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ABSTRACT 

Complex aerospace systems are often designed in collaborative engineering environments where 
requirements and design decisions are rapidly made and withdrawn by various subsystems as the 
process evolves. As a result, the system-level management should continuously re-allocate 
resources (e.g. capital and labor) among various subsystems such that the main objectives of the 
system are achieved as closely as possible. Minimizing risk has been long accepted as one of the 
major criterion for system-level decisions and particularly resource management. In this context, 
Risk-based Decision Making refers to a process that allocates resources in such a way that the 
expected risk of the overall system is minimized. While a variety of quantitative and qualitative 
techniques to mitigate risk and uncertainty have been developed over the years, they mostly aim 
at the final stages of the design process only, and therefore are not applicable to the early stages 
of design. In particular, since the early conceptual design is often conducted by concurrent (and 
sometimes distributed) engineering teams, most risk management methods cannot effectively 
and dynamically capture the risk contribution of various design decisions in order to make risk-
optimal resource allocation decisions accordingly. As such, this paper presents a new risk-based 
design decision-making method, referred to as Risk and Uncertainty Based Concurrent 
Integrated Design Methodology or RUBIC Design Methodology for short. The new approach is 
based on concepts from portfolio optimization theory and continuous resource management, 
extended to provide a mathematical rigor for risk-based decision-making in concurrent 
engineering environments, where various subsystem experts, computer simulations, theoretical 
models, and historical design failure databases are involved. The RUBIC design method is based 
on the idea that a unit of resources that is allocated to reduce the level of risk at a certain 
component contributes to the overall system risk reduction in the following two ways: 1) by 
reducing the risk premium of the component itself (the exact amount of reduction in the risk 
premium is not fully known a priori, but can be estimated as a probability distribution based on 
historical or theoretical models); and 2) by impacting the risk premiums of other components 
(i.e. the correlation among components). RUBIC then provides a probabilistic framework for 
reducing the expected risk of the final engineering system via optimal allocation of available 
risk-mitigation resources. The application of the proposed approach to both single-subsystem and 
multi-subsystem design processes is demonstrated using a satellite reaction wheel example.



 2  

  
1. PROLOGUE 

Because of the complex and multi-subsystem nature of aerospace systems, they are 

always designed in a multi-subsystem hierarchical structure with several domain experts and 

system-level managers. Each subsystem has a subsystem chair that assumes the responsibility for 

that subsystem, while most high-level goals and constraints are determined at the system-level 

based on the overall requirements and constraints of the project. Often, the variables, constraints 

and goals are only loosely defined in both system and subsystem levels. In such environments, 

design decisions are often made and reversed in both system and subsystem levels as the design 

process converges. Therefore, the main job of the system-level managers is to re-allocate 

available resources to guide the project in a desirable direction. Risk, as one of the major drivers 

for system-level decisions, plays an important role in this decision-making process. Researchers, 

therefore, have developed a wide variety of risk and failure identification methods over the past 

few decades to enable a more objective risk-based design decision-making process (For review 

of such methods, see for instance, Schrader et al. 1993, Zang et al. 2000, Backman 2000, Choi 

2001, Du and Chen 2002, Smith and Mahadevan 2003). In particular, failure analysis tools have 

been widely used to evaluate the safety of aerospace systems by identifying ways to reduce the 

likelihood of failure through design changes. Examples of the most commonly used methods are: 

Failure Modes Effects Analysis (FMEA), Fault Tree Analysis (FTA) and Event Tree Analysis 

(ETA). These basic techniques continue to evolve and have spawned other techniques such as 

the Failure Modes and Critical Effects Analysis (FMECA), Event Sequence Diagrams (ESD), 

Reliability Block Diagrams (RBD) and the Master Logic Diagram (MLD) (See Greenfield 2000 

for a review of common risk analysis techniques in the aerospace industry).   

 While failure analysis tools provide ways to identify potential risks, their connection to 

system-level decisions (specifically, resource allocation) is mostly ad-hoc. In addition, most of 

these techniques target a certain stage of the design process and cannot be used for continuous 

resource management during the entire span of conceptual design to final design. In particular, 

the bulk of these techniques fall short in the earlier stages of designing complex aerospace 

systems where concurrent engineering teams are involved in making rapid design decisions in a 

hierarchical multi-subsystem design architecture. This is despite the fact that our work, as well as 

many others studies, have pointed to the early design stages as one of the best opportunities to 
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catch potential failures and anomalies (e.g. Smith and Mahadevan 2003, Tumer and Stone 2003). 

