontal plane at the airplane's position. The first term on the right side of (C-1) represents the contribution of horizontal wind shear to the performance of the aircraft, while the second term represents the contribution due to vertical wind. Positive values of F indicate a performancedecreasing condition, whereas negative values indicate a performance-increasing situation. The F-factor can be interpreted as the gain or loss of an aircraft's potential climb angle due to atmospheric winds. Note that with an airspeed of $75 \mathrm{~m} / \mathrm{s}$, a headwind loss of 0.1 g ($2 \mathrm{knots} / \mathrm{sec}$) has the same effect on aircraft performance as a downdraft of $7.5 \mathrm{~m} / \mathrm{s}$. The above formula can be simplified by noting that the database wind fields are frozen in time. With this constraint $D U_{H} / D t$ is then:

$$
\begin{equation*}
\nabla \overline{\mathrm{U}}_{\mathrm{H}} \bullet \overrightarrow{\mathrm{~V}}_{\mathrm{a}} \tag{C-2}
\end{equation*}
$$

Therefore for frozen wind fields the equation for the F-factor becomes:

$$
\begin{equation*}
F=\frac{1}{g}\left[\nabla \bar{U}_{H} \cdot \bar{V}_{\mathrm{a}}\right]-\frac{\mathrm{w}}{\left|\vec{V}_{\mathrm{a}}\right|} \tag{C-3}
\end{equation*}
$$

The instantaneous equation above is then averaged over a $1-\mathrm{km}$ segment resulting in the following equation for the $1-k m$ averaged F-factor or "FBAR" at point $\bar{R}(x, y, z)$:

$$
\begin{equation*}
\operatorname{FBAR}=\overline{\mathrm{F}}(\overrightarrow{\mathrm{R}})=\frac{1}{L} \int_{-L / 2}^{L / 2} F\left(\vec{R}^{\prime}\right) d s \tag{C-4}
\end{equation*}
$$

where:
$\overrightarrow{\mathbf{R}}^{\prime}=\overrightarrow{\mathbf{R}}+\hat{n}_{\mathbf{a}}(\overrightarrow{\mathrm{R}}) \mathbf{S}$
$\hat{n}_{a}=$ unit vector along the aircraft flight path
$L=1 \mathrm{~km}$
For this application, the F-factor in (C-3) is calculated in three steps. First the quantity U_{H} is computed at the airplane's position and at a point 100 meters ahead in the direction of flight'. The gradient of this quantity in the given direction is approximated by taking the difference of these two values and dividing by 100 meters. This value is multiplied by the airspeed, and divided by g to arrive at the complete value of the horizontal term. The last term of (C-3) is the vertical wind speed at the airplane's position over the airspeed. For this document the airspeed is assumed equal to the groundspeed and is constant along a path. Finally (C-4) is applied to the calculated values from (C-3). The along path F-factor plots are shown in appendix A-5.

Equation (C-4) allows the computation of F-factors along any segment. Additional restrictions to the flight path can be made to give a quantitative assessment of the hazard to aircraft throughout each of the data set domains without specifying specific flight paths. These restrictions are to fix the airspeed and groundspeed at 77.2 m / s (150 knots), hold the airplane altitude constant, and assume parallel paths through the data set in north to south or east to west directions. These restrictions result in North-South and East-West F-factor fields. Note that with the above assumptions FBAR would be the same for an aircraft flying south as for one flying north along the same path. F-factor calculations with these constraints reduces to:

$$
\begin{align*}
& \text { FBAR }_{N-s}=\frac{V_{a}}{g L}\left(v_{y+\frac{L}{2}}-v_{y-\frac{L}{2}}\right)-\frac{d x y}{L V_{a}} \sum_{y-\frac{L}{2}}^{y+\frac{L}{2}} w \tag{C-5}\\
& \operatorname{FBAR}_{E-w}=\frac{V_{a}}{g L}\left(u_{x+\frac{1}{2}}-u_{x-\frac{L}{2}}\right)-\frac{d x y}{L V_{a}} \sum_{x-\frac{L}{2}}^{x+\frac{L}{2}} w \tag{C-6}
\end{align*}
$$

where V_{a} is the magnitude of airspeed; u, v, and w are the velocity components of the wind (explained in table 2.2); and dxy is the horizontal spacing of the data set (explained in section 5). The second term in (C-5) and (C-6) is the average vertical wind speed over the airspeed. The above equations are used to generate the F-factor field plots shown in appendix A-2.

[^3]
APPENDIX D

Supplementary Equations

Section D. 1 discusses the relevant hydrometeor-size distributions that are used in TASS, along with the subsequent diagnostic equations for radar reflectivity factor and surface precipitation rate. Section D. 2 lists empirical relationships between visibility and rainfall rate; and formulas for converting temperature between Celsius, Kelvin and Fahrenheit are provided in the final section for the users convenience.

D. 1 Model Drop-Size Distributions and Subsequent Diagnostic Equations

In the TASS model formulation, the cloud hydrometeors are subdivided into 5 bulk categories compromising nonprecipitating or suspended particles such as 1) liquid cloud droplets and 2) ice crystal, as well as precipitating particles such as 3) raindrops, 4) snow, and 5) hail/graupel. The distributions and contribution to the simulated radar reflectivity factor are described below for only those variables which are included in the database. [The variables not described in this section, such as cloud ice, melt before falling within the windowed domain of the database.]

D.1.1 Size Distributions for Rain and Hail

The hydrometeor size distributions for both rain and hail are assumed to be inverse exponential. Specifically, the size distribution for rain is (Marshall and Palmer 1948)

$$
\begin{equation*}
N\left(D_{R}\right)=N_{O R} \exp \left(-\frac{D_{R}}{\Lambda_{R}}\right), \tag{D-1}
\end{equation*}
$$

where $N\left(D_{R}\right)$ is the number of raindrops per unit diameter per unit volume, D_{R} is the raindrop diameter, Λ_{R} is the inverse of the slope of the rain distribution and $N_{O R}$ is the intercept. Similarly, the size distribution for hail is (Federer and Waldvogel 1975)

$$
\begin{equation*}
N\left(D_{H}\right)=N_{O H} \exp \left(-\frac{D_{H}}{\Lambda_{H}}\right) \tag{D-2}
\end{equation*}
$$

where $N\left(D_{H}\right)$ is the number of hail particles per unit diameter per unit volume, D_{H} is the hail particle diameter, Λ_{H} is the inverse of the slope of the hail distribution and N_{OH} is the intercept.

The slope factors can be determined from the above distributions as (Kessler 1969):

$$
\begin{equation*}
\Lambda_{R}=\left(\frac{M_{R}}{\pi N_{O A} \delta_{w}}\right)^{0.25} \text {, and } \quad \Lambda_{H}=\left(\frac{M_{H}}{\pi N_{O H} \delta_{H}}\right)^{0.25} \tag{D-3}
\end{equation*}
$$

where δ_{w} is the density of water, δ_{H} is the average density of the hail particles, M_{R} is the rainwater content (rainwater mass contained per unit volume of air), and M_{H} is the hailwater content (hail mass contained per unit volume of air).

D.1.2 Parameterization of Raindrop Intercept

Based on a survey of observed drop-size distributions, the well-known MarshalPalmer intercept value of $\mathrm{N}_{\mathrm{OR}}=8 \times 10^{6} \mathrm{~m}^{-4}$ (which was empirically-based on size distributions measured in steady light rain) is both small and inappropriate for most thunderstorm rainfalls. Furthermore, raindrop spectrum data obtained from Doppler radar suggest that the intercept value depends on rainfall rate (e.g. Hodson 1986). Onedimensional microphysics models (e.g, List et al. 1987) imply that the intercept should increase with rainwater content (and rainfall rate) for moderate to heavy rainfall due to the continuous production of small drops from the collisional breakup of drops.

The TASS model formulation, assumes a $N_{O R}$ that depends on rainwater content, as based on measured data. The relationship is

$$
\begin{equation*}
N_{O R}=2.5 \times 10^{8} M_{R}{ }^{0.375} \tag{D-4}
\end{equation*}
$$

where $N_{O R}$ has units of [$\left.\mathrm{m}^{-4}\right]$, and M_{R} has units of [$\mathrm{kg} \mathrm{m}^{-3}$]. The above formula is obtained from radar drop-size data within thunderstorms as reported in Sekhon and Srivastava (1971). [Note that for rainwater contents less than $10^{-4} \mathrm{Kg} \mathrm{m}^{-3}\left(0.1 \mathrm{~g} \mathrm{~m}^{-3}\right)$, Eq. (D-4) gives value less than Marshal Palmer.]

D.1.3 Contribution to Radar Reflectivity Factor From Rain

The contribution of radar reflectivity from rain can be determined from any continuous drop spectrum by assuming Rayleigh scattering as:

$$
\begin{equation*}
Z_{R}=\int_{0}^{\infty} N\left(D_{A}\right) D_{R}^{6} d D_{R} \tag{D-5}
\end{equation*}
$$

Integrating (D-5) with (D-1) and substituting (D-3) and (D-4) yields:

$$
\begin{equation*}
Z_{R}=1.1 \times 10^{4} M_{R}^{1.47} \tag{D-6}
\end{equation*}
$$

where Z_{R} has the conventional units of $\left[\mathrm{mm}^{6} \mathrm{~m}^{-3}\right]$, and M_{R} has units of $\left[\mathrm{g} \mathrm{m}^{-3}\right]$.

