Listing of CERES Subsystems Validation Summary Charts:	<u>Page No.</u>
Subsystem 1.0 - Instrument Geolocate and Calibrate Earth Radiances	2
Subsystem 2.0 - ERBE-Like Inversion to Instantaneous TOA Fluxes	4
Subsystem 3.0 - ERBE-Like Averaging to Monthly TOA Fluxes	6
Subsystem 4.1 - Imager Clear-Sky Determination and Cloud Detection <u>TBD</u>	
Subsystem 4.2 - Imager Cloud-Top Heights and Imager Cloud-Base Heights	8
Subsystem 4.3 - Validation of Imager Cloud Optical Properties	10
Subsystem 4.4 - Convolution of Imager Cloud Properties with CERES Footprint Point Spread Function	12
Subsystem 4.5 - CERES Inversion to Instantaneous TOA Fluxes	13
Subsystem 4.6 - Validation of CERES Surface Radiation Budget (SRB)	14
Subsystem 5.0 - Surface and Atmospheric Radiation Budget (SARB)	15
Subsystem 6.0 - Gridding and Spatial Averaging <u>TBD</u>	
Subsystem 7.0 - Time Interpolation and Synoptic Flux Computation for Single and Multiple Satellites	18
Subsystem 8.0 - Monthly Regional, Zonal, and Global Radiation Fluxes and Cloud Properties	20
Subsystem 10.0 - Monthly Regional TOA and Surface Radiation Budget	22

CERES VALIDATION SUMMARY Release 2.2 July 1997 Subsystem 1.0 - CERES Geolocate and Calibrate Earth Radiances

Data Products

• Earth radiances:

1) Filtered broadband shortwave [0.3 - 5.0 mm]

2) Total-wave [0.3 - >100 mm]

3) Water vapor window [8 - 12 mm]

Approach

- Resolution/geometric sites used during the ERBE spacecraft missions
- Radiometric accuracy and precision in-flight calibration systems [demonstrated by ERBE] measurement accuracy via ground-to-orbit and precision via in-flight time series
- Radiometric precision/consistency checks among same and different types of CERES sensors using ERBE techniques
- Compare CERES radiances to earth validation targets calibrated with 5 years of ERBS data
- Three channel redundancy check for consistency
- Offsets validated using spacecraft pitch-up and monitored monthly against ERBS global limb-darkening

Release 2.2 July 1997

CERES VALIDATION SUMMARY Subsystem 1.0 - CERES Geolocate and Calibrate Earth Radiances (CONTINUED)

Validation Activities

- Prelaunch
 - 1) All validation and consistency checks will be based upon CERES sensor ground calibration data sets
 - 2) Establish radiation statistics of earth validation targets. Longwave target is tropical ocean at night. Shortwave target is desert region in daytime. Learn technique by applying to ERBE NOAA-9 data.
- Postlaunch
 - 1) Collection of in-flight calibration measurements and calculated filtered Earth radiances on designated calibration days
 - 2) Compare CERES radiances to historical ERBS radiances via earth validation targets.

Archive

- In-flight calibrations will be archived in BDS format at EOSDIS
- Publications describing the sensor calibration and validation results as well as public science computing facility (SCF) files of the appropriate calibration and validation data.

Release 2.2 July, 1997 CERES VALIDATION SUMMARY Subsystem 2.0 - ERBE-like Inversion to Instantaneous TOA Fluxes

Data Products and Parameters

- Parameters: ERBE-like ADMs, ERBE-like TOA flux
- Product: CERES ES-8

Approach

- Test ADMs with SAB Method (SAB monthly means independent of ADMs)
- Build new ADMs from CERES data
- Constant Flux Test (flux consistency with viewing zenith)
- Compare ERBE-like & CERES fluxes (same data, different scene ID & ADMs)
- Intercompare ERBE-like flux from TRMM and EOS AM-1.