Therefore, this paper describes a new approach to risk-based decision-making in the concurrent 

design of aerospace system. The proposed methodology, hereafter referred to as Risk and 

Uncertainty Based Integrated Concurrent Design Methodology or RUBIC for short, has several 

characteristics that make it a desirable risk-based design decision making tool for complex 

aerospace systems (and alike, e.g. large-scale information systems).  

• RUBIC accounts for both individual risk premiums of a component or functional element as 

well as the impact of reducing the potential risk of one component on its neighbouring elements 

(i.e. risk correlation among elements) 

• RUBIC calculates the optimal allocation of resources among subsystems and components 

such that the expected total risk of the final system is minimized (high-level objective).  

• RUBIC enables making decisions in a real-time and dynamic fashion such that as the design 

process evolves, the management can quickly re-calculate its position and make near-optimal 

decisions. That is, given enough computational power, the RUBIC design methodology provides 

a real-time and evolving resource allocation vector (described later in the paper) that can be used 

to mitigate risks throughout the design process and in both system and subsystem levels. In this 

context, RUBIC can be considered a risk-based continuous resource management tool that spans 

the entire design cycle.  

The organization of the rest of this paper is as follows: Section 2 provides a brief 

overview of functional models and how they can be used to represent the overall as the design 

process evolves. The RUBIC design method employs functional models to identify risks (at the 

functional level) and allocate mitigation resources accordingly1. The new approach of this paper, 

i.e. RUBIC design methodology, is described in Section 3 for both single-subsystem and multi-

subsystem cases. The design example of Figure 1 is used to demonstrate the application of the 

proposed approach. In Section 4, we discuss ways that functional failure rates can be estimated. 

We will particularly focus on method to derive numerical estimations from a historical failure 

database. Section 5 is devoted to the application of RUBIC to the specific problem of designing 

space exploration systems at various NASA centers. Finally, Section 6 provides the concluding 

remarks of the paper.  
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2. FUNCTIONAL MODELING IN MULTI-LEVEL AEROSPACE SYSTEMS 

The RUBIC design method employs functional models to represent the state of the design 

process. This is particularly helpful during the conceptual design phase, where the design has not 

yet converged to its final form and the component information is often either vague or not 

available (Stone and Wood 2000, Hirtz 2001). Functional information, in contrast, can be easily 

derived from the project requirements and decomposed and distributed top-down to the 

subsystems. In fact, the early stages of the design process can be best described using functional 

modeling methods that provide a description of the final product as a system of elementary 

functions that will collectively achieve the overall system-level goals (See, for instance, Hunt et 

al. 1995,  Stone et al. 2000, Stone and Wood 2000, Hirtz et al. 2001). A functional model is 

basically a flow diagram that shows different functional elements as well as the flow of energy, 

material, and information through these elements. The RUBIC design methodology reallocates 

resources as the functional model evolves to satisfy all design requirements and constraints.  

Figure 1 shows the functional model of a design example that will be used later in this 

paper to demonstrate the application of the proposed approach. This design problem involves a 

satellite reaction wheel, which is a motorized flywheel that can adjust its spin rate to control the 

positioning of a satellite. As the motor speeds up or slows down, it generates a reacting torque on 

the body of the satellite that can be used to position the spacecraft. Figure 1 depicts a high-level 

functional model of a reaction wheel, at a certain point in its design cycle. This design consists of 

4 main sub-systems (shaded differently in Figure 1): 1-Motor Controller Subsystem; 2-Motor 

Subsystem; 3-Flywheel Subsystem; and 4-Structure Subsystem.  Note that the reaction wheel as 

a whole can be considered a subsystem for the overall system, i.e., satellite, which indicates the 

multi-level nature of designing complex engineering systems.  

                                                                                                                                                                                                    
1 We will also state that the RUBIC design methodology is more general in principle and can be readily 

extended and generalized to other forms of modeling the design process (other than functional modeling).   
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Figure 1 – A high-level functional model of a satellite reaction wheel at some point in its 
conceptual design phase. A satellite reaction wheel is used to position spacecrafts in the 
desired direction.  Four major subsystems can be identified in this design (distinguished 

using different shades in the figure).   
 

We use functional models in RUBIC mainly because they can be used throughout the 

design cycle (from the initial conceptual design to the final design). At each point, the current 

state of the design is represented by its associated functional model (which evolves and 

converges to more detailed lower-level models as time progresses). In the next section, we will 

link the risk and uncertainty of a given design to the estimated functional failure rate at each 

functional element. Finally, it should be noted that although we chose to use functional models to 

increase the applicability and lifecycle of the proposed RUBIC design approach, the 

methodology itself is more general in principle and can be used in a very similar fashion based 

on the physical components of the system (rather than their functions).  

