

Department of Geography

An assessment of multiangular MISR data for tree cover and height mapping in the tundra-taiga transition zone

Janne Heiskanen

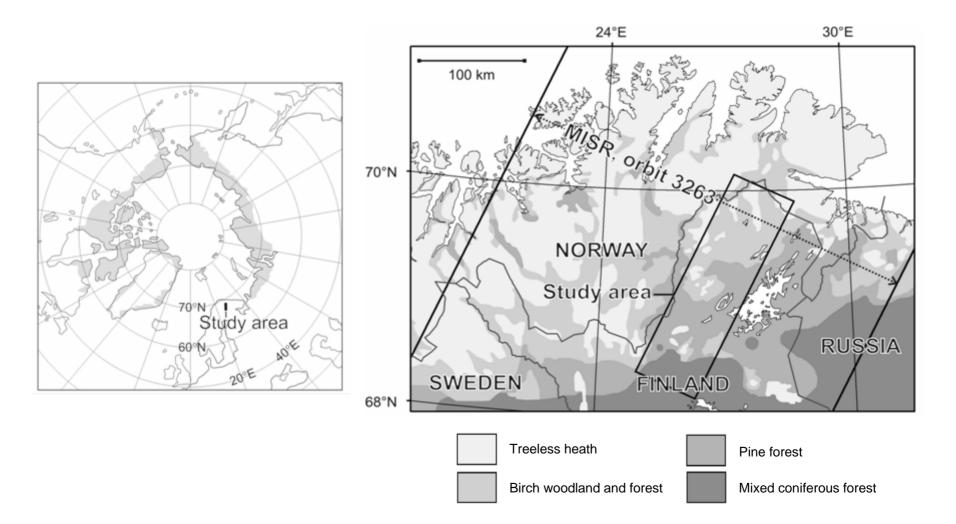
9th Bi-Annual Circumpolar Remote Sensing Symposium, May 15–19 2006, Seward, Alaska

Introduction

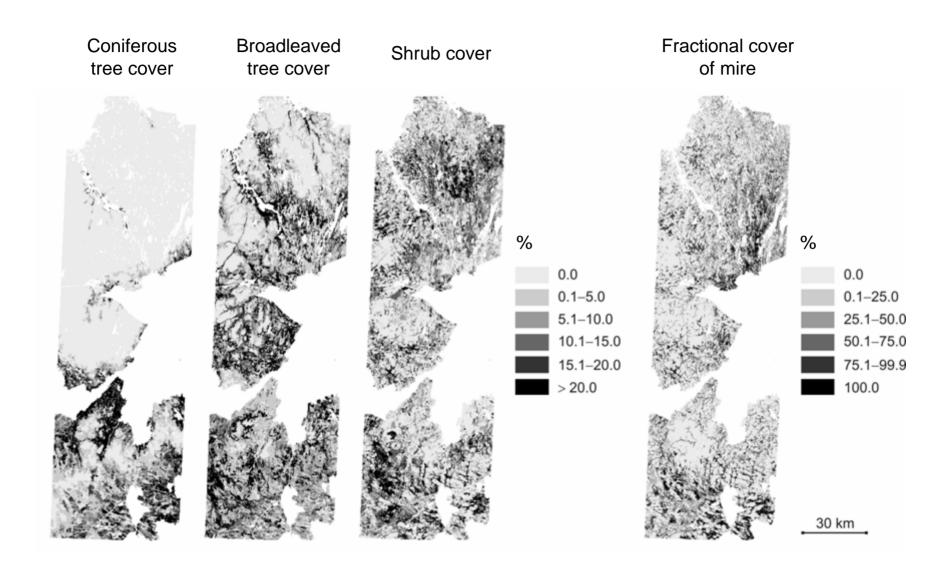
- Accurate and repeatable land cover characterization is required over the tundra-taiga transition zone
- Low spatial resolution instruments (e.g. MODIS) allow mapping of the whole transition zone regularly
- Tree cover and height are important variables to characterize the ecotone
- The continuous fields of these variables would, for example, enable the delineation of the forest extent according to the different criterion and provide valuable data for monitoring land cover change