D.1.4 Parameterization of Surface Rainfall Rate

A diagnostic equation for rainfall rate from either rainwater content or radar reflectivity can be determined with the aid of the above equations.

The surface rainfall rate [$\mathrm{mm} \mathrm{hr}{ }^{-1}$] in terms of the raindrop spectrum is

$$
\begin{equation*}
R_{R}=3.6 \times 10^{6} \frac{\pi}{6} \int_{0}^{\infty} M\left(D_{R}\right) D_{R}^{9} N\left(D_{R}\right) d D_{R} \tag{D-7}
\end{equation*}
$$

where $W\left(D_{R}\right)$ is the fall velocity of a raindrop with diameter D_{R}. An approximation for the fall velocity that is fitted from Gunn and Kinzer's (1949) experimental data (units MKS) is

$$
\begin{equation*}
W\left(D_{R}\right)=386.6 D_{R}^{2 / 3} \tag{D-8}
\end{equation*}
$$

With (D-1), and (D-8) , Eq. (D-7) may be integrated giving:

$$
\begin{equation*}
R_{R}=1.072 \times 10^{10} N_{O R} \Lambda^{4.0687} \tag{D-9}
\end{equation*}
$$

By substituting (D-3) and (D-4) into (D-9), the rainfall rate may be expressed in terms of the rainwater content as:

$$
\begin{equation*}
R_{R}=17.3 M_{R}^{1.104} \tag{D-10}
\end{equation*}
$$

where again M_{R} is in units of $\left[\mathrm{g} \mathrm{m}^{-3}\right]$. Note that the rainfall rate is almost linerallyproportional to the rainwater content.

With ($\mathrm{D}-6$) and ($\mathrm{D}-11$) the radar reflectivity factor can be expressed in terms of surface rainfall rate as:

$$
\begin{equation*}
Z_{R}=245 R_{R}^{1.33} . \tag{D-11}
\end{equation*}
$$

A comparison of (D-11) and the relation attributed to Marshall and Palmer,

$$
Z_{m p}=200 R_{R}{ }^{1.6},
$$

is shown in Fig. D.1.

D.1.5 Formulas for Hailwater

Similar relationships between radar reflectivity, precipitation rate, and hailwater content can be developed for hail, but are less general than those for rain since N_{OH} and δ_{H} may vary substantially with case. Care must be taken in developing these formulas to include the effects of Mie scattering from wet hailstones. Formulas for hail, as well as those already derived for rain, are summarized in D.1.6

Figure D. 1 Comparison between Eq. (D-11) (which is derived from TASS formulations) and Marshal-Palmer's empirical relationship for rainfall rate vs radar reflectivity.

D.1.6 Summary of Equations for Radar Reflectivity and Precipitation Rate

Relationships between radar reflectivity and precipitation rate for rain and for wet hail are as follows:

Rain:

$$
\begin{aligned}
& R_{R}=17.3 M_{R}^{1.104} \\
& R_{R}=0.016 Z_{R}^{0.75} \\
& Z_{R}=245 R_{R}^{1.333} \\
& Z_{R}=1.1 \times 10^{4} M_{R}^{1.47}
\end{aligned}
$$

Hail:

$$
\begin{aligned}
& R_{H}=52 M_{H}{ }^{1.125} \\
& R_{H}=6.8 \times 10^{-3} Z_{H}{ }^{0.68} \\
& Z_{H}=1591 R_{H}{ }^{1.48} \\
& Z_{H}=5.5 \times 10^{5} M_{H}{ }^{1.68}
\end{aligned}
$$

where:

$$
\begin{aligned}
& M_{R}=\text { Rain content }\left[\mathrm{g} \mathrm{~m}^{-3}\right] \\
& M_{H}=\text { Hail content }\left[\mathrm{g} \mathrm{~m}^{-3}\right] \\
& R_{R}=\text { Surface rainfall rate }[\mathrm{mm} / \mathrm{hr}] \\
& R_{H}=\text { Surface precipitation rate for hail }[\mathrm{mm} / \mathrm{hr}] \\
& Z_{R}=\text { Radar reflectivity factor for rain }\left[\mathrm{mm}^{6} \mathrm{~m}^{-3}\right] \\
& Z_{H}=\text { Radar reflectivity factor for wet hail }\left[\mathrm{mm}^{6} \mathrm{~m}^{-3}\right]
\end{aligned}
$$

Notes: $\quad 1 \mathrm{~mm} / \mathrm{hr}=0.03937 \mathrm{in} / \mathrm{hr}$

$$
d B Z=10 \log _{10}\left(Z_{R}+Z_{H}\right)
$$

D. 2 Visibility

An empirical relationship between visual range and surface rainfall rate has been formulated by Huffman and Haines (1984) and is listed below:

$$
h=18.5 R_{R}^{-0.63},
$$

where:

$$
h=\text { Visibility [km], }
$$

and

$$
R_{R}=\text { Rainfall rate }[\mathrm{mm} / \mathrm{hr}] .
$$

D. 3 Temperature

Formulas for converting between degrees Celsius, Kelvin and Fahrenheit:

```
degrees Fahrenheit = 32 + 1.8 degrees Celsius
degrees Fahrenheit = 32 + 1.8 (degrees Kelvin - 273.15)
degrees Celsius = 5/9 (degrees Fahrenheit - 32)
degrees Celsius = degrees Kelvin - 273.15
```


Appendix E

Sample FORTRAN Program to Read and Verify the Database

PROGRAM DATACHK

```
C
C
C THIS IS A PROGRAM TO CHECK 3-D DATA SETS IN FAA FORMAT.
C
C**********)
INTEGER FTIN, QLOC
DIMENSION QXYZ(IMAX,JMAX,KMAX,NVAR)
DIMENSION VARMAX(KMAX),VARMIN(KMAX)
INTEGER LOCMAX(3,KMAX),LOCMIN(3,KMAX)
LOGICAL UREAD,VREAD,WREAD
CHARACTER*80 INFILE,TITLE
CHARACTER*4 VAR
DATA QLOC /1/
DATA UREAD/.FALSE./, VREAD /.FALSE./, WREAD/.FALSE./
C
10 WRITE(*,*) 'ENTER THE NAME OF THE DATA FILE TO CHECK'
READ(5,'(A)') INFILE
WRITE(6, (A,A)')' READING FROM DATA FILE = ',INFILE
20
WRITE(6,") 'IS THE FILE FORMATTED OR BINARY?'
WRITE(6,")'1 = FORMATTED'
WRITE(6,")'0 = BINARY '
READ(5,") FTIN
IF(FTIN.NE.1 .AND. FTIN.NE.O) GOTO 20
IF(FTIN.EQ.1) THEN
    OPEN(UNIT=1,FILE=INFILE,ERR=10,FORM='FORMATTED',STATUS='OLD')
    READ(1,1000,ERR=998) TITLE
    READ(1,2000,ERR=998) VAR,IX,IY,IZ,TIME,XSTART,YSTART,DXY,DZ
    ELSE
        OPEN(UNIT=1,FILE=INFILE,ERR=10,FORM='UNFORMATTED',STATUS='OLD')
        READ(1,ERR=998) TITLE
        READ(1,ERR=998) VAR,IX,IY,IZ,TIME,XSTART,YSTART,DXY,DZ
    ENDIF
    REWIND(1)
    IF(IX.GT.IMAX .OR. IY.GT.JMAX .OR. IZ.GT.KMAX) THEN
        WRITE(*,")' ARRAY TOO LARGEI'
        WRITE(*',(A,315)')' IMAX,JMAX,KMAX = ',IMAX,JMAX,KMAX
        WRITE(*;'(A,315)')' IX,IY,IZ = ',IX,IY,IZ
        CLOSE(1)
        STOP
    ENDIF
    REWIND(1)
    IF(FTIN.EQ.1) THEN
        READ(1,1000) TITLE
    ELSE
        READ(1) TITLE
    ENDIF
    WRITE(*'(A)')' TITLE LINE:'
    WRITE(*',(A)') TITLE
50 WRITE(*,*) ENTER THE TYPE OF ANALYSIS TO PERFORM.'
    WRITE(***)' 1= GLOBAL MINIMUM AND MAXIMUM'
    WRITE(*:\because' 2 = PLANAR MINIMUM AND MAXIMUM (IN Z PLANES)'
    READ(*;")ICALC
```