3. RUBIC DESIGN METHODOLGOY 

The proposed methodology of this paper is described in this section for both single-subsystem 

and multi-subsystem cases. 

3.1 Assumptions 

A functional failure is defined as an undesirable process which results in one (or more) 

functional elements performing a function other than what it was originally designed for. The 

probability of a functional failure can be obtained from either: 1- historical data; 2- engineers’ 

intuition; or 3- reasonable estimations and bounds obtained from fundamental principles or 
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computer simulations (more on computing these rates in Section 4). In a given design, each 

functional element is designed to perform a task that contributes to the overall success of the 

system and has an associated risk premium (non-negative probability of failure), i.e. 

Postulate:  Each functional element in a complex system creates a risk premium. Two types of 

risk premiums can then be identified:  

1-Insured Risk: A risky element whose risk premium is balanced off with another element (e.g., 

a sensor to detect failure or a redundant part). In other words, the risk of the original element is 

balanced off by another element (such as a sensor or a redundant part).  

2- Uninsured Risk: A risky element with an unbalanced risk premium (i.e., an element with a 

known probability of failure but without a risk-balancing element to offset the risk). 

In this context, the main goal of the RUBIC design method is to address the following problem: 

RUBIC Design Methodology: The RUBIC design methodology is a continuous risk 

management technique in that it identifies the risk elements during the conceptual design phase 

and continuously optimizes resources (e.g. capital, labor) to mitigate those risks. In other words, 

the RUBIC design methodology allocates resources to either reduce the risk premium of 

individual elements (by redesigning the physical components), or balance those risks against 

other elements (for example by adding redundancies).  

We also assume that the only thing that matters to the managers is the total amount of 

risk in the system. In other words, we assume that risk can be traded homogenously between 

elements and subsystems. This is a rather restraining but common assumption (e.g., Greenfield 

2000). This assumption, however, can be somewhat relaxed by weighting the criticality of 

different elements and subsystems (which is not the focus of this research).  

Postulate: Risk can be traded homogeneously between subsystems and elements.  

We also assume that:  

Postulate: Risk of an element is not independent of other elements in its subsystem. (This is 

handled in RUBIC via a covariance matrix). However, the risk of elements in one subsystem is 

independent of those in another subsystem.  Example: The risk of a tank regulating valve in the 

propulsion subsystem is not independent of the risk of the pressurized Helium tank it is attached 

to. However, the risk of that same valve is independent of the risk of a seal in another subsystem.  
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Finally, It is implied in the RUBIC design methodology that a risk can be actually 

reduced by allocating resources such as time, money, or computational resources (although the 

amount of risk reduction is not known a priori and will be modeled using a stochastic process in 

the next section):   

Postulate: Risk can be traded for “Risk-Mitigation Resource”. For instance, in the early stages of 

design, one can conduct a risk reduction study of a certain functional (or physical) element and 

design safeguards or make design modifications to reduce risk.  

In other words, by consuming such resources (e.g., time, cost, computational resource 

etc.), one can find ways to mitigate the risk of a certain functional (or physical) element, 

although the actual amount of risk reduction is not known beforehand and should be modeled 

using a random distribution. This is discussed in the following section.  

3.2 Benefit Function: The Utility of Risk Reduction 

Consider designing a single subsystem (e.g., propulsion system) of n elements where risk 

reduction at each element may contribute to the health of other elements. By allocating resources 

during the design stage to mitigate the risk of each functional element, one can reduce the risk of 

the overall subsystem as a whole. We quantify the benefit (i.e. utility) of allocating resources to 

reduce design risks at each element as the amount of risk reduction– referred to as Risk Benefit 

Function, or in short Benefit Function in the rest of this paper (denoted by bi). Note that early in 

the design process, the final benefit (i.e. risk reduction) that will be achieved by consuming one 

unit of risk-mitigation resources is not known. Therefore, bi is treated as a stochastic process in 

RUBIC.  

Definition: The benefit function of spending 1 unit of resource to reduce risk at the i-th element, 

denoted by bi, is a random process with a given mean and variance. The expected outcome of 

spending 1 unit of such resource is µi=E(bi)2, which represents the expected risk reduction.  

