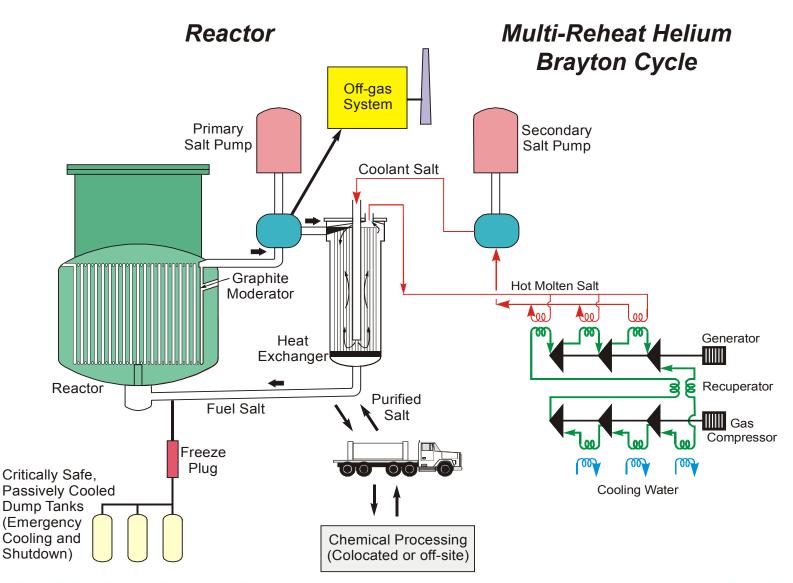
Molten Salt Reactors (MSRs)

Dr. Charles Forsberg

Oak Ridge National Laboratory P.O. Box 2008; Oak Ridge, TN 37831-6180 Tel: (865) 574-6783; E-mail: forsbergcw@ornl.gov

Presentation for The Americas Nuclear Energy Symposium (ANES 2002) American Nuclear Society Miami, Florida October 17, 2002

The submitted manuscript has been authored by a contractor of the U.S. Government under contract DE-AC05-00OR22725. Accordingly, the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for U.S. Government purposes. File name: GenIV: MSR.ANES.2000


Molten Salt Reactors (MSRs) Use a Molten Salt Coolant Containing Dissolved Fuel

• Thermal Neutron Reactor

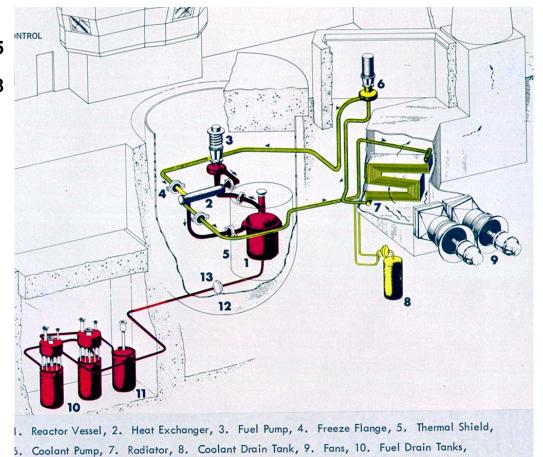
- Molten fluoride salt
- Fuel and fission products dissolved in fluoride salt
- Graphite moderator
- Two earlier development programs
 - Aircraft Nuclear Propulsion Program (1950s)
 - Molten Salt Breeder Reactor Program (1960s)
- Current interests (GenIV)
 - Waste (actinide) burning
 - Efficient electricity production
 - Hydrogen production (long term)
 - Fissile production (very long term)

Molten Salt Reactor

Two Molten Salt Reactors (with Different Goals) Were Successfully Operated

- Aircraft Reactor Experiment (ARE)
 - Program goal: military jet engine
 - Power: 2.5 MW(t)
 - Temperature out: 815°C
 - Salt composition: NaF/ZrF₄/UF₄
- Molten Salt Reactor Experiment (MSRE)
 - Program goal: breeder reactor
 - Power: 8 MW(t)
 - Temperature out: 650°C
 - Salt: ⁷LiF/BeF₂/ThF₄/UF₄

