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THE AERODYNAMIC DAMPING AND OSCILLATORY STABILITY I N  PITCH 

OF TWO HIGH-DRAG BODIES OF REVOLUTION 

AT TMSONIC SPEXDS* 

By Robert A. Kilgore and Richard L. Barton 

SUMMARY 

Wind-tunnel measurements of t he  aerodynamic damping and osc i l l a to ry  s t a b i l i t y  
i n  p i t ch  of two high-drag bodies of revolution have been made a t  Mach numbers 
from 0.60 t o  1.20 by using a forced-oscil lation technique. 
o sc i l l a t ion  amplitude of about 2' at mean angles of a t tack  

M 
Tests were made a t  an 
a from -4' t o  14O. 

Near a = Oo both configurations had negative damping in  pi tch.  Away fronl 
both configurations had near ly  zero damping a t  a Mach number of 0.60 and a = 0' 

s l i g h t l y  pos i t ive  damping at the higher Mach numbers. 

Both configurations had almost constant posi t ive osc i l la tory  s t a b i l i t y  over 
t h e  a range of the  same magnitude except a t  M = 0.60, f o r  which configuration 1 
w a s  more stable than configuration 2 a t  t he  same Reynolds number. A decrease i n  
Reynolds number f o r  configuration 1 decreased i t s  s t a b i l i t y  t o  t h e  same l eve l  as 
t h a t  obtained w i t h  configuration 2 a t  the  higher Reynolds number. 

INTRODUCTION 

Project  F i r e  i s  a f l ight-research program t h a t  i s  being conducted by the 
National Aeronautics and Space Administration t o  determine the  t o t a l  and rad ia t ive  
heat t r ans fe r  at  hyperbolic reentry speeds. As an a id  i n  the  select ion of  a su i t -  
ahLe reentry configuration f o r  Project Fire ,  the aerodynamic damping and osc i l l a -  
t o r y  s t a b i l i t y  i n  p i t ch  f o r  two high-drag bodies of revolution have been experi- 
mentally determined a t  the  Langley Research Center by using a forced-osci l la t ion 
technique. Resul ts  obtained at Mach numbers from 0.60 t o  1.20 at  mean angles of 
a t t ack  from -4' t o  14' are presented herein without de ta i led  analysis .  

SYMBOLS 

The aerodynamic parameters are referred t o  t h e  body system of axes or igi-  
nating a t  the  o s c i l l a t i o n  centers of the  models as shown i n  f igure  1. The 
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- U N CLASS I F I ED 
equations used t o  convert the dimensional aerodynamic coeff ic ients  of t he  model 
t o  the  nondimensional aerodynamic parameters a re  presented i n  the  section 
en t i t l ed  "Reduction of Data." The symbols used herein are  defined as follows: 

A reference area,  ~(9)'. 0.539 sq ft  

d 

k reduced-f requency parameter, cud/V, radians 

M free-stream Mach number 

q angular pitching veloci ty ,  radians/sec 

free-stream dynamic pressure,  lb / sq  f t  

reference length, maximum diameter of model, 0.843 f t  

s, 
R Reynolds number based on d 

v free-stream veloci ty ,  f t / s e c  

a mean angle of a t t ack  (angle of a t t ack  of equilibrium posi t ion of body 
center l i n e ) ,  deg or  radians 

cu angular velocity,  2n (Frequency of o sc i l l a t ion ) ,  radians/sec 

Pitching moment 
pitching-moment coeff ic ient ,  

BoAd 
Cm 

%I 

% a a  
C = -, per radian 

, per radian a c m  CG = 

Cmq + C s  damping-in-pitch parameter, per radian 
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C% - k 2 Cm; osci l la tory- longi tudinal-s tabi l i ty  parameter, per radian 

A dot over a quant i ty  denotes a der ivat ive with respect t o  t i m e .  

MODELS AND " I E L  

Design dimensions of t h e  two models t e s t ed  a re  presented i n  f igure  1. 
Photographs of the models mounted on the osc i l la t ion  balance i n  the  wind tunnel  
are presented as f igure  2. The axially symmetric models have aluminum forebodies 
and f ibe rg la s s  and Hetron afterbodies.  
stream are aerodynamically smooth. 

