Change description:

The following changes were made to this document:

· Action Items are identified by being highlighted in yellow to make them easy to remove from the document.

· Examples and other things that will, hopefully, be moved to a users guide are highlighted in turquoise to make them easy to remove from the document.

As of 3-24-00 we have reached the following tentative conclusions:

· We are concluding that two fixed formats are required.

· We are agreeing on the need for both source and destination addresses (in the long header).

· TBIMs above Tier 0 will handle both packet sizes.

· We have agreed that there will be an 8-bit field in the format section that indicates the word (syllable) size of the data field.

· The error correction/detection of the data itself will be transparent to the TBC. The application software will learn from the TEDS of the TBIM how to decode the data itself.

· The format field will have sufficient CRC length to protect against undetected errors (probably 16 bits, may be 32)

· The standard will allow TBIM to TBIM communication, even though it has not been a priority. It will most likely utilize data channels (not TBIM communication channels) and its main purpose is to accommodate applications needing a tight loop between a sensor and an actuator such as in active noise cancellation.

· The default format will be the short format. The devices can be switched to the long format.

· The Bus Management Communications channel will only use the short format.

1.1 Functional Elements

The functional elements portion of the standard gives the requirements for the addressing schemes and the structure of the data frames that are passed between the elements of the system.

1.1.1 Introduction

This standard deals with data at the lowest levels of the protocol stack. Figure 1 shows the three lowest layers of the protocol stack. In the top layer in the figure the data is sampled and packaged in a format that may or may not include error correction/detection and may or may not include status bits along with the data (data interpretation layer (presentation or application layer in some texts)). In the Data Link layer these data words get packaged into a framed packet that includes addresses, start and stop flags, etc. Then in the Physical layer the frame may have one or more words added to accommodate the physical media, such as spread-spectrum preambles and multiplication by the spreading code (physical layer).

The data and addressing schemes are divided into three categories or layers.

The data is sampled and packaged in a format that may or may not include error correction/detection and may or may not include status bits along with the data (data interpretation layer (presentation or application layer in some texts)).

These data words get packaged into a framed packet that includes addresses, start and stop flags, etc. (data link layer).

Finally, the frame packet may have one or more words added to accommodate the physical media, such as spread-spectrum preambles and multiplication by the spreading code (physical layer).

This section of the standard deals primarily with the packets at the data link layer.

[image: image1.wmf]data interpretation layer

data link layer

Physical layer

Figure 1 Truncated protocol stack

Currently, the data interpretation layer definition is wide open and will be addressed in the T-block section of the standard. The following paragraphs describe a possible format for the data link layer. The physical layer format considerations are discussed in the CDMA/FDMA/TDMA section. See ??

1.1.2 Data Link Layer Frame Format

The frame format for the data link layer is composed of five fields as follows:

· The Start Frame/End Frame Flag field at the beginning of the frame.

· The Format Field is the header ahead of the data.

· The data field

· The Frame Check Sequence field

· The flag field at the end of the frame.

The Start Frame Flag and the End Frame Flag fields are the same as shown in Figure 2. However, they will probably be different after the physical layer is defined. The remaining fields are discussed in more detail in the following paragraphs.

1.1.2.1 Data Link Layer Primary Frame Format

The primary frame format for the data link layer is composed of the four fields as shown in Figure 2. The address field is the destination address for transfers from the TBC to the TBIMs and the source address for transfers from a TBIM to the TBC. Another way to look at this field is to say that it always contains the TBIM address. The data count is a single byte. This limits the Data Field to 255 bytes maximum. A Frame Check Sequence is for the overall frame is not required.

[image: image2.wmf]Destination/Source

Address

2 bytes

Command

2 bytes

Data Count

1 byte

Format Check

Sequence

2 bytes

Flag

01111110

Format

Field

Data Field

0 to 255 syllables

Flag

01111110

Figure 2—Data Link Layer Primary Frame Format

This would provide 72 bits of overhead for all messages. This format could be used for small systems. If we provide two alternatives like this and the one in 1.1.2.2, the system will start out assuming the primary frame format sequence and only change to the alternate format on command.

1.1.2.2 Data Link Layer Alternate Frame Format

An alternate frame format for the data link layer is composed of the same four fields as were required in 1.1.2.1 with the addition of the Frame Check Sequence. However, the structure of the format field is changed. The field would be fixed. The address fields would be fixed at two bytes each, the command field would be fixed at two bytes, the Sequence Number/message ID field would be one byte, and the data count would be two bytes.

