

Discussion Topics

- Rocketdyne Power Systems Heritage
- Current Organizational Overview
- Molten Salt Power Towers
 - System Description
 - Technology / Commercial Readiness
 - Current Status / Path Forward
 - Suggestions for DOE R&D Support

Rocketdyne Power Systems Heritage

United Technologies Corporation (UTC)

- \$42.7B Sales (2005)
- \$5.2B Operating profit

- > 200,000 employees
- Operating in 180 countries

United Technologies Corporation (UTC)

Segment Revenues

60% Commercial

28% 24% 8% Carrier Otis 24% UTC Fire & Security

40% Aerospace

- 11% Hamilton Sundstrand
- 22% Pratt & Whitney
 - 7% Sikorsky

Rocketdyne Propulsion & Power

- UTC Pratt & Whitney acquired Rocketdyne Propulsion & Power from Boeing
 - August 2005
 - Pratt & Whitney Rocketdyne, Inc
 - Combined P&W Space (West Palm Beach) and Rocketdyne Propulsion
- Hamilton Sundstrand given responsibility for Advanced <u>Power</u> systems

Rocketdyne Energy Systems Across UTC

Sundstrand

UT Research Center

Pratt & Whitney

Space Land Sea Rocketdyne

Pratt & Whitney Rocketdyne

Power Systems

Terrestrial Programs

Molten Salt Power Tower Description of Plant Operations

Power Tower Plant Options Flexibility to Meet Specific Customer Needs

Power Towers Successfully Demonstrated Solar Two Validated Design, Performance, & Operation

- Plant Dispatchability
 - Demonstrated electric power 24 hr/day
- Power Output
 - Exceeded performance targets
- Receiver Performance
 - Exceeded prediction (receiver efficiency 88%)
 - Achieved design temperatures, flow rates, & pressure drops
 - Demonstrated "normal" & "off-normal" operations
- Pump Performance
 - Demonstrated full-flow at design pressures
- Thermal Storage
 - Demonstrated high efficiency storage

Technology Demo 1994-1998 Barstow, California

Current Status & Path Forward

- Technology successfully demonstrated
 - Key attributes thermal storage / dispatchability
- Ready now for commercial market entry
 - Environment has changed since Solar 2 demonstration
 - External global awareness of & interest in CSP
 - Internal UTC willingness to pursue new market area
 - Leveraging Solar 2 "lessons-learned" to manage project risk
 - Limit to evolutionary improvements for early projects
 - Continue parallel R&D for downstream project improvements
 - Leveraging state / federal / global mandates & incentives
- Key strategic alliances being developed
 - Leveraging strengths to develop world-class team

Suggestions for DOE R&D Support

Continuous improvements to enhance project attractiveness

- Enhance technical performance
- Reduce project risks / uncertainties
- Reduce capital cost
- Reduce O&M cost

• Emphasis on major cost / risk drivers

- Heliostats
- Molten salt components
 - Pumps
 - Valves
- Molten salts
- Materials
- Coatings

- Long-life
- Reliable performance
- Lower costs
- Multiple suppliers

Summary

- Power Tower Technology
 - Successfully demonstrated at Solar 2
 - Achieved continuous improvements post-Solar 2
 - High efficiency heat retention enables power dispatch when needed
- UTC Rocketdyne Power
 - Developing key strategic alliances and actively pursuing power projects
 - Leveraging mandates & incentives for early projects
 - Investing in parallel R&D to enhance future market attractiveness

Collaboration with DOE / National Labs can facilitate near-term project success and long-term growth