Pre-Launch Validation Activities

- Test ADMs with SAB Method using Nimbus-7 data
- Apply Constant Flux Test to ERBE along-track data
- Validate data processing system using CERES simulation
- Establish mean and variance of difference between ERBE-like flux and CERES flux from CERES simulation

Release 2.2 July, 1997 CERES VALIDATION SUMMARY Subsystem 2.0 - ERBE-like Inversion to Instantaneous TOA Fluxes (CONTINUED)

Post-Launch Validation Activities

- 1) Test ADMs with SAB Method using CERES RAP data
- 2) Build new ERBE-like ADMs from CERES data & compare with current ADMs.
- 3) Apply Constant Flux Test with CERES data
- 4) Determine flux difference between ERBE-like flux and CERES flux and test against prelaunch statistics

Archive

• All validation tests are off-line.

Release 2.2 July, 1997 CERES VALIDATION SUMMARY Subsystem 3.0 ERBE-Like Averaging To Monthly Toa Fluxes

Data Products/Parameters

• ERBE-like clear-sky and all-sky radiative parameters at the TOA on various spatial (regional, zonal, and global) and temporal (daily, monthly-hourly, and monthly mean) scales.

Missions

• TRMM, EOS AM-1, and EOS PM-1

Approach

- Complete pre-launch science studies for improving and verifying TISA methods.
- •Verify input/output operations and interface compatibility with other subsystems.
- Compare ERBE-like results with validation data sets.

Pre-Launch Validation Activities

- Complete validation of the ERBE-like science algorithm.
- Finish testing of the ERBE-like data processing system.
- Verify ERBE-like TOA results with existing ERBE scanner data.
- Validate data processing system using CERES end-to-end simulation.

Release 2.2 July, 1997 CERES VALIDATION SUMMARY Subsystem 3.0 ERBE-Like Averaging To Monthly Toa Fluxes (CONTINUED)

Post-Launch Validation Activities

- Primary comparison with geostationary data using narrowband-to-broadband conversion technique.
- Secondary direct verification (if available) with ERBE WFOV results, ScaRaB data, and GERB data.
- Additional intercomparison between TRMM, EOS AM-1, and EOS PM-1 data.
- Continuous monitoring of the quality of the input data product and detecting problems in the overall system.

EOSDIS

• Special processing of CERES ERBE-like data products containing validation sites.

Subsystem 4, SSF data product, Cloud layering and heights Release 2.2, July 1997 CERES VALIDATION SUMMARY Subsystem 4.2 Imager Cloud-Top And Cloud-Base Heights

Products/Parameters

- Product: CERES SSF
- Parameters: Cloud-top and cloud-base heights for both single- and multiple-layered clouds

Missions

• TRMM, EOS AM-1, & EOS PM-1

Approach:

- First develop global and regional maps of retrieved cloud heights
- Show that global and regional analyses indicate consistent results moving from ocean to land, day to night, snow to water, desert to water, etc.
- Once results are consistent, compare retrieved cloud boundaries with ground-based, other satellite-based, or aircraft-based data of cloud boundaries (most appropriate for stratiform clouds)
- Comparisons of simultaneous retrievals from multiple satellites, aircraft and satellite, or surface with satellite

Subsystem 4, SSF data product, Cloud layering and heights Release 2.2, July 1997 CERES VALIDATION SUMMARY Subsystem 4.2 Imager Cloud-Top And Cloud-Base Heights (CONTINUED)

Pre-Launch Validation Activities

- Compare cloud boundary data from field programs with satellite retrievals
- Compare surface synoptic observations with satellite retrievals of single and multilevel cloud occurrences

Post-Launch Validation Activities

- Increase number of long-term monitoring sites to include midlatitude oceans, mountains, deserts, and tropical land
- Develop field programs over surface types where little if any data currently exist, such as deserts
- Perform quick-look global and regional analyses of cloud boundary products
- Compare CERES cloud boundary retrievals with validation sites

EOSDIS

- Perform subsetting of processed full-resolution CERES imager data stream
- Archive validation site cloud boundary data

Release 2.2, July 1997 CERES VALIDATION SUMMARY Subsystem 4.3 - Validation Of Imager Cloud Optical Properties

Data Products

• Cloud phase, effective particle size, water path, optical depth, emittance, radiating temperature, & thickness

Missions

• TRMM, EOS AM-1, & EOS PM-1

Approach: Pre- & Post-launch

- comparisons with in situ & surface/aircraft Remote sensing *Yields estimate of bias errors*
- simultaneous retrievals from multiple satellites or aircraft & satellite *Produces statistics, relative errors, & scene/angle dependence*
- model calculations to determine algorithm sensitivities to input & assumptions