IF(ICALC.NE. 1 .AND. ICALC.NE.2) GOTO 50 IVAR = 1

C
C LOOP OVER ALL VARIABLES STORED ON TAPE

C

C

CONTINUE
IF(FTIN.EQ.1) THEN
READ (1,2000,END=999) VAR,IX,IY,IZ,TIME,XSTART,YSTART,DXY,DZ READ (1,3000,END=999) (((QXYZ(I,J,K,QLOC),I=1,IX), J=1,IY),K=1,IZ)
ELSE READ(1,END=999) VAR,IX,IY,IZ,TIME,XSTART,YSTART,DXY,DZ,
$1(((Q X Y Z(I, J, K, Q L O C), I=1, I X), J=1, I Y), K=1, I Z)$
ENDIF
IF(VAR(1:1) .EQ. 'U' .OR. VAR(1:1).EQ.'V' .OR.
1 VAR(1:1).EQ.'W') THEN
CALL DATFILL(QXYZ,IX,IY,IZ,UREAD,VREAD,WREAD,VAR, IMAX,JMAX,KMAX,NVAR,QLOC,DXY)
ENDIF
IVAR = IVAR + 1
IF(QLOC.EQ.2) VAR = 'EWFF'
IF(QLOC.EQ.3) VAR = 'NSFF'
IF(QLOC.NE.1) THEN IF(OLOC.EQ.3)
1 WRITE(*:(A,A,A)')' EXAMINING THE CALCULATED VARIABLE : ',
2 'NORTH-SOUTH 1 KM AVERAGED F FACTOR'
IF(QLOC.EQ.2)
1 WRITE(*:(A,A,A) $)^{\prime}$ EXAMINING THE CALCULATED VARIABLE : :
2 'EAST-WEST 1 KM AVERAGED F FACTOR'
ENDIF
$\mathrm{L}=1$
$\operatorname{VARMAX}(L)=-9.99 E 50$
$\operatorname{VARMIN}(L)=9.99 E 50$
DO $400 \mathrm{~K}=1$, IZ
IF(ICALC.EQ.2) THEN
$L=K$
$\operatorname{VARMAX}(\mathrm{L})=-9.99 E 50$
$\operatorname{VARMIN}(\mathrm{L})=9.99 E 50$
ENDIF
DO $400 \mathrm{~J}=1$, IY
DO $400 \mathrm{I}=1$, IX
IF(QXYZ(I,J,K,QLOC) .GT. VARMAX(L)) THEN
$\operatorname{VARMAX}(L)=\operatorname{QXYZ}(1, J, K, Q L O C)$
$\operatorname{LOCMAX}(1, L)=1$
$\operatorname{LOCMAX}(2, L)=J$ $\operatorname{LOCMAX}(3, L)=K$
ENDIF
IF(QXYZ(I,J,K,QLOC) .LT. VARMIN(L)) THEN
$\operatorname{VARMIN}(L)=$ QXYZ(I,J,K,QLOC)
$\operatorname{LOCMIN}(1, L)=1$
$\operatorname{LOCMIN}(2, L)=J$ $\operatorname{LOCMIN}(3, L)=K$
ENDIF
CONTINUE

```
    IF(ICALC.EQ.1) YHEN
        IF(QLOC.EQ.1) THEN
        WRITE(*',(A,A,A)')' FOR THE VARIABLE = '',VAR,'"'
        ENDIF
        WRITE(*',(A,G15.7)')' MAXIMUM VALUE IS = ',
        VARMAX(1)
    WRITE(':(A,3I15,A)'Y MAXIMUM VALUE IS AT '.
    (LOCMAX(I,1),I= 1,3);'(I,J,K)'
    XLOCMAX = XSTART + FLOAT(LOCMAX(1,1)-1)*DXY
    YLOCMAX = YSTART + FLOAT(LOCMAX(2,1)-1)*DXY
    ZLOCMAX = FLOAT(LOCMAX(3,1)-1)*DZ
    WRITE(','(A,3G15.7,A)''' MAXIMUM VALUE IS AT ',
        XLOCMAX,YLOCMAX,ZLOCMAX,' (X,Y,Z)'
        WRITE(*;'(A,G15.7)')' MINIMUM VALUE IS = ',
        VARMIN(1)
    WRITE(*:(A,3I15,A)') MINIMUM VALUE IS AT ',
    (LOCMIN(I,1),I=1,3),' (I,J,K)'
    XLOCMIN = XSTART + FLOAT(LOCMIN(1,1)-1)*DXY
    YLOCMIN = YSTART + FLOAT(LOCMIN(2,1)-1)*DXY
    ZLOCMIN = FLOAT(LOCMIN(3,1)-1)*DZ
    WRITE(*;(A,3G15.7.A)')' MINIMUM VALUE IS AT',
        XLOCMIN,YLOCMIN,ZLOCMIN,' (X,Y,Z)'
    ELSE IF(ICALC .EQ.2) THEN
    WRITE(*,'(A,A,A)')' FOR THE VARIABLE = "',VAR,"''
    WRITE(";(A)') VARIABLES = Z,X1,Y1,VALMAX,X2,Y2,VALMIN'
    DO 450 K=1, IZ
        XLOCMAX = XSTART + FLOAT(LOCMAX(1,K)-1)*DXY
        YLOCMAX = YSTART + FLOAT(LOCMAX(2,K)-1)*DXY
        ZLOCMAX = FLOAT(LOCMAX(3,K)-1)*DZ
        XLOCMIN = XSTART + FLOAT(LOCMIN(1,K)-1)*DXY
        YLOCMIN = YSTART + FLOAT(LOCMIN(2,K)-1)*DXY
        WRITE(*,4000) ZLOCMAX,XLOCMAX,YLOCMAX,
        VARMAX(K),XLOCMIN,YLOCMIN,VARMIN(K)
            CONTINUE
    ENDIF
    IF(QLOC.NE.1) GOTO 999
    GOTO 300
    CONTINUE
    WRITE(*,(A)')' ERROR ON INPUT*
    WRITE(*'(A)')' RE-ENTER THE NAME OF THE DATA SET'
    REWIND(1)
    GOTO 10
    CONTINUE
    IF(WREAD) THEN
    QLOC = OLOC + 1
    IF(UREAD .AND. VREAD) THEN
        IF(QLOC.LE.3) GOTO 350
    ENDIF
ENDIF
WRITE(6,") 'END OF FILE . . . STOP'
CLOSE(1)
STOP
FORMAT(A80)
FORMAT(A4,/,314,/,5E12.4)
```

```
3000 FORMAT((8E10.4))
4000 FORMAT(F10.4,1X,2(F9.2,1X),F11.4,1X,2(F9.2,1X),F11.4)
    END
C*******************************************************
C
C THIS IS A SUBROUTINE TO TAKE THE DATA AND PLACE IT INTO THE PROPER
C LOCATION TO CALCULATE THE 1 KM AVERAGED F FACTOR
C
C****************************************************
    SUBROUTINE DATFILL(QXYZ,IX,IY,IZ,UREAD,VREAD,WREAD,VAR,
    1
                IMAX,JMAX,KMAX,NVAR,QLOC,DXY)
    DIMENSION QXYZ(IMAX,JMAX,KMAX,NVAR)
    LOGICAL UREAD,VREAD,WREAD
    INTEGER QLOC
    CHARACTER*4 VAR
    DATA ITYPE /O/
    IF(VAR .EQ. 'U ') THEN
        UREAD = .TRUE.
        DO 400 I = 1, IX
            DO 400 J = 1, IY
            DO 400 K=1, IZ
                QXYZ(I,J,K,2) = QXYZ(I,J,K,QLOC)
            CONTINUE
    ELSE IF(VAR .EQ. 'V ') THEN
        VREAD = .TRUE.
        DO 410I= 1, IX
                DO 410 J = 1, IY
                    DO 410K=1, IZ
                    QXYZ(I,J,K,3) = QXYZ(I,J,K,QLOC)
410 CONTINUE
    ELSE IF(VAR .EQ. 'W ) THEN
        WREAD = TRUE.
        DO 420 I = 1, IX
                DO 420 J= 1, IY
                    DO 420 K=1, IZ
                        QXYZ(I,J,K,4) = QXYZ(I,J,K,QLOC)
    CONTINUE
    ENDIF
    IF(WREAD .AND. VREAD) THEN
        LOC = 5
        IDIR = 2
        CALL FFACT(DXY,QXYZ,IX,IY,IZ,NVAR,LOC,IDIR,IMAX,JMAX,KMAX,
                    ITYPE)
            DO 600 I = 1, IX
                DO 600 J = 1, IY
                    DO 600 K = 1, IZ
                        QXYZ(I,J,K,3) = QXYZ(I,J,K,LOC)
        CONTINUE
    ENDIF
    IF(WREAD .AND. UREAD) THEN
        LOC=5
        IDIR = 1
        CALL FFACT(DXY,QXYZ,IX,IY,IZ,NVAR,LOC,IDIR,IMAX,JMAX,KMAX,
                                    ITYPE)
```

```
        DO 650 I = 1, IX
            DO 650 J=1, IY
                DO 650 K=1, IZ
                            QXYZ(I,J,K,2) = QXYZ(I,J,K,LOC)
            CONTINUE
        ENDIF
        RETURN
        END
C
        SUBROUTINE FFACTIDXY,Q,IX,IY,IZ,NVAR,LOC,IDIR,IMAX,JMAX,KMAX,
        1 ITYPE)
C
C THIS IS A SUBROUTINE TO COMPUTE THE NORTH-SOUTH OR EAST-WEST 1 KM
C AVERAGED F FACTOR AND STUFF IT INTO THE ARRAY Q.
C
C IDIR - PARAMETER TO DETERMINE THE DIRECTION TO CALCULATE THE F
C FACTOR
C =1 EAST-WEST CALCULATION
C =2 NORTH-SOUTH CALCULATION
C ITYPE - PARAMETER TO DETERMINE WHAT GOES INTO THE F FACTOR
C CALCULATION
C - O INCLUDE BOTH VERTICAL AND HORIZONTAL COMPONENTS
C = 1 INCLUDE ONLY HORIZONTAL COMPONENT
C = 2 INCLUDE ONLY VERTICAL COMPONENT
C Q = DATA ARRAY THAT CONTAINS THE VELOCITY COMPONENTS AS FOLLOWS:
C O(I,J,K,2) = U OR WEST TO EAST VELOCITY
C Q(I,J,K,3) = V OR SOUTH TO NORTH VELOCITY
C O(I,J,K,4) = W OR VERTICAL (POSITIVE UP)
C
        DIMENSION Q(IMAX,JMAX,KMAX,NVAR)
C WRITE(*'(A)')' INSIDE FFACT'
C WRITE(*'(A,/,G10.4,7I10)')' DXY,IX,IY,IZ,NVAR,LOC,IDIR,ITYPE='',
C 1 DXY,IX,IY,IZ,NVAR,LOC,IDIR,ITYPE
    VAIR = 150.
    GRAV =9.8
C
C CONVERT VAIR FROM KNOTS TO METERSISEC
C
    VAIR = VAIR * 6080.27* 12. * 2.54 / (100.* 3600.)
C
C DETERMINE THE NUMBER OF GRID CELLS IN 1000 METERS
C
    IF(FLOAT(INT(1000.0E0/DXY)) EQ. 1000.0E0/DXY) THEN
                        11000 = \mathbb{NT}(1000.0E0/DXY + 0.5)
            ELSE
                11000 = INT(1000.0E0/DXY + 0.5)
                WRITE(*,'(A)')' WARNING FROM FFACT ******
                WRITE(*'(A,F10.1,A)')
            1 F FACTOR CALCULATION BASED ON DISTANCE OF ',
            2 (11000)'DXY,'METERS!'
            ENDIF
C
C COMPUTE THE COEFFICIENT TO MULTIPLY BY
C
```

```
    FFCOEF1 = VAIR/(GRAV*FLOAT(11000)*DXY)
    FFCOEF2 = 1.0E0/(FLOAT( }1000+1)*VAIR
    SWITCH1 = 1.0E0
    SWITCH2 = 1.0EO
    IF(ITYPE.EQ.1) SWITCH2 = 0.0E0
    IF(ITYPE.EQ.2) SWITCH1 = 0.0E0
    IF(IDIR .EQ. 1) THEN
C
C COMPUTE EAST-WEST F FACTOR
C
    IDISP = INT(FLOAT(I1000)/2.0E0)
    IEND = IX - I1000
    DO 300 K=1, IZ
        DO 300 J = 1, IY
            DO 200 I = 1, IEND
            WSUM = 0.0EO
            DO 100L=0,11000
                        WSUM = WSUM + Q(I+L,J,K,4)
            CONTINUE
                        Q(l+IDISP,J,K,LOC) = FFCOEF1*SWITCH1*(Q(I+11000,J,K,2)-
            1
                Q(I,J,K,2)) - FFCOEF2*WSUM*SWITCH2
200
300
                CONTINUE
            CONTINUE
C
C EXTRAPOLATE END VALUES TO COVER ENTIRE GRID
C
            DO 310 K = 1, IZ
                DO 310 J = 1, IY
            DO 310 I = 1, IDISP
                        Q(I,J,K,LOC) = Q(IDISP+1,J,K,LOC)
310 CONTINUE
        DO 320 K=1, IZ
            DO 320 J = 1, IY
                        DO 320 I = IEND + 1, IX
                                Q(I,J,K,LOC) = Q(IEND,J,K,LOC)
        CONTINUE
        ELSE IF(IDIR.EQ.2) THEN
C
C COMPUTE NORTH-SOUTH F FACTOR
C
        JDISP = INT(FLOAT(I1000)/2.0E0)
        JSTART = JDISP + 1
        JEND = IY - 11000
        DO 600 K = 1, IZ
        DO 600 I = 1, IX
            DO 500 J = 1, JEND
            WSUM = 0.0E0
            DO 400 L = 0, 11000
                WSUM = WSUM + Q(I,J+L,K,4)
            CONTINUE
            Q(I,J+JDISP,K,LOC) = FFCOEF1*SWITCH1*(Q(1,J+11000,K,3)-
            1
            contINUE
        CONTINUE
```

```
C
C EXTRAPOLATE END VALUES TO COVER ENTIRE GRID
C
    DO 610 K = 1, IZ
        DO610 I = 1, IX
            DO 610 J = 1, JDISP
            Q(I,J,K,LOC) = Q(I,JDISP+1,K,LOC)
610 CONTINUE
    DO 620 K=1, IZ
        DO 620 I = 1, IX
            DO 620 J = JEND + 1, IY
            Q(I,J,K,LOC) = Q(I,JEND,K,LOC)
        CONTINUE
        ENDIF
        RETURN
        END
```