The model surfaces exposed t o  the  air-  

Tests were made i n  the  Langley 8-foot transonic pressure tunnel,  which i s  a 
single-return,  closed-circuit  wind tunnel. The upper and lower w a l l s  of t he  t es t  
section are s lo t t ed  t o  permit continuous operation through the  transonic speed 
range. The Mach number i n  the t e s t  section can be continuously varied from a low 
subsonic value t o  1.20. The sting-support system i s  so designed as t o  keep the  
center of o sc i l l a t ion  of t h e  model near t h e  center l i n e  of  the tunnel  through a 
range of angle of a t tack  from -4' t o  14' when used i n  conjunction w i t h  t he  osc i l -  
l a t i n g  balance mechanism. 

APPARATUS AND PROCEUDRE 

The models are mounted on an osc i l l a t ion  balance, which i s  forced t o  perform 
an e s sen t i a l ly  sinusoidal, single-degree-of -f reedom motion of about 2' amplitude 
by a motor-driven crank and Scotch-yoke arrangement. Accurate control  of osc i l -  
l a t i o n  frequencies can be maintained from about 2 t o  25 cycles per  second. A 
deta i led  descr ipt ion of t he  osc i l l a t ion  mechanism i s  given i n  reference 1. 

Dynamic da ta  a r e  obtained from the  osc i l la t ion  balance by al ternat ing-  
current strain-gage bridges t h a t  sense the instantaneous torque required t o  drive 
t h e  model and t h e  instantaneous angular displacement of t he  model with respect t o  
the  s t ing .  These strain-gage bridges modulate 3,000-cycle c a r r i e r  voltages, which 
are passed through coupled e l e c t r i c a l  sine-cosine resolvers  t h a t  ro ta te  at the  
frequency of o sc i l l a t ion  of the  model. The resolvers resolve the  s ignals  i n to  
orthogonal components, which a r e  then demodulated and read on damped d i g i t a l  
voltmeters. By responding only t o  s ignals  at  the f'undamental frequency of o sc i l -  
l a t i on ,  the resolver  and damped-voltmeter system performs t he  des i rab le  function 
of  e l iminat ing the e f f ec t s  of random torque inputs due t o  airstream turbulence o r  
buffet ing.  The m a x i m u m  torque required t o  drive the  model, the  m a x i m u m  displace- 
ment of t he  model with respect t o  the  s t ing,  and the phase angle between t h e  
torque and displacement are found from the  orthogonal components of torque and 
displacement. The frequency of o sc i l l a t ion  i s  obtained by counting t h e  pulses 
generated by an induction-coil  pickup and 100-tooth gear fastened t o  the shaft of 
one of t h e  resolvers .  
o s c i l l a t i n g  system are then computed from the  measured values of torque, displace- 
ment, phase angle, and frequency. 

The damping and spring-inertia cha rac t e r i s t i c s  of the 
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Y N C L A S S I F I E D  
A l l  data  were taken with the  model o sc i l l a t ing  near i t s  velocity-resonant 

frequency, inasmuch as t h i s  condition assures the  most accurate determination of 
t h e  system damping coef f ic ien t  and spr ing-iner t ia  charac te r i s t ic .  

REDUCTION OF DATA 

For these tests, measurements were made of t he  maximum applied pi tching 
moment 
t o  the  siir ig 6, the phase angle q between My and 0, and the  angular veloci ty  
of t he  forced osc i l l a t ion  (1). 

damping coeff ic ient  f o r  t h i s  single-degree-of-freedom system can be computed as 

My, t h e  m a x i m u m  angular displacement i n  p i tch  o f  the  model with respect 

A s  explained i n  d e t a i l  i n  reference 2, t he  viscous 

My s i n  7 

cu0 
cy = 

and the  spr ing-iner t ia  charac te r i s t ic  can be computed as 

My COS q 
0 Ky - I# = 

where Ky i s  the  to r s iona l  spring coef f ic ien t  of the  system and Iy i s  the  
moment-of-inertia coeff ic ient  of the  system about the  body Y-axis (pi tching a x i s ) .  
The damping-in-pitch parameter w a s  computed as 

c + C G = - q  My s in  q ) - (  My s i n  q ) ] mq %Ad2 wind on wind off ( 3 )  

and t h e  osc i l la tory- longi tudina l -s tab i l i ty  parameter w a s  computed as 

2 My COS 7 My COS 11 
C% - k Cm. = - - 

9 L A d  [( )wind on - ( )wind ofA 

My s in  7 
The wind-off value of cuO w a s  determined at the  frequency of wind-off 

My COS 7 
0 were determine1 veloci ty  resonance. 

a t  the  same value of 

The wind-off and wind-on values of 

co2. 