Leads to physical understanding of observations

CERES VALIDATION SUMMARY Release 2.2, July 1997 **Subsystem 4.3 - Validation Of Imager Cloud Optical Properties** (CONTINUED)

Pre-Launch Validation Activities

- complete analyses of field program data & compare with satellite retrievals
- develop & analyze matched satellite datasets having appropriate spectral channels
- study algorithm sensitivity to cloud inhomogeneities, viewing & illumination conditions, background, & input
- identify key climate regimes needing further validation

Post-Launch Validation Activities

- increase number of long-term monitoring sites
- develop field programs & instruments for long-term deployment
- perform quick-look analyses of global products
- combine full-resolution ceres and validation site datasets, perform comparisons
- compare retrievals to those from other satellites & instruments

EOSDIS

- facilitate dataset acquisition
- archive combined CERES & correlative datasets

CERES VALIDATION SUMMARY Release 2.2, July 1997 Subsystem 4.4 - Convolution Of Imager Cloud Properties With CERES Footprint Point Spread Function (PSF)

DATA PRODUCTS/PARAMETERS

CERES Product: SSF

Parameter: PSF sets location & size of CERES footprint & averaging weights.

MISSIONS

TRMM, EOS AM-1, EOS PM-1

APPROACH

Regress CERES & imager data, minimize variance with PSF centroid & dispersion.

PRE-LAUNCH

Develop regression for best fit of CERES & imager data & develop statistics of minimum variance point. Use ERBS & AVHRR data for pre-launch studies.

POST-LAUNCH

Apply regression technique to 1st month of CERES data from TRMM & EOS AM.

EOSDIS

All validation tests off-line.

CERES VALIDATION SUMMARY Release 2.2, July 1997 Subsystem 4.5 - Inversion To Instantaneous TOA Fluxes

DATA PRODUCTS/PARAMETERS

CERES Product: SSF, Parameters: TOA flux, CERES 200 ADMs.

MISSIONS: TRMM, EOS AM-1, EOS PM-1

APPROACH

Test ADMs with:SAB Method (monthly means, no ADMs)Along-track Test (flux growth with viewing zenith)MISR Comparison (compare to independent data)

TOA flux bias and variance determined from ADM bias and variance.

PRE-LAUNCH

Validate ERBE 12 ADMs for initial CERES inversion.

POST-LAUNCH

Validate CERES 200 ADMs. Intercompare ERBE-like flux and CERES flux.

EOSDIS

EOSDIS SSF product is data source. All validation tests off-line.

CERES VALIDATION SUMMARY Release 2.2, July 1997 Subsystem 4.6 - Surface Radiation Budget (SRB)

Output Data Parameters: Net shortwave (SW) surface flux; Clear-sky downward longwave (> 5.0 m), window (8.0 - 12.0 m) and non-window surface fluxes (W/m2); and Cloudy-sky downward and net longwave (LW) surface fluxes.

Validation Criteria:

RMS errors: 20 W/m2 for instantaneous retrievals 10 W/m2 for gridded monthly average SW & LW surface fluxes

Validation Data Sources:

ARM/CART Southern Great Plains (SGP) available from CAGEX experiment ARM Tropical Western Pacific (TWP) & North Slope Alaska (NSA) data to be obtained NOAA Integrated Surface Irradiance Study (ISIS), including SURFRAD network (U.S.) WCRP Baseline Surface Radiation Network (BSRN) at selected sites around the globe.

Validation Procedure:

gather measured TOA & surf. fluxes for SW & LW, & atmos. temp. & water vapor apply radiative transfer algorithms to TOA data for simulated surface radiation fluxes compare simulated fluxes with measured surface radiation fluxes conduct thorough error analysis of comparisons.

Validation Archive: Anonymous ftp and/or through the World Wide Web.