To simplify the mathematical process, we assume a certain form of probability 

distribution function for this stochastic process, and relate mean and variance in order to reduce 

its degrees of freedom to 1 (Later we will show that the optimal resource allocation vector in 

                                                             
2 In this paper, E(.) and Var (.) refer to the expected value and variance of a random process, respectively.  
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RUBIC is scaling independent and therefore, the scaling of the pdf does not affect the outcome). 

Here we assumed a benefit function with a triangular distribution (see Figure 2.)  

 

pdf 

E(bi) 
bi 

 
Figure 2: Triangular distribution for the random process, bi 

µi can be estimated from historical data or theoretical models (more on this later in this paper). 

Assuming a triangular distribution of the above form3:  

σi!0.3 µi        (1) 

It will be argued later in this paper that the constant factor (that is derived from the 

triangular distribution assumption) will not affect the outcome of RUBIC (the approach is 

scaling independent). In some instances, however, we maybe interested in absolute measures of 

risk reduction in which case, such assumptions are necessary.  

3.3 Single-Subsystem RUBIC Design Methodology 

Assume that a system design project has a certain amount of risk reduction resources that 

can be distributed in a single-subsystem of n elements. The questions that need to be answered 

are: Which risk factors are the most crucial ones? How must the resources be allocated? The 

answer to these questions can have a significant impact on the performance and effectiveness of 

the risk reduction process. RUBIC guides the design process, given the available risk reduction 

resources, such that the end design is minimally susceptible to failure. The allocation of these 

resources among functional elements is referred to as risk reduction resource allocation vector, 

or allocation vector for short:  

                                                             
3 In this paper, σii denotes Var(bi); σij refers to Cov(bi,bj), and σi (with one index) refers to the standard 

deviation of bi, i.e. σii = σi
 2 
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Definition: Risk reduction resource allocation vector, denoted by w = [w1, …, wn]T, is defined as 

the percentages of resources to be spent on the n functional elements within a system. 

The goal of the RUBIC design methodology is to determine w dynamically throughout 

the design process. Based on this evolving allocation vector, designers can sort their priorities 

and allocate optimal amount of resources (e.g., time or money) to reduce risk of each functional 

element. This will lead to the concept of “Risk-Efficient Design Process” or RED-P, as described 

later in this section for a single-subsystem case.  

Given the allocation vector, w, we can compute the total benefit function as: TB 

=!
n

ii
bw

1

. Since bi is a random process (that is unknown during the design process), we would 

like to: 

 

1. Maximize the expected total benefit, i.e., E(TB) = wTµ   

2.  Minimize the variance of total benefit, i.e., Var(TB)=wTΣw 

 

where µ is the vector of expected values for bi’s, and Σ  is the covariance matrix (a diagonal 

element, σii , is the variance of bi, while an off-diagonal element, σij, reflects the covariance of 

risk in elements i and j), i.e., 

and;     

 

µ
!
!
!

"

#

$
$
$

%

&

=

n
µ

µ

ÿ
1

 

element 1 

element n 

 

 

 

 

 

 

!
!
!

"

#

$
$
$

%

&

='

nnn

n

((

((

1

111

ÿ

 
element n 

element 1  

e
le

m
e
n

t 
1

 

e
le

m
e
n

t 
n

 

 



 10  

Note the resemblance of the above formulation to Markowitz’s optimal portfolio 

selection problem (that is based on relatively similar assumptions in the context of managing 

risky financial assets. See Markowitz 1952). This formulation of risk reduction is in fact a two-

objective optimization problem: 

 

     Minimize w
T
!w 

     Maximize w
T
µ 

    

      s.t. w

F"
 

     (2) 

where F is the set of all feasible design processes (within design constraints as well as 

discretionary limitations set forth by the design team). This bi-criterion optimization problem 

results in a set of Pareto optimal solutions (also referred to as an efficient frontier) that outlines 

the optimal tradeoff between safeguarding only the most risky elements (with highest risk 

premiums) versus trying to diversify risk-reduction throughout the system (two different 

extremes). Later in the example of this paper, we use a simple method to account for this tradeoff 

based on preferences. We refer to a solution to the above bi-criterion optimization problem as a 

Risk-Efficient Design Process or RED-P.   

Definition: A Risk-Efficient Design Process or RED-P is one that is optimal with respect to 

Equation 2.  

Figure 3 shows the set of all feasible design processes and the subset of risk-efficient 

ones (identified by a thick curve). Every point on the efficient frontier is considered a RED-P. 