Appendix F

Output from Sample FORTRAN Program to Read and Verify the Database

Case \#1-11: DFW Accident Case, Wet Microburst, Rain and Hail
For the variable = "U "
Maximum value is $=23.23900$
Maximum value is at $\quad 115$
811 (i,j,k)
Maximum value is at $1700.000 \quad 0.0000000 \mathrm{E}+000.0000000 \mathrm{E}+00(x, y, z)$
Minimum value is $=-23.23900$
Minimum value is at 47

811 (i,j,k)
Minimum value is at -1700.000
$0.0000000 \mathrm{E}+000.0000000 \mathrm{E}+00(\mathrm{x}, \mathrm{y}, \mathrm{z})$
For the variable = "V "
Maximum value is $=23.23900$
$\begin{array}{llll}\text { Maximum value is at } & 81 & 115 & 1(\mathrm{i}, \mathrm{j}, \mathrm{k})\end{array}$
Maximum value is at $0.0000000 \mathrm{E}+00 \quad 1700.000 \quad 0.0000000 \mathrm{E}+00(\mathrm{x}, \mathrm{y}, \mathrm{z})$
Minimum value is $=-23.23900$
$\begin{array}{lcc}\text { Minimum value is at } & 81 & 47 \\ \text { Minimum value is at } & 0.0000000 E+00 & -1700.000\end{array} \begin{aligned} & \text { (i,j,k) } \\ & 0.0000000 E+00(x, y, z)\end{aligned}$
For the variable = "W "
Maximum value is $=7.681050$
$\begin{array}{lcccc}\text { Maximum value is at } & 62 & 43 & 10(i, j, k) & \\ \text { Maximum value is at } & -950.0000 & -1900.000 & 450.0000 & (x, y, z)\end{array}$
Minimum value is $=-16.05312$
$\begin{array}{llll}\text { Minimum value is at } & 78 & 71 & 21 \text { (} i, j, k)\end{array}$
$\begin{array}{lllll}\text { Minimum value is at } & -150.0000 & -500.0000 & 1000.000 & (x, y, z)\end{array}$
For the variable = "TAU"
Maximum value is = 309.3200
$\begin{array}{lccc}\text { Maximum value is at } & 72 & 33 & 1(\mathrm{i}, \mathrm{j}, \mathrm{k}) \\ \text { Maximum value is at } & -450.0000 & -2400.000 & 0.0000000 \mathrm{E}+00(\mathrm{x}, \mathrm{y}, \mathrm{z})\end{array}$
Minimum value is $=289.7400$
Minimum value is at $\quad 67$
$62 \quad 40$ (i,j,k)
$\begin{array}{lllll}\text { Minimum value is at } & -700.0000 & -950.0000 & 1950.000 \quad(x, y, z)\end{array}$
For the variable $=$ "RAIN"
Maximum value is $=4.838400$
$\begin{array}{llll}\text { Maximum value is at } & 79 & 79 & 1 \text { (i,j,k) }\end{array}$
Maximum value is at $-100.0000-100.0000 \quad 0.0000000 \mathrm{E}+00(\mathrm{x}, \mathrm{y}, \mathrm{z})$
Minimum value is $=0.0000000 \mathrm{E}+00$
$\begin{array}{llll}\text { Minimum value is at } & 1 & 1 & 1 \text { (i,j,k) }\end{array}$
$\begin{array}{llll}\text { Minimum value is at } & -4000.000 & -4000.000 & 0.0000000 \mathrm{E}+00(\mathrm{x}, \mathrm{y}, \mathrm{z})\end{array}$
For the variable = "XIV"
Maximum value is $=17.70703$
Maximum value is at $\quad 78 \quad 39 \quad 6$ (i,j,k)
$\begin{array}{lllll}\text { Maximum value is at } & -150.0000 & -2100.000 & 250.0000 \quad(x, y, z)\end{array}$
Minimum value is $=5.984900$
$\begin{array}{llll}\text { Minimum value is at } & 81 & 81 & 40 \text { (i,j,k) }\end{array}$
Minimum value is at $0.0000000 \mathrm{E}+000.0000000 \mathrm{E}+001950.000 \quad(\mathrm{x}, \mathrm{y}, \mathrm{z})$
For the variable $=$ "RRF "
Maximum value is $=64.36700$
$\begin{array}{llll}\text { Maximum value is at } & 81 & 81 & 40(i, j, k)\end{array}$