Introduction

- The applicability of VIS–NIR remote sensing data has been typically hampered by the pronounced reflectance of undergrowth vegetation and by the spectral confusion of the forest and non-forest vegetation
- Directional information (multiangular observations) provides one additional data source that has been used only a little in the land cover mapping
- The sensitivity of BRDF to the canopy- and landscapelevel structural variability suggest that multiangular data could be useful in the characterization of tundra-taiga boundary

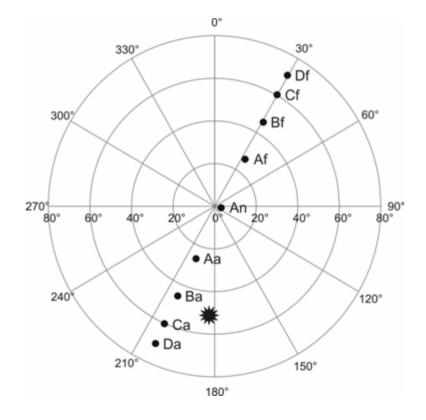


- To examine how sensitive MISR reflectance is to the variability in tree cover and height
- To examine how the spectral-angular band combination of MISR data affect to the estimation accuracy of tree cover and height
- The results were compared to the global MODIS continuous fields of tree cover product at 500 m resolution (MOD44B)
- The estimation accuracy was also studied in relation to shrub cover and fractional cover of mire

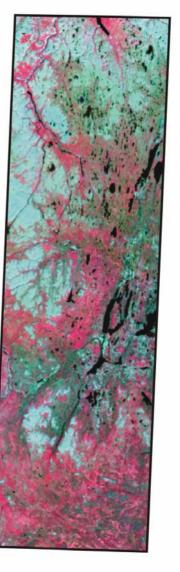

Location of the study area

Biotope inventory data

- The reference data consisted of biotope inventory of northernmost Finland that was made between 1996–1999 by Metsähallitus
- Based on colour-infrared aerial photographs and interpretation keys collected in the field
- GIS-database includes also stand-wise forest inventory data, like tree crown cover (also species specific fractions) and tree height
- The data covers only nature reserves, wilderness areas and national parks



Multiangle Imaging SpectroRadiometer (MISR)


- Nine cameras: 0°, ±26.1°, ±45.6°, ±60.0° and ±70.5°
- Four spectral bands: blue (446 nm), green (558 nm), red (672 nm) and NIR (866 nm)
- In the global mode the red bands and nadir camera are at 275 m resolution, the other bands are averaged to the 1.1 km resolution
- Acquisition date: 29 July 2000 (path 193 and orbit 3263)
- MISR Level 1B2 Terrain data (TOA BRF) and Level 2 Land Surface data (surface BRF) were used
- Da camera was excluded due to coregistration problems

