



# **Status of MOZART-2**

Larry W. Horowitz GFDL/NOAA MOZART Workshop November 29, 2001





#### **MOZART-2 Description**

- Resolution (typical) 278,528 Grid Cells:
  - Surface to approximately 40 km altitude 1-2 km resolution
  - Horizontal Resolution: 2.8° X 2.8 °

#### • Dynamical Processes:

- Met. Fields: Driven by MACCM3 or Analyzed Fields (e.g., NCEP)- winds and temperatures
- Advection: Flux-form semi-Lagrangian advection scheme [Lin and Rood, 1996]
- Convection: Rediagnosed by MATCH using Hack [1994] for mid-level convection and Zhang and MacFarlane [1995] scheme for deep convection
- Boundary layer exchange: Parameterization of Holstag and Boville [1993]

#### • Wet and Dry Deposition:

- Wet deposition:
  - Represented as a first-order loss process within the chemistry operator, using large scale and convective precipitation rates diagnosed by MATCH.
  - -Soluble species removed by in-cloud scavenging [Giorgi and Chamedes, 1985]
  - -Highly soluble species are also removed by below cloud washout [Brasseur et al., 1998]
- Surface dry deposition: uses the approach of Wesely [1989]





- Chemical Constituents and Mechanism:
  - Approximately 63 Chemical Species:
    - Including  $O_x$ ,  $NO_x$ ,  $HO_x$ ,  $CH_4$ ,  $C_2H_6$ ,  $C_3H_8$ ,  $C_2H_4$ ,  $C_3H_6$ ,  $C_4H_{10}$ , isoprene, terpenes
    - 133 gas-phase, 2 heterogeneous, and 33 photolytic reactions

#### • Source Gas Emissions:

- Surface: CO, NO,  $CH_4$ ,  $C_2H_6$ ,  $C_3H_8$ ,  $C_4H_{10}$ ,  $C_2H_4$ ,  $C_3H_6$ , isoprene, terpenes,  $CH_3COCH_3$ ,  $CH_3OH_3$
- Lightning NO<sub>x</sub>: » 4 Tg N yr<sup>-1</sup> [Price et al., 1997; Pickering et al., 1998]
- Aircraft: CO, CH<sub>4</sub>, NOx (0.44 Tg N yr<sup>-1</sup>) [NASA, 1995]
- Stratospheric Constituents Constrained for:
  - NOx, HNO<sub>3</sub>, N<sub>2</sub>O<sub>5</sub>, CH<sub>4</sub>, CO, and N<sub>2</sub>O (middle atmosphere model STARS, *Brasseur et al.*, 1997),
  - O<sub>3</sub> 100 hPa to tropopause [Logan, 1999]; above 100 hPa [HALOE data, Randel et al., 1999]
  - 10-day relaxation time constant





## • Emissions

- Biomass burning emission ratios [Andreae and Merlet, 2001]
- Acetone [Jacob et al., 2001]
- Added methanol (CH<sub>3</sub>OH) and ethanol (C<sub>2</sub>H<sub>5</sub>OH) [Granier]
- Revision to chemical mechanism [Tyndall and Orlando]
- Wet deposition scheme [Giorgi and Chameides, 1985] [Tie]
- Zhang convection bugfix





| Species                                  | Industry /<br>Fossil fuel | Biofuel<br>combustion | Biomass<br>burning | Biogenic /<br>Soil | Oceans | Total   |
|------------------------------------------|---------------------------|-----------------------|--------------------|--------------------|--------|---------|
| NO (TgN/y)                               | 23.11                     | 1.25                  | 9.81               | 6.62               | 0      | 40.79   |
| CO (Tg/y)                                | 306.89                    | 170.10                | 677.98             | 160.10             | 10.00  | 1325.45 |
| C <sub>2</sub> H <sub>6</sub> (TgC/y)    | 3.18                      | 1.43                  | 4.06               | 0.80               | 0.08   | 9.56    |
| C <sub>3</sub> H <sub>8</sub> (TgC/y)    | 5.02                      | 0.47                  | 1.10               | 1.64               | 0.11   | 8.33    |
| C <sub>2</sub> H <sub>4</sub> (TgC/y)    | 2.02                      | 2.88                  | 7.89               | 4.29               | 2.07   | 19.16   |
| C <sub>3</sub> H <sub>6</sub> (TgC/y)    | 0.86                      | 1.43                  | 2.85               | 0.86               | 2.52   | 2.52    |
| C <sub>4</sub> H <sub>10</sub> (TgC/y)   | 11.08                     | 4.98                  | 7.54               | 0                  | 6.26   | 29.88   |
| CH <sub>3</sub> COCH <sub>3</sub> (Tg/y) | 1.00                      | 0.11                  | 2.51               | 19.95              | 13.45  | 37.02   |
| ISOP (TgC/y)                             | 0                         | 0                     | 0                  | 410.39             | 0      | 410.39  |
| C <sub>10</sub> H <sub>16</sub> (TgC/y)  | 0                         | 0                     | 0                  | 129.06             | 0      | 129.06  |
| CH₃OH (Tǥ⁄y)                             | 0                         | 9.73                  | 15.56              | 286.73             | 0      | 312.02  |
| CH <sub>4</sub> (Tg/y) <sup>a</sup>      | 94.97                     | 14.01                 | 71.84              | 145.69             | 9.98   | 489.47  |
| N <sub>2</sub> O (Tg/y)                  | 5.00                      | 0.16                  | 1.71               | 20.73              | 11.31  | 38.92   |
| H <sub>2</sub> (Tg/y)                    | 14.86                     | 3.37                  | 16.03              | 3.00               | 3.00   | 40.26   |