Maximum value is at $0.0000000 \mathrm{E}+000.0000000 \mathrm{E}+00 \quad 1950.000 \quad(\mathrm{x}, \mathrm{y}, \mathrm{z})$
Minimum value is $=\mathbf{- 2 . 1 6 1 6 6 0}$
Minimum value is at $\quad 75 \quad 46 \quad 25$ (i,j,k)
$\begin{array}{lllll}\text { Minimum value is at } & -300.0000 & -1750.000 & 1200.000 \quad(x, y, z)\end{array}$
For the variable $=$ "HAIL"
Maximum value is $=2.366000$
$\begin{array}{llll}\text { Maximum value is at } & 81 & 81 & 40(i, j, k)\end{array}$
Maximum value is at $0.0000000 \mathrm{E}+00 \quad 0.0000000 \mathrm{E}+00 \quad 1950.000 \quad(x, y, z)$
Minimum value is $=0.0000000 \mathrm{E}+00$
$\begin{array}{llll}\text { Minimum value is at } & 1 & 1 & 1(i, j, k)\end{array}$
Minimum value is at $-4000.000-4000.000 \quad 0.0000000 \mathrm{E}+00(\mathrm{x}, \mathrm{y}, \mathrm{z})$
For the variable = "EWFF"
Maximum value is $=0.2208870$
$\begin{array}{lllll}\text { Maximum value is at } & 81 & 71 & 13 & (i, j, k)\end{array}$
Maximum value is at $0.0000000 \mathrm{E}+00-500.0000 \quad 600.0000 \quad(\mathrm{x}, \mathrm{y}, \mathrm{z})$
Minimum value is $=-0.1725874$
$\begin{array}{llll}\text { Minimum value is at } & 32 & 81 & 3 \text { (i,j,k) }\end{array}$
Minimum value is at $-2450.000 \quad 0.0000000 \mathrm{E}+00100.0000 \quad(\mathrm{x}, \mathrm{y}, \mathrm{z})$
For the variable = "NSFF"
Maximum value is $=0.2208870$
Maximum value is at $\quad 71$
$81 \quad 13$ (i,, k)
Maximum value is at $-500.0000 \quad 0.0000000 \mathrm{E}+00600.0000 \quad(\mathrm{x}, \mathrm{y}, \mathrm{z})$
Minimum value is $=-0.1725874$
$\begin{array}{llll}\text { Minimum value is at } & 81 & 32 & 3 \text { (i,j,k) }\end{array}$
Minimum value is at $0.0000000 \mathrm{E}+00-2450.000 \quad 100.0000 \quad(x, y, z)$

Case \#2-37: 6/20/91 Orlando, Florida, NASA Research Flight, Wet Microburst For the variable = "U "

Maximum value is = 15.53889
Maximum value is at 82
Maximum value is at $\quad-734.0000$
Minimum value is $=-17.23847$
Minimum value is at 54
Minimum value is at -3534.000
For the variable = "V
Maximum value is $=11.60058$
Maximum value is at 76
Maximum value is at -1334.000
Minimum value is $=-14.93908$
Minimum value is at
71
Minimum value is at -1834.000
For the variable = "W "
Maximum value is $=3.975184$
Maximum value is at 60
Maximum value is at -2934.000
Minimum value is $=-13.75409$
Minimum value is at $\quad 76$
Minimum value is at -1334.000
For the variable $=$ "TAU"
Maximum value is $=304.4023$
Maximum value is at 43
Maximum value is at -4634.000
Minimum value is = 287.7410
Minimum value is at $\quad 125$
Minimum value is at 3566.000
For the variable = "XIV"
Maximum value is = 21.64085
Maximum value is at $\quad 41$
Maximum value is at $\quad-4834.000$
Minimum value is $=7.687082$
Minimum value is at $\quad 71$
Minimum value is at - 1834.000
For the variable = "RRF"
Maximum value is $=54.58204$
Maximum value is at 56
Maximum value is at - 3334.000
Minimum value is $=-15.00000$
Minimum value is at $\quad 1$
Minimum value is at -8834.000
For the variable $=$ "RAIN"
Maximum value is $=5.819617$
Maximum value is at 56
$94 \quad 41$ (i,j,k)

Maximum value is at	-3334.000	420.0000	2000.000	(x, y, z)
Minimum value is $=0.0000000 \mathrm{E}+00$				
Minimum value is at	1	1	1 (i,j,k)	
Minimum value is at	-8834.000	-8880.000	0.0000000	$00(x, y, z)$
For the variable = "EWFF"				
Maximum value is $=0.1891977$				
Maximum value is at	75	75	5 (i,j,k)	
Maximum value is at	-1434.000	-1480.000	200.0000	(x, y, z)
Minimum value is $=-0.1044288$				
Minimum value is at	104	85	5 (i,j,k)	
Minimum value is at	1466.000	-480.0000	200.0000	(x, y, z)
For the variable = "NSFF"				
Maximum value is $=0.1796695$				
Maximum value is at	75	75	3 (i,j,k)	
Maximum value is at	-1434.000	-1480.000	100.0000	($\mathrm{x}, \mathrm{y}, \mathrm{z}$)
Minimum value is $=-0.8648731 \mathrm{E}-01$				
Minimum value is at	76	122	3 (i,j,k)	
Minimum value is at	-1334.000	3220.000	100.0000	(x, y, z)

Case \#3-49: 7/11/88 Denver, Colorado, Incident Case, Multiple Microburst For the variable = "U "
Maximum value is $=7.324199$

Maximum value is at 44
Maximum value is at 5490.000 Minimum value is $=-10.15697$ Minimum value is at $\quad 9$ Minimum value is at 1990.000 For the variable = "V Maximum value is $=$ Maximum value is at
Maximum value is at
Minimum value is $=-9.167430$
Minimum value is at 47
Minimum value is at 5790.000
For the variable = "W
Maximum value is $=5.690357$
Maximum value is at 46
Maximum value is at 5690.000
Minimum value is $=-15.35832$
Minimum value is at $\quad 138$
Minimum value is at 14890.00
For the variable = "TAU"
Maximum value is = 303.7999
Maximum value is at $\quad 86$
Maximum value is at 9690.000
Minimum value is $=282.4091$
Minimum value is at 105
Minimum value is at 11590.00
For the variable = "XIV"
Maximum value is $=5.352191$
Maximum value is at 8
Maximum value is at 1890.000
Minimum value is $=3.351608$
Minimum value is at $\quad 153$
Minimum value is at 16390.00
For the variable = "RRF"
Maximum value is $=46.68984$
Maximum value is at 108
Maximum value is at 11890.00
Minimum value is $=-15.00000$
Minimum value is at $\quad 1$
Minimum value is at 1190.000
For the variable $=$ "RAIN"
Maximum value is $=0.3320332$
Maximum value is at 107

6230 (i,j,k)
$-4400.000 \quad 1450.000 \quad(x, y, z)$
$55 \quad 4$ (i,j,k)
$-5100.000 \quad 150.0000 \quad(x, y, z)$

3 (i,j,k) 100.0000 (x, y, z)

3 (i, $, \mathrm{j}, \mathrm{k})$
$-8300.000 \quad 100.0000 \quad(x, y, z)$
$23 \quad 38$ (i,j,k) 1850.000 (x, y, z)

24 (i,j,k)
1150.000 (x,y,z)

1 (i,j,k)
$0.0000000 \mathrm{E}+00(\mathrm{x}, \mathrm{y}, \mathrm{z})$
41 (i,j,k)
2000.000 (x, y, z)

1 (i,j,k)
-6200.000
58
-4800.000
2000.000 (x, y, z)

$$
75 \quad 41 \text { (i,j,k) }
$$

-3100.000
2000.000 (x,y,z)

1 (i,j,k)
$0.0000000 \mathrm{E}+00(\mathrm{x}, \mathrm{y}, \mathrm{z})$

Maximum value is at	11790.00	-4700.000	1850.000	(x, y, z)
Minimum value is $=0.0000000 \mathrm{E}+00$				
Minimum value is at	1	1	1 (i,j,k)	
Minimum value is at	1190.000	-10500.00	0.0000000	$00(x, y, z)$
For the variable = "HAIL"				
Maximum value is $=0.1497605$				
Maximum value is at	108	75	41 (i,j,k)	
Maximum value is at	11890.00	-3100.000	2000.000	(x, y, z)
Minimum value is $=0.0000000 \mathrm{E}+00$				
Minimum value is at	1	1	1 (i,j,k)	
Minimum value is at	1190.000	-10500.00	0.0000000	00 (x,y,z)
For the variable = "EWFF"				
Maximum value is $=0.1908372$				
Maximum value is at	146	57	29 (i,j,k)	
Maximum value is at	15690.00	-4900.000	1400.000	($\mathrm{x}, \mathrm{y}, \mathrm{z}$)
Minimum value is $=-0.8173751 \mathrm{E}-01$				
Minimum value is at	40	25	35 (i,j,k)	
Minimum value is at	5090.000	-8100.000	1700.000	(x, y, z)
For the variable = "NSFF"				
Maximum value is $=0.2080122$				
Maximum value is at	142	57	13 (i,j,k)	
Maximum value is at	15290.00	-4900.000	600.0000	(x, y, z)
Minimum value is $=-0.8103198 \mathrm{E}-01$				
Minimum value is at	68	52	2 (i,j,k)	
Minimum value is at	7890.000	-5400.000	50.00000	(x, y, z)

Case \#3-51: 7/11/88 Denver, Colorado, Incident Case, Multiple Microburst For the variable $=$ " U "

Maximum value is $=19.27394$
Maximum value is at 150
Maximum value is at 17132.00
Minimum value is $=-19.69370$
Minimum value is at 119
Minimum value is at 14032.00
For the variable $=$ " V "
Maximum value is $=18.96012$
Maximum value is at 133
Maximum value is at 15432.00
Minimum value is $=-19.14365$
Minimum value is at 128
Minimum value is at 14932.00
For the variable $=$ " W
Maximum value is $=6.139831$
Maximum value is at 88
Maximum value is at 10932.00
Minimum value is $=-15.94755$
Minimum value is at 124
Minimum value is at 14532.00
For the variable = "TAU"
Maximum value is $=303.8180$
Maximum value is at 88
Maximum value is at 10932.00
Minimum value is $=282.3883$
Minimum value is at 99
Minimum value is at 12032.00
For the variable = "XIV"
Maximum value is $=5.330627$
Maximum value is at 17
Maximum value is at 3832.000
Minimum value is $=3.286308$
Minimum value is at 145
Minimum value is at 16632.00
For the variable $=$ "RRF "
Maximum value is $=47.41735$
Maximum value is at 105
Maximum value is at 12632.00
Minimum value is $=-15.00000$
Minimum value is at 1
Minimum value is at 2232.000
For the variable $=$ "RAIN"
Maximum value is $=0.3601996$
Maximum value is at 100
62
$36(i, j, k)$