Mean viewing angles of the MISR cameras and Sun position during the acquisition

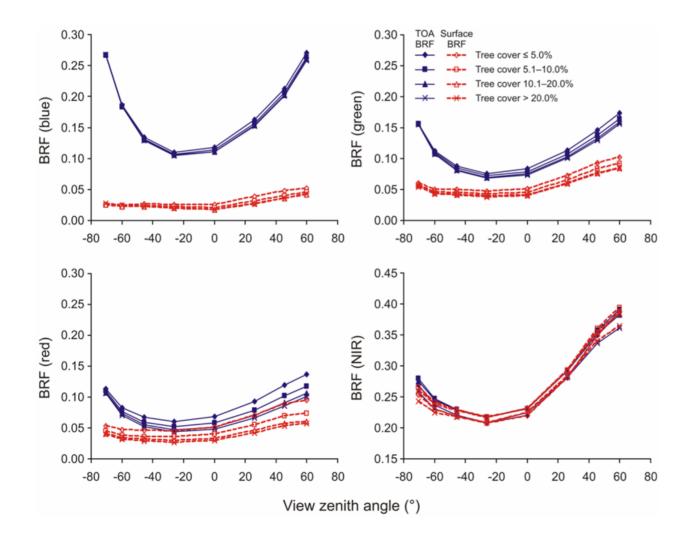
Nadir NIR, red, green

60°, nadir, -60° Red

30 km

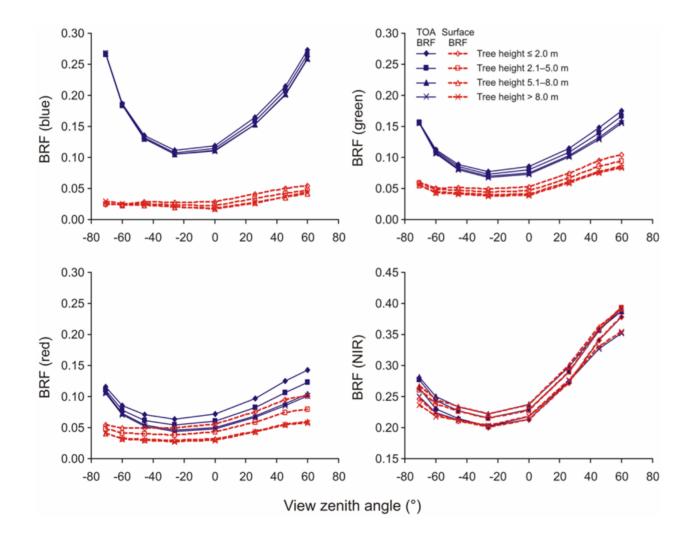
Data analysis

- Mean tree cover, coniferous and broadleaved tree cover, and tree height were calculated for MISR pixels
- The target variables were estimated by feed-forward multilayer neural networks using different spectral-angular band combinations
- Training was performed by Levenberg-Marquardt algorithm and early stopping was used in order to avoid overfitting
- Half of all the data were allocated to the training set and half to the testing set by random sampling
- The estimates were assessed by RMSE and bias statistics


Descriptive statistics

Variable	Resolution	n	Range	Mean	Median	S.D.
Tree cover (%)	275 m	123512	0.0–79.1	11.5	8.5	11.4
	1.1 km (TOA BRF)	6998	0.0–47.9	11.0	9.6	9.3
	1.1 km (surface BRF)	5760	0.0–47.9	11.6	10.8	9.6
Coniferous tree cover (%)	275 m	123512	0.0–50.0	3.6	0.0	7.0
	1.1 km (TOA BRF)	6998	0.0–38.4	3.4	0.0	6.0
	1.1 km (surface BRF)	5760	0.0–38.4	4.0	0.0	6.3
Broadleaved tree cover (%)	275 m	123512	0.0–76.8	7.7	4.4	9.0
	1.1 km (TOA BRF)	6998	0.0–46.6	7.4	5.9	6.8
	1.1 km (surface BRF)	5760	0.0–46.6	7.4	5.8	6.9
Tree height (m)	275 m	123512	0.0–17.8	5.3	4.3	3.7
	1.1 km (TOA BRF)	6998	0.0–16.0	5.1	4.3	3.3
	1.1 km (surface BRF)	5760	0.0–16.0	5.4	4.4	3.5

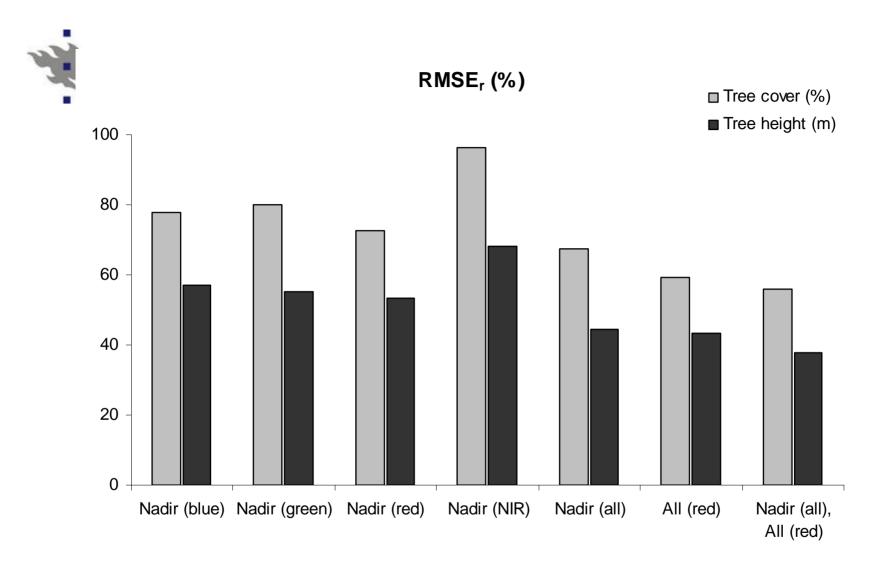
Shrub cover and fractional cover of mire were used as ancillary data