The Molten Salt Reactor Experiment Demonstrated the Concept

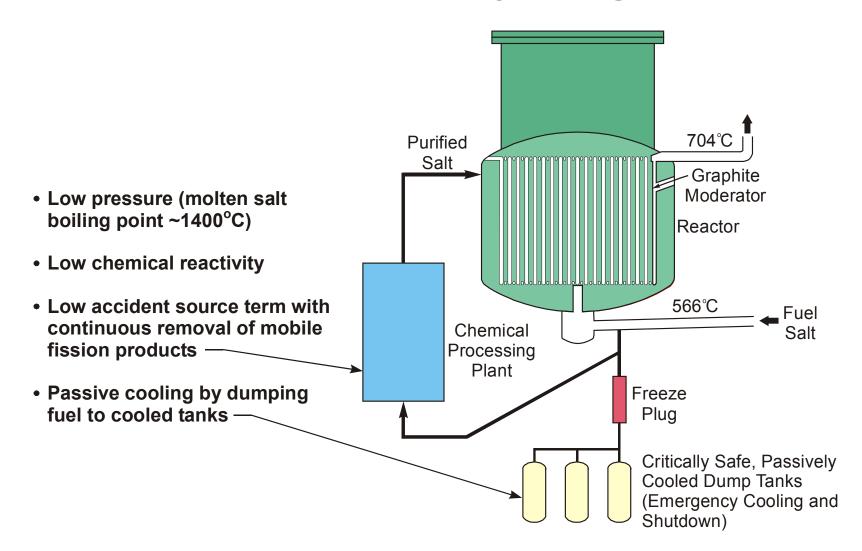

Hours critical17,655Circulating fuel loop time hours21,788Equiv. full power hrs w/ 235U fuel9,005Equiv. full power hrs w/ 233U fuel4,167

U-235 fuel operation

- Critical June 1, 1965
- Full power May 23, 1966
- End operation Mar 26, 1968

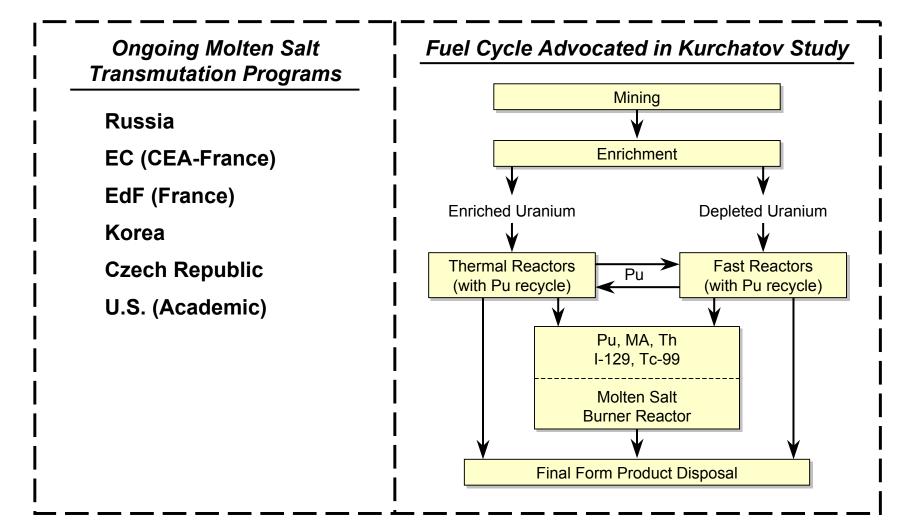
U-233 fuel operation

- Critical Oct 2, 1968
- Full power Jan 28, 1969
- Reactor shutdown Dec 12, 1969
 Plutonium feed


MSRE power = 8 MW(t) Core volume <2 cubic meters

11. Flush Tank, 12. Containment Vessel, 13. Freeze Valve.

Molten Salt Reactors Have a Different Safety Approach that Allows Passive Safety in Large Reactors