Other design processes that fall inside the feasible domain are inferior with respect to the points 

on the RED-P curve because they offer a higher variance and a lower expected benefit (worse 

with respect to both criteria).  
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Figure 3: The Thick curve represents the efficient frontier (set of all feasible RED-P’s) 

In the RUBIC design methodology, a design process that lies on the efficient frontier is 

considered acceptable while all others are considered unacceptable (because they represent an 

inefficient use of risk-mitigation resources). By solving Equation 2 and choosing a RED-P on the 

efficient frontier, we obtain an allocation vector, w, which can be used to rank order areas of 

focus for reducing risk and the amount of resources to be used on each element. This will 

provide the decision-makers with guidelines to improve the reliability of the subsystem in an 

efficient way. This is demonstrated in the following section for the case of a single subsystem 

design using the reaction wheel example of Figure 1.  

3.4. Example: Single-Subsystem RUBIC Design Method for a Satellite Reaction Wheel 

In this section, we will only focus on the Motor Controller subsystem of Figure 1 (Later 

in this paper, we will return to this problem from a multi-subsystem approach). In the Motor 

Controller subsystem, there are 7 functional elements, as listed in the following:  

- Import Electrical Energy 

- Export Electrical Energy 

- Guide Electrical Energy 

- Regulate Electrical Energy 

- Guide Electrical Energy 

- Condition Electrical Energy 

- Guide Electrical Energy 
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Note that each of these function elements may correspond to one or more physical 

element in the subsystem. Some of these functional elements, such as ‘Regulate E. Energy’, 

correspond to a complex circuitry while some others, such as ‘Guide E. Energy’, correspond to a 

simple physical element such as a wire. Since this functional model corresponds to a preliminary 

design and has not yet converged to a detailed design, these functional elements are relatively 

generic. As discussed before, this is where a thorough risk analysis and optimal resource 

allocation can have the greatest impact on the overall safety of the final design. There is 

significant amount of historical failure data from which µ  and Σ  can be estimated at this stage 

using FFD and other similar methods (the estimation methods will be discussed in Section 4). 

µ is proportional to the failure rate (expected individual risk premium of each functional 

element). Note that RUBIC is scaling independent since a constant scale can be factored out in 

the optimization problem of Equation 2. Therefore, the absolute values in µ  and Σ  do not affect 

the optimal allocation vector. From Equation 1, we can also estimate σii’s from µi’s (Again, note 

that the constant factor can be factored out). σij’s are also estimated from incidents where a 

malfunction in one functional element led to failure in another element (thereby capturing 

interactions.) The following is a summary of numerical estimations (constant multipliers are 

factored out and not shown):  

and;                      
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Using the above numerical values, one can solve Equation 2 to obtain the risk-efficient 

design frontier. In Figure 4, a sample space is plotted by choosing random values for the 



 13  

allocation vector (i.e., w) and plotting the mean and standard deviation values. This figure also 

shows the approximate location of the efficient frontier. As explained before, every point on this 

frontier is a Risk-Efficient Design Process (which implies that risk reduction resource is 

optimally allocated among functional elements). Every design process that is not located on this 

frontier is inefficient in the sense that a higher expected value and a lower variance can be 

obtained for the total risk benefit function by re-allocating resources (which implies that the 

resource allocation vector is not optimal).  
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Figure 4: The efficient risk tradeoff frontier 

Now the question becomes which RED-P on the efficient frontier should be chosen. In 

fact, the efficient frontier represents the tradeoff between expected value and variance of the total 

benefit function. On one extreme, the tradeoff tends to maximize expected value (by focusing on 

the most risky elements only). However, focusing solely on the most risky elements would 

ignore other elements in the system (which might cause failure, particularly due to high 

covariance). The other extreme of the tradeoff tends to diversify the resources to minimize the 

variance of the observed benefit. To keep the problem simple, we use a linearly weighted utility 

function to assess the tradeoff between these two criteria4: u=E(TB)-0.3σ(TB). The negative sign 

of σ(TB) accounts for the fact that it needs to be minimized. Note that in practice, these weights 

can be obtained from the designers involved in the process. One may even choose to vary these 

weights dynamically throughout the design process. For instance, one may decide to assign a 
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higher weight to E(TB) early in the design process (to gain as much risk reduction as possible 

early in the design process). However, as the design converges closer to the final design, one 

may choose to increase the weight for σ(TB) to better spread the risk reduction resources. Using 

the above linear utility, the two-objective optimization problem of Equation 2 collapses to that of 

maximizing utility. This will result in a single allocation vector that corresponds to the most 

preferred RED-P, identified by a red circle in Figure 4 and listed in Table 1.  