Mean BRFs of the tree cover classes in MISR viewing angles (-70.5–60.0°)

- Strong dependence of BRF on the view zenith angle
- The atmospheric correction has a major effect, particularly in the shorter wavelengths and in the largest offnadir view angles
- However, differences
 between the classes are approximately
 equal

Mean BRFs of the tree height classes in MISR viewing angles (-70.5–60.0°)

- Red band seem to be the most sensitive band to the tree cover and tree height
- Differences between the classes are greatest in the backscattering direction



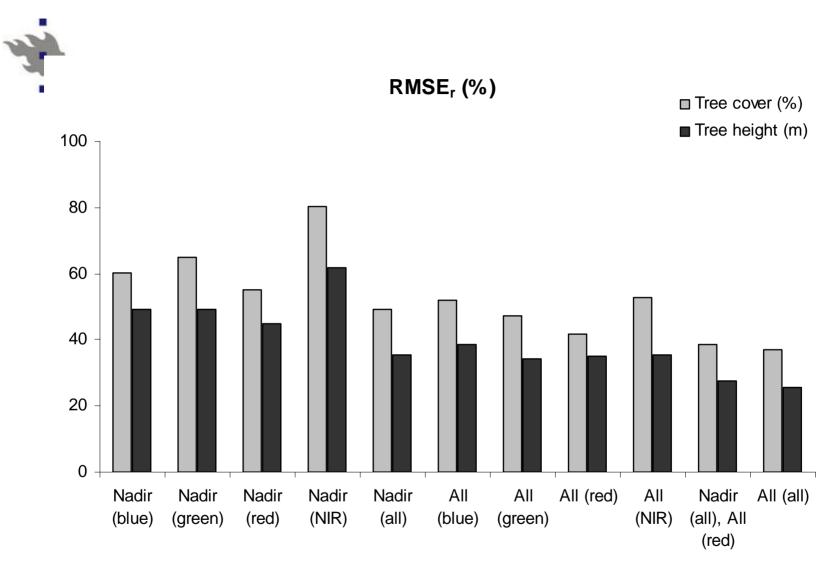
Accuracy of the tree cover and height estimates at 275 m resolution

Target variable	View-angle (spectral band)	Number of bands	RMSE	RMSE _r (%)	Bias	Bias _r (%)	r
Tree cover (%)	Nadir (red)	1	8.41	72.7	-0.08	-0.7	0.67
	Nadir (all)	4	7.80	67.4	-0.11	-1.0	0.73
	All (red)	8	6.85	59.2	-0.03	-0.3	0.80
	Nadir (all), All (red)	11	6.49	56.1	-0.05	-0.4	0.82
Tree height (m)	Nadir (red)	1	2.81	53.3	0.00	0.0	0.64
	Nadir (all)	4	2.33	44.3	0.00	0.0	0.77
	All (red)	8	2.29	43.5	0.02	0.4	0.78
	Nadir (all), All (red)	11	1.98	37.6	0.01	0.2	0.84

RMSE of the best coniferous tree cover estimates was 3.85% (RMSE_r 106.5%)

RMSE of the best broadleaved tree cover estimates was 6.43% (RMSE, 83.2%)