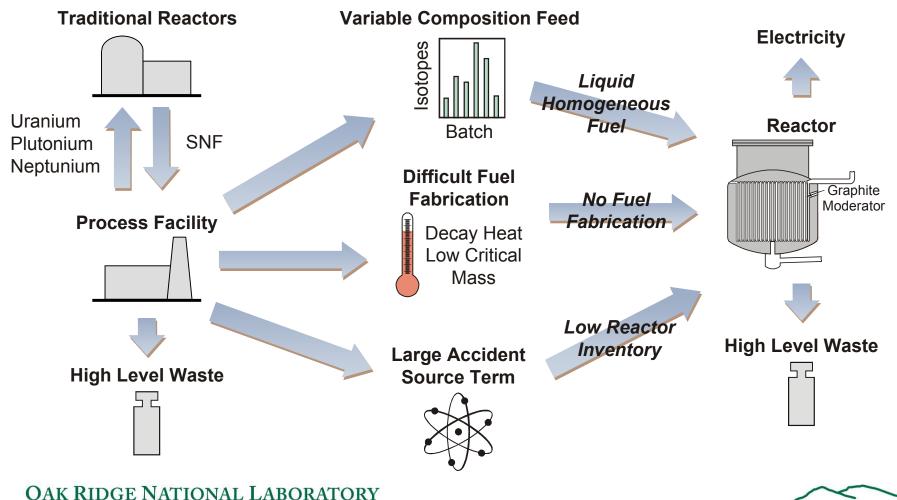


Multiple Fuel Cycle Options Exist (Process and Preferred Salt May Differ)

Fuel Cycle	On-line Processing	Molten Salt
Actinide burning	Optional	NaF, ZrF₄, other
Once-through	Optional	NaF, ZrF ₄ , other
Denatured (²³⁸ U)	Limited	NaF, ZrF₄, other
²³³ Th- ²³³ U Breeder	Required	⁷ LiF, BeF ₂

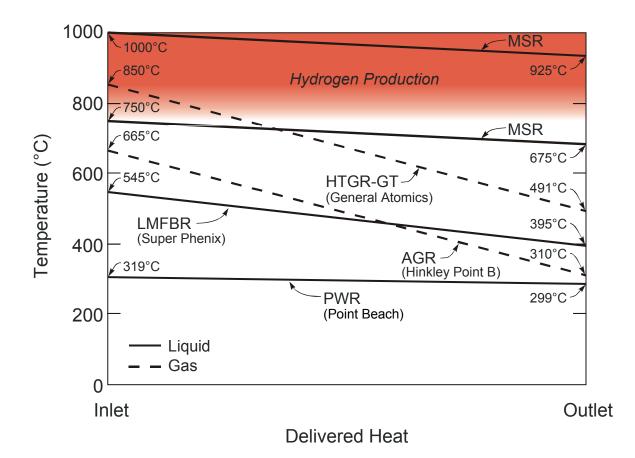
The Major Interest in MSRs Is for Burning Actinides and Long-Lived Fission Products

MSRs Avoid Several Solid-Fuel-Reactor Problems with Burning Wastes (High-Burnup Pu, Am, Cm)

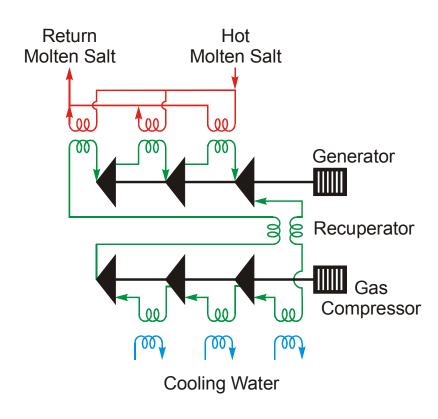

Power Reactor Cycle

Waste-Burning Problems Avoided by MSR

MSR Burner


T-BAT

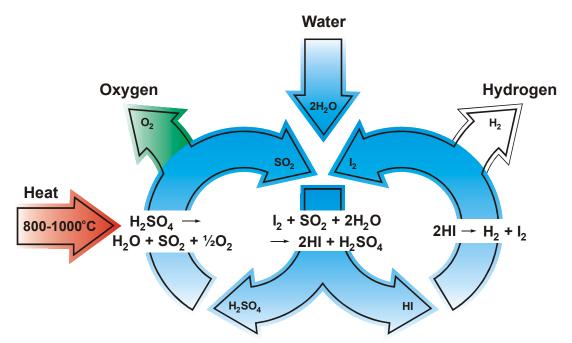
02-123


U. S. DEPARTMENT OF ENERGY

Liquid-Cooled MSRs Deliver High-Temperature Heat over a Small Temperature Range (Meets Electricity and Hydrogen Production Requirements)