Table 1: Optimal resource allocation (corresponds to the red circle in Figure 4) 

Column # Function Resource Allocation 

1st Import Electrical Energy <1% 

2nd Export Electrical Energy 6% 

3rd Guide Electrical Energy <1% 

4th Regulate Electrical Energy 57% 

5th Guide Electrical Energy 10% 

6th Condition Electrical Energy 26% 

7th Guide Electrical Energy <1% 

  

Figure 5 – Optimal Allocation 

From Figure 5, it is clear that two functional elements (i.e. ‘Regulate Elec. E.’ and 

‘Condition Elec. E.) require the highest resources. Another interesting observation is that the 5th 

functional element which has the same functionality as the 3rd and 7th elements (i.e. they ‘Guide 

Elec E.’) has assumed a relatively higher priority than the other two. This is mainly because the 

high covariance values between this particular electrical connection with 4th and 6th elements 

(this is basically the electrical bridge between these two high-risk components). Also, the 

function ‘Export Elec. E.’ has assumed a relatively high value despite the fact that it has the 
                                                                                                                                                                                                    

4 Note that we chose σ(TB) instead of Var(TB) because σ(TB) and E(TB) have the same units and can be used 
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lowest failure rate (because of its correlation with failure in the 4th element; See the high 

corresponding covariance value in the covariance matrix). In fact, this can be related to the fact 

that failure in ‘exporting electrical energy’ (which conducts static charges out of the circuitry to 

the body of satellite) may cause failures due to the accumulation of static electricity in the 

‘regulate’ and ‘condition’ functions. This is an example of an observation that is hard to make 

without using the RUBIC design method. In the following section, RUBIC is extended to the 

case of multi-subsystem designs.  

3.5 Multi-Subsystem RUBIC Design Methodology 

Consider the case of a system of m subsystems, denoted by S1…Sm, containing n1…nm 

elements, respectively (ni>0). In Section 3.1, we stated that the risk of two elements in the same 

subsystem may be correlated, while the risks of elements in different subsystems are 

independent, i.e., 

0
,,
=! lkji"               if  ki ! ; 

i
ni !!1 , 

k
nk !!1  

where 
lkji ,, !"  refers to the covariance of risk between the j-th element in the i-th subsystem and 

the l-th element in the k-th subsystem. The RUBIC design methodology can then be simply 

extended to the multi-subsystem case, as in the following:  

and;      
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in a linear combination. 
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A risk-efficient design process can then be obtained in a similar fashion to the single-

disciplinary case by solving Equation 2. Note that the problem in the multi-subsystem case is to 

allocate resources among subsystems and then among functional elements within each 

subsystem. This is demonstrated in the following example.  

3.6 Example: Multi-Subsystem RUBIC Design for a Satellite Reaction Wheel 

In this section, the RUBIC design methodology is used to analyze risk in all subsystems 

of the satellite reaction wheel (Figure 1).  The system consists of 4 subsystems:  

- Motor Controller Subsystem (7 functional elements) 

- Motor Subsystem (3 functional elements) 

- Flywheel Subsystem (3 functional elements) 

- Structure Subsystem (5 functional elements) 

In a similar fashion to the single-subsystem case, the multi-subsystem analysis starts with 

estimations for µ  and Σ (more on estimations methods in Section 4): 
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and;    
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Figure 6 depicts a random sample of feasible design processes as well as the approximate 

location of the risk-efficient frontier. Using the utility function of Section 3.4, we obtain the 
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desired RED-P (indicated by a red circle). The corresponding optimal allocation vector is listed 

in Table 2. 

Table 2: Optimal resource allocation (red circle in Fig 6) 

Column # Subsystem Function Resource 
Allocation 

1st Motor Controller Import Electrical Energy <<1% 

2nd Motor Controller Export Electrical Energy 4% 

3rd Motor Controller Guide Electrical Energy <<1% 

4th Motor Controller Regulate Electrical Energy 36% 

5th Motor Controller Guide Electrical Energy 6% 

6th Motor Controller Condition Electrical Energy 17% 

7th Motor Controller Guide Electrical Energy <<1% 

Total Allocation to Controller Subsystem: 64% 

8th Motor Convert Electrical E. to Rotational E.  9% 

2nd Motor Convert Rotational E. to Electrical E.  13% 

3rd Motor Export Thermal Energy 10% 

Total Allocation to Motor Subsystem: 32% 

1st Flywheel Transfer Rotational Energy 1% 

2nd Flywheel Store Rotational Energy 0% 

3rd Flywheel Supply Rotational Energy 2% 

Total Allocation to Flywheel Subsystem: 3% 

 Structure Import Solid 0% 

 Structure Secure Solid 0% 

 Structure Transfer Rotational Energy 1% 

 Structure Export Solid 0% 

 Structure Export Rotational Energy 0% 

Total Allocation to Structure Subsystem: 1% 

 