Spectral-angular band combination

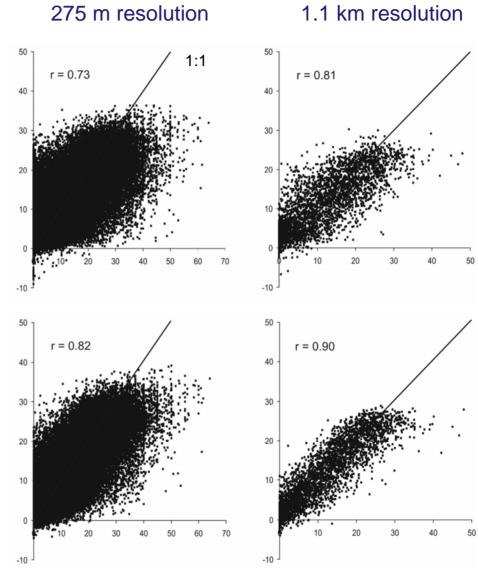


Accuracy of the tree cover and height estimates at 1.1 km resolution (TOA BRF)

Variable	View-angle (spectral band)	Number of bands	RMSE	RMSE _r (%)	Bias	Bias _r (%)	r
Tree cover (%)	Nadir (red)	1	6.07	55.0	0.07	0.6	0.75
	Nadir (all)	4	5.42	49.2	-0.14	-1.3	0.81
	All (blue)	8	5.74	52.0	-0.26	-2.4	0.78
	All (green)	8	5.21	47.2	-0.09	-0.8	0.83
	All (red)	8	4.62	41.9	0.05	0.4	0.87
	All (NIR)	8	5.80	52.6	-0.21	-1.9	0.78
	Nadir (all), All (red)	11	4.27	38.7	-0.07	-0.6	0.89
	All (all)	32	4.06	36.9	-0.11	-1.0	0.90
Tree height (m)	Nadir (red)	1	2.28	44.7	0.03	0.6	0.70
	Nadir (all)	4	1.80	35.4	-0.02	-0.4	0.83
	All (blue)	8	1.96	38.5	0.01	0.1	0.79
	All (green)	8	1.74	34.1	0.00	-0.1	0.84
	All (red)	8	1.80	35.2	0.06	1.2	0.83
	All (NIR)	8	1.81	35.6	-0.07	-1.3	0.83
	Nadir (all), All (red)	11	1.40	27.5	0.00	0.1	0.90
	All (all)	32	1.29	25.4	-0.01	-0.2	0.91

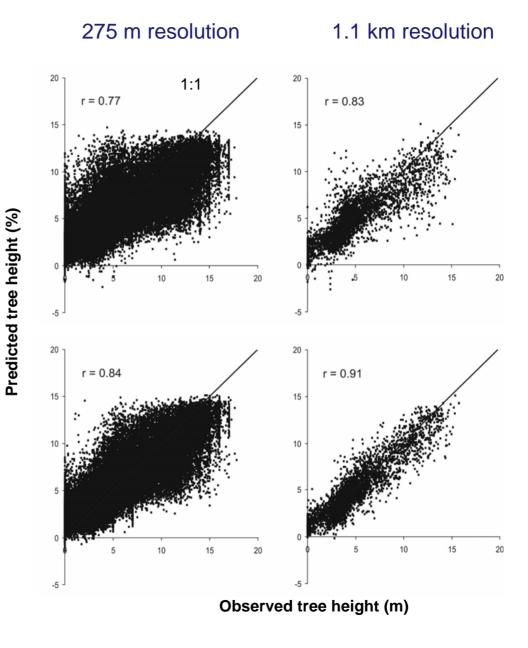
Smaller errors than at 275 m resolution

- RMSE of the best coniferous tree cover estimates was 2.23% (RMSE, 68.9%)
- RMSE of the best deciduous tree cover estimates was 3.96% (RMSE, 52.5%)