UT-BATTELLE 02-129

Delivering Heat at Nearly Constant High Temperature Allows Use of Advanced Electric Power Cycles



- Multi-reheat helium Brayton cycle
- Cycle requirements
 - High temperature
 - All heat delivered at a high temperature
- Electrical efficiencies
 - 705°C yields 45.5%
 (1970s reactor design exit temperature)
 - 1000°C yields 60%

OAK RIDGE NATIONAL LABORATORY U. S. Department of Energy

MSRs Have the Longer-Term Potential for Thermochemical Hydrogen Production

- Hydrogen production requirements: (1) heat delivered at high temperature and (2) low pressure
- Requirements similar to those for the first MSR: the Aircraft Reactor Experiment

Extended Molten Salt Reactor Family

Molten Salt Fueled

- Aircraft Nuclear Propulsion Program (1950s)
- Molten Salt Breeder Reactor Program (1960s)
- Waste burner (Russia, France, etc.)
- Molten salt space reactor: Multimegawatt (United States)

Molten Salt Cooled

- Advanced High-Temperature Reactor (hydrogen or electricity)
- Fusion reactors (tritium production with ⁶Li)
 - Inertial
 - Magnetic

Areas for R&D

- Actinide burning
 - Preferred salt composition for this mission
 - Choice of fuel salt for high actinide content
- Materials (particularly for hydrogen production)
- Disposition of noble metal fission products
- Engineering design
 - Update design (last detailed engineering design in early 1970s)
 - Adopt regulatory structure to liquid fuels
 - Modernize strategy for remote operations (required for MSR)

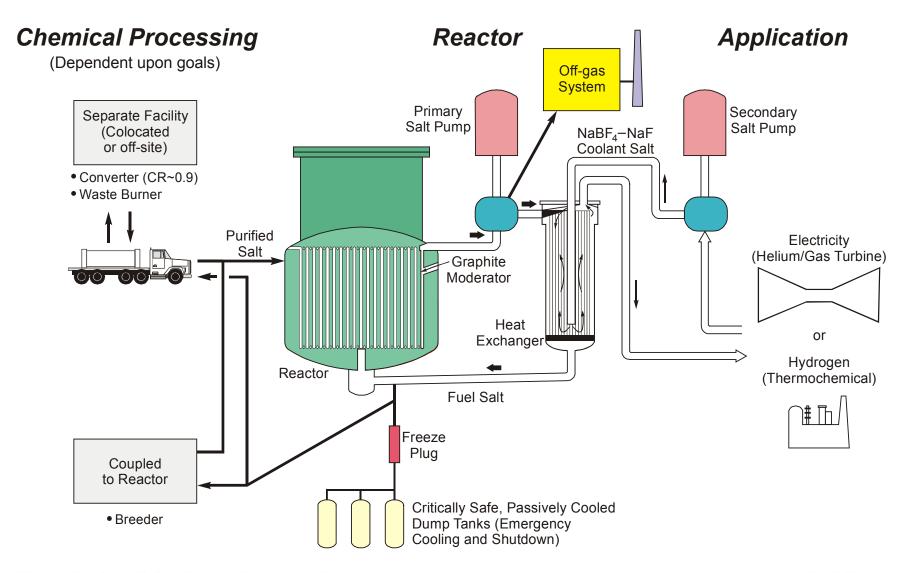
OAK RIDGE NATIONAL LABORATORY U. S. Department of Energy

Conclusions

- Molten salt test reactors built in the 1950s and 1960s
- GenIV International Forum interest in moltensalt-fueled reactors
 - Waste burners (primary interest)
 - Efficient power production
- Growing programs in Europe and Russia
- Base technology used by multiple programs
- R&D issues reasonably well understood