Maximum value is at 12132.00	-4470.000	1750.000	($\mathrm{x}, \mathrm{y}, \mathrm{z}$)
Minimum value is $=0.0000000 \mathrm{E}+00$			
Minimum value is at	1	1 (i,j,k)	
Minimum value is at 2232.000	-10570.00	0.0000000	+00 ($\mathrm{x}, \mathrm{y}, \mathrm{z}$)
For the variable $=$ "HAIL"			
Maximum value is $=0.1641873$			
Maximum value is at 105	70	41 (i,j,k)	
Maximum value is at 12632.00	-3670.000	2000.000	($\mathrm{x}, \mathrm{y}, \mathrm{z}$)
Minimum value is $=0.0000000 \mathrm{E}+00$			
Minimum value is at	1	1 (i, j, k)	
Minimum value is at 2232.000	-10570.00	0.0000000	(00 (,y,z)
For the variable = "EWFF"			
Maximum value is $=0.2102184$			
Maximum value is at 137	58	17 (i,j,k)	
Maximum value is at 15832.00	-4870.000	800.0000	($\mathrm{x}, \mathrm{y}, \mathrm{z}$)
Minimum value is $=-0.1665037$			
Minimum value is at 88	77	2 (i,j, k)	
Minimum value is at 10932.00	-2970.000	50.00000	($\mathrm{x}, \mathrm{y}, \mathrm{z}$)
For the variable = "NSFF"			
Maximum value is $=0.2412621$			
Maximum value is at 125	53	8 (i,j, , ${ }^{\text {c }}$	
Maximum value is at 14632.00	-5370.000	350.0000	($\mathrm{x}, \mathrm{y}, \mathrm{z}$)
Minimum value is $=-0.1312876$			
Minimum value is at 130	36	4 (i, j, k)	
Minimum value is at 15132.00	-7070.000	150.0000	(x, y, z)

Case \#4-36: 7/14/82 Denver, Colorado, Stable Layer, Warm Microburst For the variable = " U "
Maximum value is $=15.23200$
Maximum value is at $\quad 111$
$101 \quad 1$ (i,j,k)
Maximum value is at 500.0000
Minimum value is $=-15.23200$
$\begin{array}{llll}\text { Minimum value is at } & 91 & 101 & 1 \text { (i,j,k) }\end{array}$
Minimum value is at $-500.0000 \quad 0.0000000 \mathrm{E}+000.0000000 \mathrm{E}+00(\mathrm{x}, \mathrm{y}, \mathrm{z})$
For the variable $=" V$
Maximum value is $=15.23200$
$\begin{array}{llll}\text { Maximum value is at } & 101 & 111 & 1 \text { (i, j, k) }\end{array}$
Maximum value is at $0.0000000 \mathrm{E}+00500.0000 \quad 0.0000000 \mathrm{E}+00(\mathrm{x}, \mathrm{y}, \mathrm{z})$
Minimum value is $=-15.23200$
Minimum value is at $\quad 101 \quad 91 \quad 1$ (i,j,k)
Minimum value is at $0.0000000 \mathrm{E}+00-500.0000 \quad 0.0000000 \mathrm{E}+00(\mathrm{x}, \mathrm{y}, \mathrm{z})$
For the variable $=$ "W "
Maximum value is $=6.074973$
$\begin{array}{llll}\text { Maximum value is at } & 81 & 68 & 13 \text { (i,j,k) }\end{array}$
Maximum value is at $-1000.000-1650.000 \quad 600.0000 \quad(x, y, z)$
Minimum value is $=-21.01300$
Minimum value is at $\quad 101 \quad 101 \quad 12$ (i,j,k)
Minimum value is at $0.0000000 \mathrm{E}+000.0000000 \mathrm{E}+00550.0000 \quad(x, y, z)$
For the variable = "TAU"
Maximum value is $=303.8437$
$\begin{array}{lcccc}\text { Maximum value is at } & 92 & 91 & 3(i, j, k) & \\ \text { Maximum value is at } & -450.0000 & -500.0000 & 100.0000 & (x, y, z)\end{array}$
Minimum value is $=284.3200$
$\begin{array}{llll}\text { Minimum value is at } & 101 & 101 & 40(\mathrm{i}, \mathrm{j}, \mathrm{k})\end{array}$
Minimum value is at $0.0000000 \mathrm{E}+000.0000000 \mathrm{E}+001950.000 \quad(\mathrm{x}, \mathrm{y}, \mathrm{z})$
For the variable $=$ "RAIN"
Maximum value is $=0.2615300$
Maximum value is at $\quad 101 \quad 101 \quad 26$ (i,j,k)
Maximum value is at $0.0000000 \mathrm{E}+000.0000000 \mathrm{E}+001250.000 \quad(x, y, z)$
Minimum value is $=0.0000000 \mathrm{E}+00$
$\begin{array}{llll}\text { Minimum value is at } & 1 & 1 & 1 \text { (i,j,k) }\end{array}$
$\begin{array}{llll}\text { Minimum value is at } & -5000.000 & -5000.000 & 0.0000000 \mathrm{E}+00(\mathrm{x}, \mathrm{y}, \mathrm{z})\end{array}$
For the variable = "XIV"
Maximum value is $=7.488725$
$\begin{array}{llll}\text { Maximum value is at } & 66 & 23 & 3 \text { (i,j,k) }\end{array}$
$\begin{array}{llllll}\text { Maximum value is at } & -1750.000 & -3900.000 & 100.0000 & (x, y, z)\end{array}$
Minimum value is $=2.769900$
Minimum value is at $\quad 101 \quad 97 \quad 40(\mathrm{i}, \mathrm{j}, \mathrm{k})$
Minimum value is at $0.0000000 \mathrm{E}+00-200.0000 \quad 1950.000 \quad(\mathrm{x}, \mathrm{y}, \mathrm{z})$
For the variable = "RRF"
Maximum value is $=36.29500$
Maximum value is at 101
101
40 (i, j, k)

Maximum value is at $\quad 0.0000000 \mathrm{E}+000.0000000 \mathrm{E}+00$Minimum value is $=\quad 1950.000$(M				
Minimum value is at	1	1 (i,j,k)	1 (i,j,k)	
Minimum value is at	-5000.000 -50	-5000.000 0.0000	$0.0000000 \mathrm{E}+00$	(x, y, z)
For the variable = "EWFF"				
Maximum value is $=0.2888719$				
Maximum value is at	101	1012 (i)	2 (i,j,k)	
Maximum value is at	$0.0000000 \mathrm{E}+00$	$000.0000000 \mathrm{E}+00$	OE+00 50.00000	0 (x,y,z)
Minimum value is $=-0.1147354$				
Minimum value is at	71	$1012(\mathrm{i}, \mathrm{j}, \mathrm{k})$	$2(\mathrm{i}, \mathrm{j}, \mathrm{k})$	
Minimum value is at	-1500.000 0.00	$0.0000000 \mathrm{E}+0050$	+00 50.00000	(x, y, z)
For the variable $=$ "NSFF"				
Maximum value is $=0.2888719$				
Maximum value is at	101	1012 (i)	2 (i,j,k)	
Maximum value is at	$0.0000000 \mathrm{E}+00$	$000.0000000 E+00$	OE+00 50.00000	0 (x, y, z)
Minimum value is $=-0.1147354$				
Minimum value is at	101	$71 \quad 2(\mathrm{i}, \mathrm{j}$,	2 (i,j,k)	
Minimum value is at	$0.0000000 \mathrm{E}+00$	-00-1500.000 50	50.00000	(x, y, z)

Case \#5-40: 7/8/89 Denver, Colorado, Very Dry Microburst
For the variable = "U "
Maximum value is $=19.48976$
Maximum value is at $\quad 93$
Maximum value is at 4990.000
Minimum value is $=-12.29543$
Minimum value is at 63
Minimum value is at 1990.000
For the variable = "V
Maximum value is $=24.91225$
Maximum value is at $\quad 79$
Maximum value is at 3590.000
Minimum value is $=-11.73100$
Minimum value is at
81
3790.000
9175.000
(i, j, k)
Minimum value is at $\quad 37$
For the variable $=$ " ${ }^{\prime}$ "
Maximum value is $=4.606630$
Maximum value is at 111
Maximum value is at
6790.000
10175.00

18 (i,j,k)
Minimum value is =
Minimum value is at $\quad 79$
Minimum value is at
-15.16710

For the variable = "TAU"
Maximum value is $=307.9913$
Maximum value is at
Maximum value is at 4190.000
Minimum value is $=286.7864$
Minimum value is at $\quad 80$
Minimum value is at 3690.000
$69 \quad 41$ (i,j,k)
9075.000
2000.000 (x, y, z)