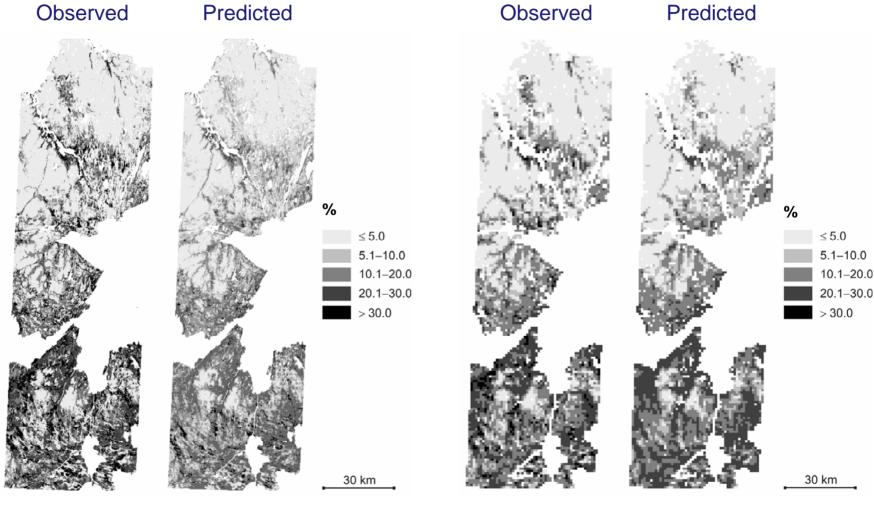

Spectral-angular band combination

All bands

Predicted tree cover (%)

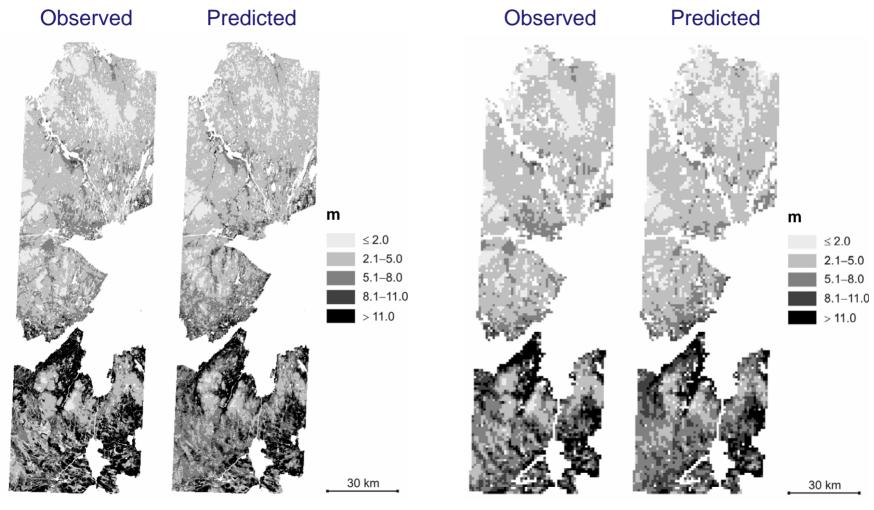


Observed tree cover (%)