#### Table 4: Surface Emissions in MOZART

a. The emissions for CH<sub>4</sub> also include 59.94 Tg/y from rice cultivation and 93.05 Tg/y from ruminants.



#### **Model Evaluation – Ozonesondes**







#### Model Evaluation – Ozonesondes (cont'd)







#### **Model Evaluation – CMDL Surface CO**









#### **Model Evaluation – Aircraft NO<sub>x</sub>**





#### **Model Evaluation – Aircraft HNO<sub>3</sub>**







### **Sensitivity of HNO<sub>3</sub> to Wet Deposition**





## **Red:** new wet deposition **Green:** "old" wetdep



#### **Sensitivity of HNO<sub>3</sub> to Wet Deposition**





## **Red:** new wet deposition **Green:** G&C wetdep (Tie)



#### **Model Evaluation – Aircraft PAN**







#### **Sensitivity of PAN to Chemical Mechanism**





## Red: standard run

**Green:** reduced PAN yields from isoprene



### **Sensitivity of PAN to Emissions**





## Red: standard run

**Green:** 0.5\*E(isop,terpenes)





- $O_3$ ,  $NO_x$ ,  $HNO_3$ , NMHCs, peroxides
  - Excellent agreement with observations
- CH<sub>2</sub>O and Acetone
  - Good agreement at most locations
- CO, PAN
  - Systematic bias at some locations



#### **Ozone Budget**



#### Ozone fluxes (Tg y<sup>-1</sup>)



| Table 6: Annual Mean  | <b>Budget of Tropospheri</b> | c Ozone in MOZART-2 |
|-----------------------|------------------------------|---------------------|
| India of Infinant Man | Dudget of Hopospheri         |                     |

|                                       | Production (Loss) [Tg O <sub>3</sub> / yr] |                        |                        |  |  |
|---------------------------------------|--------------------------------------------|------------------------|------------------------|--|--|
| Process                               | Global                                     | Northern<br>Hemisphere | Southern<br>Hemisphere |  |  |
| Influx from stratosphere <sup>a</sup> | 401 <sup>b</sup>                           | 252                    | 149                    |  |  |
| Photochemical production              | 5002                                       | 3026                   | 1976                   |  |  |
| Photochemical loss                    | -4539                                      | -2668                  | -1871                  |  |  |
| Dry deposition                        | -867                                       | -588                   | -279                   |  |  |

For this budget, the tropopause is defined as the hybrid model level interface corresponding to approximately 100 hPa in the tropics (30°S-30°N) and 250hPa in the extratropics.

a. Includes advection, pressure consistency correction, and convection and vertical diffusion. b. This term consists of advection (305 Tg/y), pressure consistency correction (87 Tg/y), and convection and vertical diffusion (9 Tg/y).



#### **Ozone Fluxes**







#### "Stratospheric Ozone" Fluxes







#### **Oxidizing Capacity (OH)**









- Methane lifetime (MOZART) = 10.7 years
- IPCC "best guess" = 9.6 years
- $\rightarrow$  OH may be underestimated by ~10%

NB: Methane lifetimes above are calculated as: (strat+trop CH<sub>4</sub> burden) / (trop CH<sub>4</sub> loss)





- Horowitz *et al.*, A global simulation of tropospheric ozone and related tracers: Description and Evaluation of MOZART, version 2
- Nearly ready for submission to J. Geophys. Res.
- Available now at:

http://www.gfdl.noaa.gov/~lwh/mozart/mozart.html along with model evaluation plots, etc.





- Near-term (for "freeze" of MOZART-2)
  - Photolysis lookup table (LUT)
  - Problems with OH/CO
  - Upper tropospheric PAN
    - NO/NO<sub>2</sub> ratio (?)
    - Convection (?)
  - Lin & Rood mass conservation (LLNL)





- Longer-term
  - Re-examine assimilated wind version of MOZART (NCEP)
  - Aerosols in MOZART-2
  - Coupling to GCMs and CSMs
    (NCAR CCM/CCSM and GFDL FMS AM3)