CERES VALIDATION SUMMARY Release 2.2, July 1997 Subsystem 5.0 - Surface and Atmospheric Radiation Budget (SARB)

DATA PRODUCTS/PARAMETERS

- Broadband SW and LW fluxes at surface, 500 hPa, tropopause, and TOA
- Photosynthetically active radiation at surface
- Adjustments to cloud, atmospheric, and surface properties to balance computed fluxes with TOA measurements

MISSIONS: TRMM, EOS AM-1, EOS PM-1

APPROACH

 Long-term collection of non-EOS surface measurements Sort observations and CERES products to common format Issue validating data and products on www Expand current pre-launch validation activities CERES/ARM/GEWEX Experiment (CAGEX) http://snowdog.larc.nasa.gov:8081/cagex.html
3 categories of validation sites with continuous monitoring

Class 1 Remote Sensing Physics

Non EOS programs

Comprehensive measurements - ARM sites

CERES VALIDATION SUMMARY Release 2.2, July 1997 Subsystem 5.0 - Surface and Atmospheric Radiation Budget (SARB) (CONTINUED)

Class 2 Regional Climate Trend

Non EOS programs, but NASA instruments needed

Require surface radiation, aerosols, cloud lidar, helicopter survey; desire cloud radar

Combine with CERES radiative transfer

Determine regional forcing of aerosols and surface

Class 3 Discrete Validation Sites

Non EOS programs, Individual flux measurements in networks

• Extensive aircraft campaign at Class 1 sites

PRE-LAUNCH VALIDATION ACTIVITIES

- Validation of pre-CERES global Release 1 (October 1986 data) Compare with other satellite data (i.e., GEWEX SRB) and available Class 3 sites (i.e., GEBA)
- Expand current CAGEX from ARM CART SGP site for GCIP
- ARESE October 1995 study with aircraft fluxes and CAGEX to determine sampling pattern of post-launch flights
- Helicopter survey of surface optical properties at key sites Whitlock spectral SW for MISR/MODIS/ASTER/CERES

CERES VALIDATION SUMMARY Release 2.2, July 1997 Subsystem 5.0 - Surface and Atmospheric Radiation Budget (SARB) (CONTINUED)

POST-LAUNCH VALIDATION ACTIVITIES

- CAGEX to cover all 3 ARM sites
- Aircraft fluxes and at ARM sites as needed
- Helicopter surveys of selected Class 2 sites (EOS-wide use)
- Determine climate forcing of aerosols, surface changes at Class 2 sites; extend regionally with satellite data
- Ship of opportunity with cloud lidar and pyrgeometer needed for cloud base height, surface LW flux
- Supplement oceanography campaigns with surface meas.

EOSDIS

- Special processing of CERES data from regions containing Class 1, 2, 3 sites and for roving ship monitor
- Development of CAGEX-like data bases at selected sites

CERES VALIDATION SUMMARY Release 2.2, July 1997 Subsystem 7.0 - Time Interpolation And Synoptic Flux Computation For Single And Multiple Satellites

DATA PRODUCTS/PARAMETERS

• TOA, in-the-atmosphere, and surface flux and clouds layer information in the atmosphere at 3-hourly GMT time resolution over the whole globe.

MISSION

• TRMM, EOS AM-1, and EOS PM-1.

APPROACH

- Complete pre-launch science studies for improving and verifying TISA methods.
- Verify input/output operations and interface compatibility with other subsystems.
- Compare results with validation data set.

PRE-LAUNCH VALIDATION ACTIVITIES

- Complete validation of the science algorithm.
- Finish testing of the data processing system.
- Verify TOA results with historical ERBE TOA scanner data.
- Perform case study using geostationary data, CAGEX, and TOGA data to verify science algorithm.

CERES VALIDATION SUMMARY Release 2.2, July 1997 Subsystem 7.0 - Time Interpolation And Synoptic Flux Computation For Single And Multiple Satellites (CONTINUED)

- Validate data processing system using CERES end-to-end simulation.
- TOA, in-the-atmosphere, and surface flux and clouds layer information at 3-hourly GMT time resolution over the whole globe.

POST-LAUNCH VALIDATION ACTIVITIES

- Primary comparison of TOA fluxes with geostationary data using narrowband-tobroadband conversion technique.
- Secondary direct verification of TOA fluxes (if available) with ERBE WFOV results, ScaRaB data, and GERB data.
- Comparison with cloud and radiation data from intensive field experiments (i.e., TOGA, FIRE, CAGEX, ARM/TWP, ARM/NSA, and UAV experiment).
- Comparison with cloud and radiation data collected from special validation regions; including class 1 and class 2 sites (i.e., Walker Tower, Boulder Tower, NOAA sites, and BSRN sites).
- Additional intercomparison between TRMM, EOS AM-1, and EOS PM-1 data.