The controller and motor subsystems pose the highest risk premiums to the overall health 

of the system. Note that, as the design process evolves, the functional model evolves and new 

failure modes may appear. The main advantage of RUBIC is that it can determine the optimal 

allocation of resources in real-time, i.e., as new functional elements appear (or the old ones are 

removed, modified, or decomposed to more functional elements) the optimal allocation vector 
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adjusts accordingly to identify the critical areas of design that pose maximum risk to the overall 

health of the system.  
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Figure 6: The efficient risk tradeoff frontier 

 

4. ESTIMATION OF FUNCTIONAL FAILURE RATES 

There are a variety of techniques in the literature for extracting failure occurrence rates 

from historical data or expert opinion5. We propose using a derivative of Function Failure 

Design (FFD) method (Tumer and Stone, 2003) that obtains actual failure rates based on the 

composite function failure matrix. FFD is based on the premise that failure modes can be traced 

back to the functions that a particular component addresses. The functional model can therefore 

be mapped to failure modes via the FFD method. The obtained failure rate estimations can then 

be used in RUBIC to make objective and numerically verifiable decisions during the design 

process (Refer to Stone et al. 2005 and Stock et al. 2005, for a detailed review of this method and 

how it can be used to obtain dynamic failure analysis information). In short, FFD has 5 major 

steps: 

1- Document Functional Data: The first step is to develop a functional model for the system 

2- Create a function-component matrix:  The components form the m columns of this matrix 

and the functions form the n rows. For a given component a ‘1’ is placed in the cell 

                                                             
5 FMEA for instance, assigns a value to the failure rate based on reasonable estimations of the probability of 

occurrence obtained from experienced designers.  
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corresponding to the function it performs and a ‘0’ is placed in other cells. This is referred to as 

the EC matrix which correlates physical components of a system with the functional model.    

3- Document the Failure Data: This step involves obtaining feedback information (from 

historical data or expert elicitation) about all potential failure modes and their causes. 

4- Create Component Failure Mode Matrix: This matrix has p columns representing the 

failure modes and n rows representing the components and is denoted by CF. As in the function-

component matrix, a ‘1’ in this matrix represents a component that has experienced a certain 

failure mode.  

5- Obtain Function-Failure Matrix: This is obtained by multiplying the function-component 

matrix and the component-failure mode matrix, i.e., EF = EC x CF. This matrix represents the 

number of occurrences of a particular failure mode for a given function, from which occurrence 

ranking values could be obtained using the probability of occurrence. The probability could be 

obtained from the ratio of the number of occurrences of a failure to the total number of instances 

of failure. 

Using FFD requires building a large and comprehensive knowledge base of failure modes 

and their occurrences. Once this knowledge base is developed, it can be used to obtain numerical 

estimations in real-time. Using FFD allows the RUBIC design methodology to evaluate optimal 

allocation vector dynamically as the design progresses (for example, via a network-based 

repository in a real-time fashion.). An example of such real-time network-based tool is currently 

under development as part of an ongoing project at NASA Ames Research Center. Upon 

completion, a RUBIC design tool will be able to perform function-based queries to this 

knowledge base to retrieve failure estimations using the FFD method.  

 

5. APPLICATION OF RUBIC DESIGN METHODOLOGY TO THE DESIGN OF SPACE 
EXPLORATION VEHICLES AT NASA 

Among various aerospace systems, the design of NASA’s space exploration vehicles is 

particularly risk-driven due to the high-cost, low-volume, and social and scientific impacts of 

such space missions. While these complex engineering system are susceptible to failure and 

ultimately loss of mission, the current risk management practice is mostly ad-hoc and based on 

asking “what can go wrong?” from the experts. The importance of finding a rigor for risk-based 
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design decision making is also boosted by the fact that NASA uses concurrent engineering teams 

to reduce the time and costs associated with the early design study of space missions. There are 

several real time concurrent design teams at various NASA centers.  For example, Team X at the 

