

U.S. Department of Energy Energy Efficiency and Renewable Energy

PHOTOELECTROCHEMICAL BARRIERS

- Material durability
- Materials and system engineering
- Efficiency
- PHOTOBIOLOGICAL BARRIERS
- Light utilization efficiency
- Rate of hydrogen production
- Continuity of photoproduction
- Systems engineering

Photolytic Hydrogen Production

Characteristics	Units	2003 status	2005	2010
Photoelectrochemical Hydrogen Production				
Solar-to-H ₂ Efficiency	%	7	7.5	9
Durability	Hours	100	1,000	10,000
Cost	\$/kg H ₂	N/A	360	22
Photobiological Hydrogen Production				
Util. Eff. of Abs. Light	%	~5	10	20
Absorbed Light Energy to H ₂ Efficiency	%	0.1	0.5	5
Duration of Continuous Photoproduction	Hours	240	500	1500
Cost	\$/kg H ₂	200	100	30

Projects Photolytic Hydrogen Production

- Combinatorial Chemically Derived UC Santa Materials
 Barbara
- Combinatorial Discovery of Photocatalysts for Hydrogen Production

Barbara Southwest Research Institute

Algal Hydrogen Production

- Photoelectrochemical Hydrogen Production
- Photoelectrochemical Systems for Hydrogen Production
- Maximizing Photosynthetic Efficiencies in H₂ Production in Microalgal Cultures
- Algal H₂ Production System

University of Hawaii

NREL

UC Berkeley

ORNL

- These technologies are in the early stages of development
- A key to reaching a commercialization decision is for the PIs of the various projects to work together in developing each photolytic technology
- We initiated two working groups (photobiological and photoelectrochemical) made up of the current PIs and other support as necessary