All bands

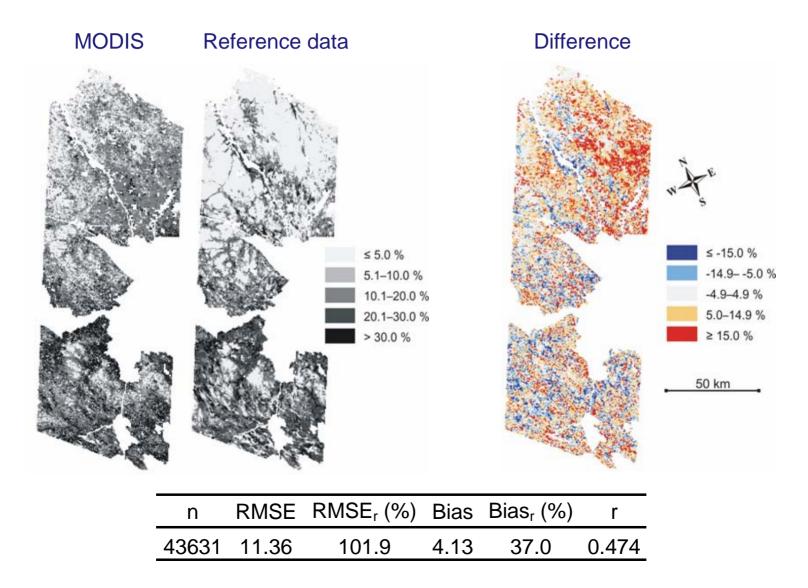
Tree cover surfaces



275 m resolution

1.1 km resolution

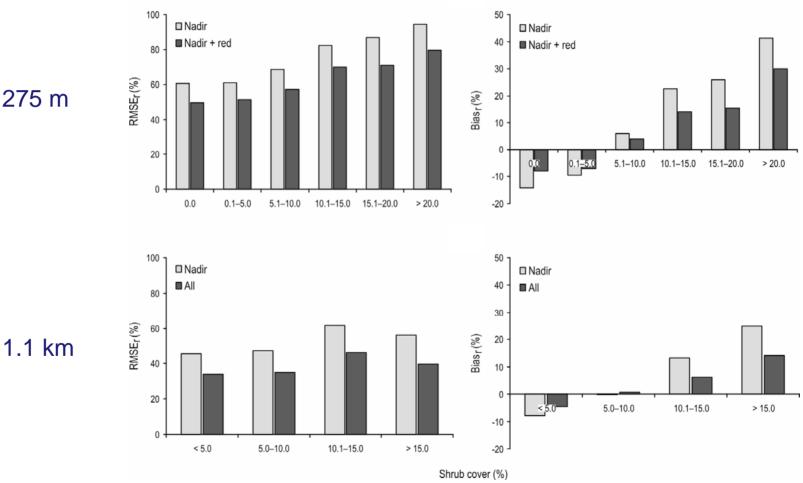
Tree height surfaces



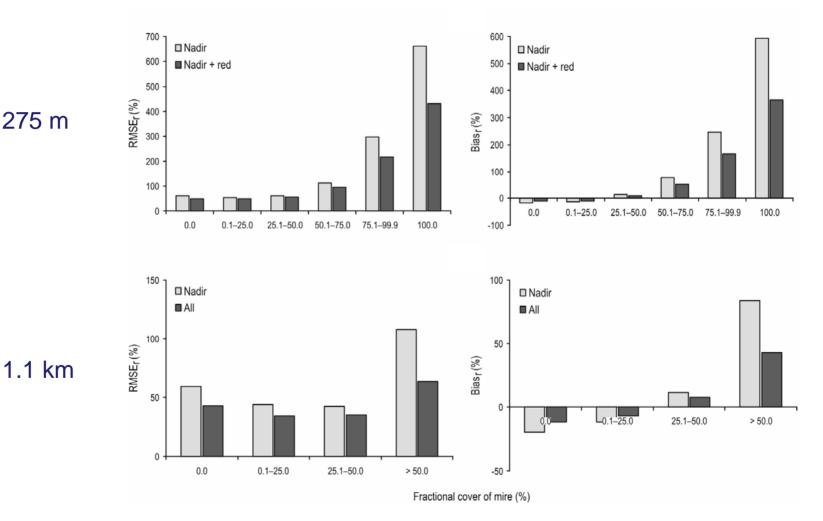
275 m resolution

1.1 km resolution

MODIS continuous fields of tree cover


MODIS continuous fields of tree cover

Tree cover is overestimated in the areas of dense shrub cover and in the mires


Accuracy of the tree cover estimates in relation to shrub cover

275 m

Accuracy of the tree cover estimates in relation fractional cover of mire

275 m

Conclusions

- The results suggest that directional information has potential to improve the tree cover and height estimates over the tundra-taiga transition zone in comparison to VIS-NIR nadir-view data only
- The multiangular data seem to increase sensitivity to the vegetation structure and reduce the effects of undergrowth vegetation
- The largest errors occurred when shrub cover was dense and in mires, but the inclusion of multiangular data improved estimates also in those areas

Conclusions

- So far the use of multiangular data has been somewhat limited in land cover mapping in tundra-taiga transition zone
- For mapping large areas, the atmospheric correction of MISR data and application of an appropriate BRDF model would be necessary

Thank you!