For the variable = "XIV"
Maximum value is $=5.782187$
Maximum value is at 128
Maximum value is at 8490.000
15214 (i,j, k)
Minimum value is $=1.796745$
Minimum value is at $\quad 100$
Minimum value is at 5690.000
For the variable = "RRF"
Maximum value is $=34.20536$
Maximum value is at 81
Maximum value is at $\quad 3790.000$
9375.000
$2000.000(x, y, z)$
Minimum value is $=-15.00000$
$\begin{array}{llll}\text { Minimum value is at } & 1 & 1 & 1 \text { (i,j,k) }\end{array}$
Minimum value is at $-4210.000 \quad 2275.000$
$0.0000000 \mathrm{E}+00(\mathrm{x}, \mathrm{y}, \mathrm{z})$
For the variable $=$ "RRFI"
Maximum value is $=34.20538$
Maximum value is at 81
72
41 (i,j,k)

Maximum value is at	3790.000	9375.000	2000.000	(x, y, z)
Minimum value is $=-15.00000$				
Minimum value is at	103	84	1 (i,j,k)	
Minimum value is at	5990.000	10575.00	0.0000000	00 (x,y,z)
For the variable = "RAIN"				
Maximum value is $=0.2520440$				
Maximum value is at	81	73	40 (i,j,k)	
Maximum value is at	3790.000	9475.000	1950.000	($\mathrm{x}, \mathrm{y}, \mathrm{z}$)
Minimum value is $=0.0000000 \mathrm{E}+00$				
Minimum value is at	1	1	1 (i,j,k)	
Minimum value is at	-4210.000	2275.000	0.0000000	00 (x,y,z)
For the variable = "EWFF"				
Maximum value is =	0.2137424			
Maximum value is at	79	85	17 (i,j,k)	
Maximum value is at	3590.000	10675.00	800.0000	(x, y, z)
Minimum value is $=-0.8902939 \mathrm{E}-01$				
Minimum value is at	100	73	3 (i,j,k)	
Minimum value is at	5690.000	9475.000	100.0000	(x, y, z)
For the variable = "NSFF"				
Maximum value is $=0.2088467$				
Maximum value is at	80	89	7 (i, j,k)	
Maximum value is at	3690.000	11075.00	300.0000	(x, y, z)
Minimum value is $=-0.1144817$				
Minimum value is at	82	64	$2(\mathrm{i}, \mathrm{j}, \mathrm{k})$	
Minimum value is at	3890.000	8575.000	50.00000	(x, y, z)

Case \#5-45: 7/8/89 Denver, Colorado, Very Dry Microburst
For the variable = "U"
Maximum value is $=17.46074$
Maximum value is at $103 \quad 84$ (i,j,k)
Maximum value is at
6462.000
11993.00
100.0000 (x,y,z)

Minimum value is $=-16.05105$
Minimum value is at 63
Minimum value is at 2462.00
For the variable $=$ "V "
Maximum value is $=20.70109$
Maximum value is at 83
Maximum value is at 4462.000
Minimum value is $=-10.27237$
Minimum value is at 81
63
$74 \quad 1$ (i,j,k)
$10993.00 \quad 0.0000000 E+00(x, y, z)$

Minimum value is at 4262.00
1 (i,j,k
For the variable $=$ " W "
Maximum value is $=5.448867$
Maximum value is at 93128 (i,j,k)
Maximum value is at $5462.000 \quad 16393.00 \quad 700.0000 \quad(x, y, z)$
Minimum value is $=-12.61377$
Minimum value is at $77 \quad 72$ ($, \mathrm{i}, \mathrm{k}$)
Minimum value is at $3862.000 \quad 10793.00 \quad 1000.000 \quad(x, y, z)$
For the variable = "TAU"
Maximum value is $=308.0083$
Maximum value is at 103
Maximum value is at 6462.000
Minimum value is $=287.6288$
$\begin{array}{llll}\text { Minimum value is at } & 78 & 67 & 41 \text { (i,j,k) }\end{array}$
Minimum value is at $3962.000 \quad 10293.00 \quad 2000.000 \quad(x, y, z)$
For the variable = "XIV"
Maximum value is $=5.768254$
$\begin{array}{lrcrl}\text { Maximum value is at } & 130 & 157 & 15(i, j, k) & \\ \text { Maximum value is at } & 9162.000 & 19293.00 & 700.0000 & (x, y, z)\end{array}$
Minimum value is $=1.846832$
Minimum value is at $\quad 49 \quad 106 \quad 36(i, j, k)$
$\begin{array}{lllll}\text { Minimum value is at } & 1062.000 \quad 14193.00 \quad 1750.000 \quad(x, y, z)\end{array}$
For the variable = "RRF"
Maximum value is = 27.10251
Maximum value is at 83
Maximum value is at 4462.000 10293.00

41 (i,j,k)

Minimum value is $=-15.00000$
Minimum value is at $1 \quad 1$ (i,j,k)
Minimum value is at -3738.000
3693.000
$0.0000000 \mathrm{E}+00(x, y, z)$
For the variable = "RRFI"
Maximum value is $=27.10250$
Maximum value is at 83
67
41 (i,j,k)

Maximum value is at	4462.000	10293.00	2000.000	(x, y, z)
Minimum value is $=-15.00000$				
Minimum value is at	114	87	1 (i,j,k)	
Minimum value is at	7562.000	12293.00	0.0000000	-00 (x,y,z)
For the variable = "RAIN"				
Maximum value is $=0.8541232 \mathrm{E}-01$				
Maximum value is at	83	67	41 (i,j,k)	
Maximum value is at	4462.000	10293.00	2000.000	(x, y, z)
Minimum value is $=0.0000000 \mathrm{E}+00$				
Minimum value is at	1	1	1 (i,j,k)	
Minimum value is at	-3738.000	3693.000	0.0000000	00 (x,y,z)
For the variable $=$ "EWFF"				
Maximum value is $=$	0.1965592			
Maximum value is at	81	70	8 (i,j,k)	
Maximum value is at	4262.000	10593.00	350.0000	(x, y, z)
Minimum value is $=-0.9361018 \mathrm{E}-01$				
Minimum value is at	122	86	3 (i,j,k)	
Minimum value is at	8362.000	12193.00	100.0000	(x, y, z)
For the variable = "NSFF"				
Maximum value is =	0.1628723			
Maximum value is at	78	70	24 (i,j,k)	
Maximum value is at	3962.000	10593.00	1150.000	(x, y, z)
Minimum value is $=-0.1201876$				
Minimum value is at	79	133	4 (i,j,k)	
Minimum value is at	4062.000	16893.00	150.0000	(x, y, z)

Case \#6-14: Derived Florida Sounding, Highly Asymmetric Microburst For the variable = "U
Maximum value is = 20.16742

Maximum value is at $\quad 60$
Maximum value is at 13971.23
700.0000

10 (i,j,k)
$450.0000 \quad(x, y, z)$
Minimum value is $=0.1155418$
Minimum value is at $\quad 9 \quad 48$
Minimum value is at
8871.231
1200.000

1 (i,j,k)
$0.0000000 \mathrm{E}+00(\mathrm{x}, \mathrm{y}, \mathrm{z})$
For the variable $=" V$
Maximum value is = 13.08692
Maximum value is at 63
Maximum value is at 14271.23
46
1 (i,j,k)
1000.000
$0.0000000 \mathrm{E}+00(\mathrm{x}, \mathrm{y}, \mathrm{z})$
Minimum value is $=-6.537601$
Minimum value is at $\quad 58$
Minimum value is at 13771.23
34
1 (i,j,k)
For the variable $=$ " W "
Maximum value is $=5.364121$
Maximum value is at $\quad 67$
$53 \quad 10(\mathrm{i}, \mathrm{j}, \mathrm{k})$
Maximum value is at 14671.23
Minimum value is $=-12.71668$
Minimum value is at 65
Minimum value is at 14471.23
For the variable = "TAU"
Maximum value is = 304.1945
Maximum value is at $\quad 69$
Maximum value is at 14871.23
$36 \quad 1$ (i,j,k)
Minimum value is $=288.4625$
Minimum value is at 83
Minimum value is at 16271.23
For the variable = "XIV"
Maximum value is $=19.96644$
Maximum value is at 37
Maximum value is at 11671.23
$0.0000000 E+00200.0000(x, y, z)$
Minimum value is $=7.623531$
Minimum value is at $\quad 68$
$36 \quad 41$ (i,j,k)
Minimum value is at 14771.23
$0.0000000 E+002000.000(x, y, z)$
For the variable $=$ "RRF "
Maximum value is $=52.28900$
Maximum value is at $\quad 65 \quad 38 \quad 3$ (i,j,k)
Maximum value is at 14471.23
200.0000
100.0000 (x, y, z)

Minimum value is $=-15.00000$
$\begin{array}{lcc}\text { Minimum value is at } & 1 & 1 \\ \text { Minimum value is at } & 8071.231 & -3500.000\end{array}$
1 (i,j,k)
$0.0000000 E+00(x, y, z)$
For the variable $=$ "RRFI"
Maximum value is $=52.28904$
Maximum value is at 65

3 (i,j,k)