EOSDIS

• Special processing of CERES SYN data products containing validation sites.

CERES VALIDATION SUMMARY Release 2.2, July 1997 Subsystem 8.0 Monthly Regional, Zonal, And Global Radiation Fluxes And Cloud Properties

DATA PRODUCTS/PARAMETER

• Monthly regional radiative fluxes and clouds data product (AVG) and monthly zonal and global radiative fluxes and cloud data product (ZAVG) contain monthly means and monthly-hourly means on regional, zonal, and global scales.

MISSION

• TRMM, EOS AM-1, and EOS PM-1.

APPROACH

- Complete pre-launch science studies for improving and verifying TISA methods.
- Verify input/output operations and interface compatibility with other subsystems.
- Compare results with validation data set.

PRE-LAUNCH VALIDATION ACTIVITIES

- Complete validation of the science algorithm.
- Finish testing of the data processing system.
- Verify TOA results with historical ERBE TOA scanner data.
- Perform case study using CAGEX and TOGA data to verify science algorithm.
- Validate data processing using CERES end-to-end simulation.

CERES VALIDATION SUMMARY Release 2.2, July 1997 Subsystem 8.0 - Monthly Regional, Zonal, And Global Radiation Fluxes And Cloud Properties (CONTINUED)

POST-LAUNCH VALIDATION ACTIVITIES

- Primary comparison of TOA fluxes with geostationary data using narrowband-tobroadband conversion technique.
- Secondary direct verification of TOA fluxes (if available) with ERBE WFOV results, ScaRaB data, and GERB data.
- Comparison with cloud and radiation data from intensive field experiments (i.e., TOGA, FIRE, CAGEX, ARM/TWP, ARM/NSA, and UAV experiments).
- Comparison with cloud and radiation data collected for special validation region; including class 1 and class 2 sites (i.e., Walker Tower, Boulder Tower, NOAA sites, and BSRN sites)
- Additional intercomparison between TRMM, EOS AM-1, and EOS PM-1 data.

EOSDIS

• Special processing of CERES AVG and ZAVG data products containing validation sites.

CERES VALIDATION SUMMARY Release 2.2, July 1997 Subsystem 10.0 - Monthly Regional TOA And Surface Radiation Budget

DATA PRODUCTS/PARAMETERS

• Monthly and monthly-hourly regional, zonal, and global averages of the TOA and surface LW and SW fluxes and the observed cloud conditions for each of the CERES region.

MISSION

• TRMM, EOS AM-1, and EOS PM-1.

APPROACH

- Complete pre-launch science studies for improving and verifying TISA methods.
- Verify input/output operations and interface compatibility with other subsystems.
- Compare results with validation data set.

PRE-LAUNCH VALIDATION ACTIVITIES

- Complete validation of the science algorithm.
- Finish testing of the data processing system.
- Verify TOA results with historical ERBE TOA scanner data.
- Perform case study using CAGEX data to verify science algorithm.
- Validate data processing system using CERES end-to-end simulation.

CERES VALIDATION SUMMARY Release 2.2, July 1997 Subsystem 10.0 - Monthly Regional TOA And Surface Radiation Budget (CONTINUED)

POST-LAUNCH VALIDATION ACTIVITIES

- Primary comparison of TOA fluxes with geostationary data using narrowband-tobroadband conversion technique.
- Secondary direct verification of TOA fluxes (if available) with ERBE WFOV results, ScaRaB data, and GERB data.
- Comparison with cloud and radiation data from intensive field experiments (i.e., TOGA, FIRE, CAGEX, ARM/TWP, ARM/NSA, and UAV experiments).
- Comparison with cloud and radiation data collected for special validation regions; including class 1 and class 2 sites (i.e., Walker Towers, Boulder Tower, NOAA sites, and BSRN sites).
- Additional intercomparison between TRMM, EOS AM-1, and EOS PM-1 data.
- Continuous monitoring of the quality of the input data product and detecting problems in the overall system.

EOSDIS

• Special processing of CERES SRBAVG data products containing validation sites.