Advanced Project Design Center at NASA’s Jet Propulsion Laboratory is a concurrent 

engineering team that produces conceptual designs of space missions for the purpose of 

analyzing the feasibility and estimating the cost of mission ideas proposed by its customers.  The 

study takes one to two weeks and the final design is then documented in a 30 to 80-page report 

that includes equipment lists, mass and power budgets, system and subsystem descriptions, and a 

projected mission cost estimate.  A design decision that is made during this phase often has a 

significant impact on the overall cost and success of a mission as well as its associated risk and 

uncertainty. As mentioned before, current practice does not pay adequate attention to capturing 

and describing the risk elements associated with the final design. It is often unclear from the final 

report that why certain design decisions were made, what options were considered, and what was 

the potential risk tradeoff between these options. Due to the lack of information about the 

rationale involved in making these decisions, it is often very difficult to verify such decisions and 

their role in the overall safety of the mission. Most of current efforts use qualitative techniques 

that would list potential failures based on inputs from engineers, i.e., expert-elicitation 

techniques. (See for instance Meshkat and Cornford 2003). These techniques, however, have 

several shortcomings that can limit their effectiveness – prohibiting a thorough study of failure 

elements and probabilities in such dynamic design environments: 

• Due to the numerous dependencies that exist between the various subsystems in a spacecraft 

and the speed with which the engineers make design decisions, the subsystem engineers are 

sometimes unaware of the important design choices of others.  Since each design option 

correlates with particular types of risks, the only way to keep the engineers informed about the 

design options under consideration is by informing all of them about all risk elements related to 

them dynamically (i.e., live information feed).  This becomes increasingly difficult as the 

complexity of the design grows. For distributed design teams, in particular, the back and forth 

communication of this huge amount of data between all subsystems is impractical.   

• A major shortcoming of approaches that are currently used in concurrent design environment 

is that they do not provide solid quantitative risk measures to guide the engineers in the decision-

making process. These decisions include selecting among alternative designs while trading-off 
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risk with other objectives such as weight, cost and performance. This is a particular problem for 

NASA because design constraints (e.g., cost and weight limits) are fairly rigid and the feasible 

design space is extremely tight.  

• Another major challenge lies in the integration of these risk analysis methods with such 

rapidly evolving design processes. Many of these methods require a fully converged design. So 

they integrate well into a system design process after major review stages, but these same 

methods cannot be applied during earlier phases when tenuous design decisions are made and 

withdrawn rapidly. 

The proposed approach of this paper helps improve at least some aspects of such design 

efforts, as described in the following.   

• The RUBIC design methodology provides a rigorous quantitative framework for considering 

risk and uncertainty during conceptual design of space exploration systems (which is the focus of 

these rapid concurrent engineering teams).   

• RUBIC assumes a hierarchical decomposition of a system (Concurrent engineering teams 

almost always view a design problem in the same manner by decomposing it into subsystems) 

• RUBIC is based on functional modeling of a system. So, as the design process evolves, its 

functional model evolves. This allows for an easy integration of the RUBIC design methodology 

with the evolution of the design and makes it applicable to all stages of this process (from earlier 

conceptual design to preparing the risk report for the final design).    

• RUBIC provides the capability to compute allocation decisions in a real-time fashion. This 

allows the system-level decision-makers to dynamically adjust to the design decisions as the 

overall system evolves throughout the design process.  

6. EPILOGUE 

In this paper, we introduced RUBIC as a risk-driven methodology that can be used during 

the concurrent design of aerospace systems. The objective is to reduce risk in various subsystems 

and functional elements given the available risk-mitigation resources. The proposed approach is 

based on the notion that a failure happens when a functional element in the system does not 

perform the intended task. One unit of risk-mitigation resource then will reduce the risk of that 

certain functional-failure happening and therefore, contribute to the overall system risk 



 23  

reduction. The resource allocation problem can then be formulated as a two-objective 

optimization problem. We defined a Risk-Efficient Design Process (or RED-P) as one that is 

optimal with regard to this optimization problem. The proposed approach was demonstrated 

using a satellite reaction wheel design problem. The RUBIC design methodology was then used 

to leverage a knowledge base of failure data to identify potential risks during the design of such 

system. It was showed through this example that without using the RUBIC design method, it is 

often very difficult to make numerically verifiable risk reduction decision during the conceptual 

design of complex multi-level systems. In particular, in a concurrent and distributed design 

environment where design decisions are made and withdrawn very quickly, only numerical and 

real-time methods such as RUBIC are capable of providing an insight into major contributing 

risk factors and their propagation in the system. An ongoing project at NASA Ames Research 

Center is developing a network-enabled failure knowledge base that will be used to support the 

RUBIC design tool. Upon completion, this tool will be able to provide real-time risk guidance to 

concurrent and distributed engineering design teams throughout the design cycle of space 

exploration missions.   
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