A factor  of 2, which i s  conventional f o r  winged bodies, does not appear i n  

cud k = - v equation ( 3 ) ,  inasmuch as the  reduced-frequency parameter i s  defined as 
cud f o r  bodies of revolution instead of k = - 
2v' 
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TESTS AND PRESENTATION OF DATA 

The tes t s  were made at  Mach numbers from 0.60 t o  1.20 and a t  Reynolds num- 

a w a s  varied from -4' t o  14'. 
bers ,  based on the maximum diameter of the  model, from 1.75 x 106 t o  3.50 x 10 6 . 
The mean angle of a t tack  
forced o s c i l l a t i o n  was about 2'. 

The amplitude of the  

+ Cx, the osci l la tory- longi tudinal-  
cmq 

The damping-in-pitch parameter 

s t a b i l i t y  parameter Cma - k2Cm*, and the  reduced-frequency parameter 

two configurations are presented graphically i n  f igure 3 as functions of mean 
angle of a t t ack  a f o r  t he  d i f f e ren t  t es t  Mach numbers. Posi t ive damping and 
s t a b i l i t y  are indicated by negative values of the damping-in-pitch and 
oscil latory-longitudinal-  s t a b i l i t y  parameters. 

k f o r  t he  
9 

SUMMARY OF HESULTS 

The results presented i n  f igure 3 indicate  t h a t  near a = Oo, both configu- 
ra t ions  had negative damping i n  pitch.  Away from a = 0' both configurations 
had near ly  zero damping a t  a Mach number of 0.60 and s l i g h t l y  pos i t ive  damping a t  
the  higher Mach numbers. 
f o r  both configurations. 
s t a b i l i t y  i s  cha rac t e r i s t i c  of bodies of t h i s  general shape. 

The t rends and l eve l s  of damping i n  p i t c h  were similar 
The decrease i n  damping noted i n  regions of increasing 

Both configurations had almost constant posi t ive osc i l l a to ry  s t a b i l i t y  over 
t h e  a-range of the  same magnitude except at M = 0.60, f o r  which configuration 1 
w a s  m r e  s tab le  than configuration 2 at  the  same Reynolds number. A decrease i n  
Reynolds number f o r  configuration 1 decreased i t s  s t a b i l i t y  t o  the same l e v e l  as 
t h a t  obtained with configuration 2 a t  the  higher Reynolds number. No explanation 
can be offered f o r  t h e  anomalous effect of Reynolds number on the  osc i l l a to ry  
s t a b i l i t y  charac te r i s t ics .  
invest igated a t  the  higher Mach numbers. The l imited Reynolds number data, how- 
ever,  emphasize the need f o r  simulating ful l -scale  flow conditions a s  c losely as 
possible i f  meaningful experimental results are t o  be obtained i n  the  wind tunnel. 

The e f f e c t  of decreasing Reynolds number w a s  not 

Langley Research Center, 
National Aeronautics and Space Administration, 

Langley Stat ion,  Hampton, Va. ,  Ju ly  9, 1963. 
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(a) Configuration 1. L-62-3637 

(b) Configuration 2. L-62-3636 

Figure 2.- Photographs of models in Langley 8-foot transonic pressure tunnel. 
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Figure 3.- Variation of damping-in-pitch parameter, oscillatory-longitudinal-stability parameter, and 
reduced-frequency parameter with man angle of attack a for two high-drag bodies of revolution. 
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Figure 3. -  Continued. 
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Figure 3.- Continued. 
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( e )  M = 1.20. 

Figure 3. - Concluded. 