Maximum value is at	14471.23	200.0000	100.0000	(x, y, z)
Minimum value is =	-15.00000			
Minimum value is at	61	43	11 (i,j,k)	
Minimum value is at	14071.23	700.0000	500.0000	(x, y, z)
For the variable = "RAIN"				
Maximum value is =	4.076537			
Maximum value is at	65	38	3 (i,j,k)	
Maximum value is at	14471.23	200.0000	100.0000	(x, y, z)
Minimum value is $=0.0000000 \mathrm{E}+00$				
Minimum value is at	1	1	1 (i,j,k)	
Minimum value is at	8071.231	-3500.000	0.0000000	00 (x,y,z)
For the variable = "HAlL"				
Maximum value is $=0.1737424$				
Maximum value is at	68	36	41 (i,j,k)	
Maximum value is at	14771.23	0.0000000 E	002000.00	0 (x, y, z)
Minimum value is $=0.0000000 \mathrm{E}+00$				
Minimum value is at	1	1	1 (i,j,k)	
Minimum value is at	8071.231	-3500.000	0.0000000	00 (x,y,z)
For the variable = "EWFF"				
Maximum value is =	0.1294569			
Maximum value is at	62	40	3 (i,j,k)	
Maximum value is at	14171.23	400.0000	100.0000	(x, y, z)
Minimum value is $=-0.8020734 \mathrm{E}-01$				
Minimum value is at	72	42	2 (i,j,k)	
Minimum value is at	15171.23	600.0000	50.00000	(x, y, z)
For the variable = "NSFF"				
Maximum value is =	0.1721279			
Maximum value is at	63	41	3 (i,j,k)	
Maximum value is at	14271.23	500.0000	100.0000	(x, y, z)
Minimum value is $=-0.9069768 \mathrm{E}-01$				
Minimum value is at	58	29	2 ($\mathrm{i}, \mathrm{j}, \mathrm{k}$)	
Minimum value is at	13771.23	-700.0000	50.00000	(x, y, z)

Case \#7-27: 8/2/81 Adjusted Knowiton, Montana Sounding, Gust Front For the variable = "U " Maximum value is = 32.35432 $\begin{array}{llll}\text { Maximum value is at } & 7 & 16 & 3(i, j, k)\end{array}$
Maximum value is at $19110.00 \quad 0.0000000 \mathrm{E}+00 \quad 100.0000 \quad(x, y, z)$

Minimum value is $=-0.6180557$
$\begin{array}{lccll}\text { Minimum value is at } & 58 & 12 & 40 \text { (} i, j, k) & \\ \text { Minimum value is at } & 24210.00 & -400.0000 & 1950.000 & \text { (} x, y, z \text {) }\end{array}$
For the variable $=$ " V "
Maximum value is $=10.58100$
$\begin{array}{llll}\text { Maximum value is at } \quad 65 \quad 10 & 35(i, j, k)\end{array}$
$\begin{array}{llll}\text { Maximum value is at } & 24910.00 & -600.0000 & 1700.000 \quad(x, y, z)\end{array}$
Minimum value is $=-8.110295$
$\begin{array}{lccl}\text { Minimum value is at } & 1 & 3 & 1(i, j, k) \\ \text { Minimum value is at } & 18510.00 & -1300.000 & 0.0000000 \mathrm{E}+00(x, y, z)\end{array}$
For the variable $=$ " W "
Maximum value is $=13.14704$
Maximum value is at 95
Maximum value is at 27910.00
Minimum value is $=-12.30999$
Minimum value is at $\quad 1 \quad 17$ (i,j,k)
Minimum value is at $18510.00 \quad 100.0000 \quad 700.0000 \quad(x, y, z)$
For the variable = "TAU"
Maximum value is $=303.1300$
$\begin{array}{lrcc}\text { Maximum value is at } & 107 & 5 & 1(i, j, k) \\ \text { Maximum value is at } & 29110.00 & -1100.000 & 0.0000000 \mathrm{E}+00(x, y, z)\end{array}$
Minimum value is $=284.0045$
$\begin{array}{lcccc}\text { Minimum value is at } & 1 & 29 & 41 \text { (i,j,k) } & \\ \text { Minimum value is at } & 18510.00 & 1300.000 & 2000.000 & \text { (x,y,z) }\end{array}$
For the variable = "CLD "
Maximum value is $=0.9993626$
$\begin{array}{lccll}\text { Maximum value is at } & 27 & 38 & 40(i, j, k) & \\ \text { Maximum value is at } & 21110.00 & 2200.000 & 1950.000 & (x, y, z)\end{array}$
Minimum value is $=0.0000000 \mathrm{E}+00$
Minimum value is at $\quad 3 \quad 1 \quad 1$ (i,j,k)
Minimum value is at $18710.00 \quad-1500.000 \quad 0.0000000 \mathrm{E}+00(x, y, z)$
For the variable $=$ "XIV"
Maximum value is $=16.86115$

Maximum value is at	45	36	$7(i, j, k)$	
Maximum value is at	22910.00	2000.000	300.0000	(x, y, z)
Minimum value is =	3.033260			
Minimum value is at	88	37	$8(i, j, k)$	
Minimum value is at	27210.00	2100.000	350.0000	(x, y, z)
For the variable $=$ "RRF n				
Maximum value is $=$	58.62407			
Maximum value is at	1	14	$41(i, j, k)$	

Maximum value is at	18510.00	-200.0000	2000.000	(x, y, z)
Minimum value is $=-15.00000$				
Minimum value is at	62	1	1 (i,j,k)	
Minimum value is at	24610.00	-1500.000	0.0000000	+00 (x,y,z)
For the variable = "RRFI"				
Maximum value is = 58.62407				
Maximum value is at	1	14	41 (i,j,k)	
Maximum value is at	18510.00	-200.0000	2000.000	(x, y, z)
Minimum value is $=-15.00000$				
Minimum value is at	76	24	5 (i, j, k)	
Minimum value is at	26010.00	800.0000	200.0000	(x, y, z)
For the variable $=$ "RAIN"				
Maximum value is =	4.505048			
Maximum value is at	,	9	1 (i,j,k)	
Maximum value is at	18510.00	-700.0000	0.0000000	00 (x,y,z)
Minimum value is $=0.0000000 \mathrm{E}+00$				
Minimum value is at	67	,	1 (i,j,k)	
Minimum value is at	25110.00	-1500.000	0.0000000	+00 (x,y,z)
For the variable = "HAIL"				
Maximum value is =	1.314436			
Maximum value is at	1	14	41 (i,j,k)	
Maximum value is at	18510.00	-200.0000	2000.000	($\mathrm{x}, \mathrm{y}, \mathrm{z}$)
Minimum value is $=0.0000000 \mathrm{E}+00$				
Minimum value is at	1	1	1 (i,j,k)	
Minimum value is at	18510.00	-1500.000	0.0000000	$00(x, y, z)$
For the variable = "EWFF"				
Maximum value is =	0.1635404			
Maximum value is at	38	47	6 (i,j,k)	
Maximum value is at	22210.00	3100.000	250.0000	(x, y, z)
Minimum value is $=-0.2435648$				
Minimum value is at	89	8	27 (i,j,k)	
Minimum value is at	27310.00	-800.0000	1300.000	(x, y, z)
For the variable = "NSFF"				
Maximum value is $=0.1911894$				
Maximum value is at	1	17	13 (i,j,k)	
Maximum value is at	18510.00	100.0000	600.0000	($\mathrm{x}, \mathrm{y}, \mathrm{z}$)
Minimum value is $=-0.1559161$				
Minimum value is at	24	40	16 (i,j,k)	
Minimum value is at	20810.00	2400.000	750.0000	(x, y, z)

12a. DISTRIBUTION / AVAILABILTTY STATEMENT
12b. DISTRIBUTION CODE
Unclassified - Unlimited
Subject Category 47
13. ABSTRACT (Maximum 200 words)

This document contains a description of a comprehensive database that is to be used for cerrification testing of airborne forward-look windshear detection systems. The database was developed by NASA Langley Research Center, at the request of the Federal Aviation Administration (FAA), to support the industry initiative to certify and produce forward-look windshear detection equipment. The database contains high-resolution, three-dimensional fields for meteorological variables that may be sensed by forward-looking systems. The database is made up of seven case studies, which have been generated by the Terminal Area Simulation System, a state-of-the-art numerical system for the realistic modeling of windshear phenomena. The selected cases represent a wide spectrum of windshear events. General descriptions and figures from each of the case studies are included, as well as equations for F-factor, radar-reflectivity factor, and rainfall rate. The document also describes scenarios and paths through the data sets, jointly developed by NASA and the FAA, to meet FAA certification testing objectives. Instructions for reading and verifying the data from tape are included.

14. SUBJECT TERMS Windshear; Microburst; Sensors; Certification; Modeling	15. NUMBER OF PAGES 133	
17. SECURITY CLASSIFICATION OF REPORT Unclassified	18. SECURITY CLASSIFICATION OF THIS PAGE Unclassified	19. SECURTY CLLASSIFICATION OF ABSTRACT AOT

[^0]: ${ }^{1}$ Measurements from TDWR and NASA's aircraft penetration.

[^1]: 2The observed ambient winds are rotated 270° (a wind blowing toward the south is now blowing toward the east) and the now north-south component is set to zero. This is done to allow the simulation of a gust front within a high-resolution rectangular domain.

[^2]: 4A non-rewinding tape drive is not physically different trom a rewinding one. The difference is in how the tape handier responds after a tape read. A rewinding tape always rewinds the tape atter each read, whereas the tape position is unattered after a read on a non-rewinding tape. The user is to reter to the specific environmental variable to access the tape drive as a non-rewinding device.

[^3]: 'The IMSL MathLibrary (1989) routine "QD3VL" is used to interpolate for the necessary velocity components for along path calculations.