Backup Information

On-line Fuel Processing Is Required Only for Efficient Fuel Production


• Breeding reaction

– ²³²Th ର ²³³Pa ର ²³³U

- Protactinium characteristics
 - Moderately high absorption cross section
 - Half-life = 27.4 days
- Efficient breeding requires on-line removal of ²³³Pa from reactor to allow decay to ²³³U without parasitic neutron capture

Molten Salt Reactor

Molten Salt Characteristics

• Molten fluoride salts preferred over chlorides

- Low nuclear cross section
- Excellent chemical stability
- No troublesome long-lived activation products

Choice of salt depends upon mission

- Breeder (low absorption cross section: lithium and beryllium fluorides
- Waste burner (high solubility for all actinides)
- Hydrogen production (low tritium production: zirconium, sodium, and other fluorides)

Extensive industrial experience

 Aluminum metal made by electrolysis in a graphite-lined, molten-fluoride salt bath

Rationale for Using MSRs for Waste Burning Is Based on Engineering, Cost, and Operational Issues

- Recycle and fabrication of minor-actinide solid fuels are very expensive and difficult
- Waste burning has large impacts on conventional reactors
 - Complicates operations
 - High actinide inventory to destruction rate with added safety system requirements
- Molten Salt Reactors
 - Add actinides to salt
 - Actinides remain in salt until full burnout with lower actinide inventory than in other reactors
 - Fission products removed from salt
 - For waste burner applications, ~10% of nuclear electricity from MSRs ensures waste destruction

• R&D is required to define the best waste burning strategy OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

MSR Fuel Cycles

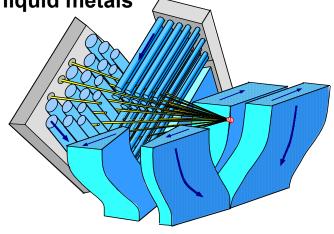
• Actinide burning

- Intrinsic to ²³³U/Th breeder cycle
- Special-purpose reactor to burn actinides (highburnup plutonium, Am and Cm) from other reactors
- Denatured once-through fuel cycle
- Denatured low-conversion breeder reactor
- High-efficiency thermal neutron (²³³U/Th) breeder reactor

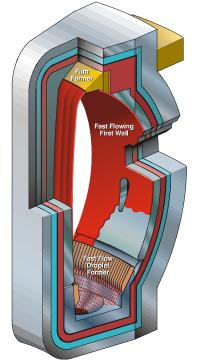
The Proliferation-Resistant Characteristics of the MSR Are Different from Those of Other Systems

- Total fissile inventory is low
- With added ²³⁸U, the ²³³U and ²³⁵U are made non weapons usable
- Plutonium isotopics are very poor (primarily ²⁴²Pu)

United States Fusion Research has Major Efforts Focused on Molten Salt Coolants

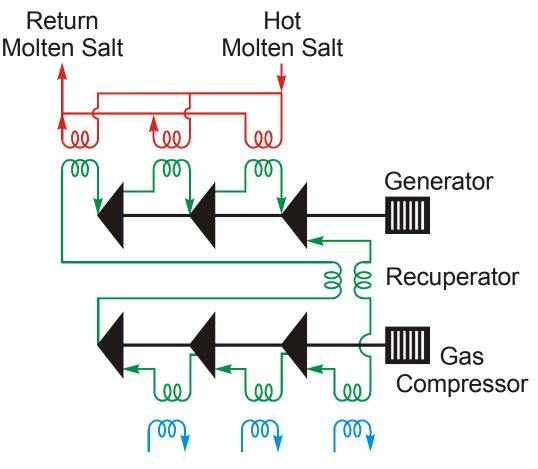

- Molten salts have unique advantages for fusion blanket coolants
 - Breed tritium fuel (enrich ⁶Li) and shield fusion neutrons
 - Low vapor pressure allows direct contact with fusion plasma

• Magnet fusion (APEX program)


 Molten salts are dielectric and unaffected by magnetic fields

Inertial fusion (iCREST program)

Molten salts give lower pumping power than liquid metals


Heavy-ion Inertial Fusion OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Magnet Fusion Tokamak

Efficient Brayton Helium Multi-Reheat Cycle for Production of Electricity

Cooling Water