[image: image3.wmf]Destination

Address

2 bytes

Source

Address

2 bytes

Command

2 bytes

Sequence Number/

Message ID

1 byte

Data Count

2 bytes

Format Check

Sequence

2 bytes

Flag

01111110

Format

Field

Data Field

0 to 65535

syllables

Frame Check

Sequence Words

Flag

01111110

Figure 3—Data Link Layer Alternate Frame Format

This would provide a 104-bit header for all messages exclusive of the Frame Check Sequence. If we assume a sixteen-bit Frame Check Sequence it becomes 120 bits of overhead for each message. This is not the most efficient possible format but it probably is more than adequate for most systems.

1.1.2.3 Choosing a Data Link Layer Frame Format

The consensus opinion at the moment seems to be that a format should be available that contains both a source and destination address. The primary reason for this is to be able to support deterministic systems. Having both addresses present allows another level of checking on the validity of the message by the receiving device before accepting the message.

The next question seems to be should we use one or two fixed format fields. The following discussion is based upon trying to use both of the format fields proposed in 1.1.2.1 and 1.1.2.2. The added complexity of having to deal with two fixed formats is not very high. Figure 4 shows a possible hardware implementation if the decoding of the format field is to be done in software. To accomplish the same thing using a system that could handle two fixed formats the hardware of Figure 5 could be used. The state machine would need to more complex but not very much. This logic would convert the fields to exactly the same number of bytes written into the FIFO regardless of the length of the format. Bytes that were not used by the short format would be zero. This would have some impact on the CRC calculation but the remainder of the software could not tell the difference.

[image: image4.wmf]Receiver

eight bit

shift register

out

in

/

8

Eight Bit

Wide

FIFO

State Machine

bit clock

Start

Figure 4 Hardware for a software decoder

[image: image5.wmf]Receiver

eight bit

shift register

out

in

/

8

Eight Bit

Wide

FIFO

/

8

Zero

State Machine

bit clock

Start

format length

Figure 5 Alternate hardware for a software decoder

Figure 6 and Figure 7 show similar diagrams for a purely hardware decoder. The decoder of Figure 6 is designed to handle the alternate frame format. The decoder of Figure 7 is designed to handle both. The additional hardware required to use the two fixed formats is probably less than fifty gates in an FPGA.

[image: image6.wmf]Destination

address logic

Receiver

eight bit shift

register

in

out

eight bit

shift register

out

in

eight bit shift

register

in

out

Source

address logic

Command

logic

Sequence

Number logic

Data Count

Logic

high byte

low byte

Format check

Sequence

Logic

sixteen bit

shift register

out

in

sixteen bit

shift register

out

in

sixteen bit

shift register

out

in

sixteen bit

shift register

out

in

Figure 6 Hardware for a hardware decoder

[image: image7.wmf]Destination

address logic

Receiver

Zero

Zero

eight bit shift

register

in

out

eight bit

shift register

out

in

eight bit shift

register

in

out

Source

address logic

Command

logic

Sequence

Number logic

Data Count

Logic

high byte

low byte

Format check

Sequence

Logic

sixteen bit

shift register

out

in

sixteen bit

shift register

out

in

sixteen bit

shift register

out

in

sixteen bit

shift register

out

in

Figure 7 Alternate hardware for a hardware decoder

1.1.3 Start Frame/End Frame Flag Field

The flag field is a fixed pattern that is used to detect the beginning of a transmission and to synchronize with the incoming data.

1.1.4 Format Field

The Format Field is made up of six distinct fields. Only four of these fields are required with the primary frame format.

1.1.4.1 Address Fields

The primary frame format uses a single address field. It is the destination address for messages transmitted from the TBC to a TBIM or TBIMs. It is the source address for messages transmitted from a TBIM to the TBC.

1.1.4.1.1 Destination Address

This address is used to specify the particular device on the bus that will receive this particular frame.

The destination address may be the address of a specific transducer or it may be a group address. This raises the question, again, of how we define a group address. If we want to follow the pattern set by 1451.2 and use an address of zero as the special case of a group address called the global address that addresses all active devices, then it makes sense to expand on that scheme. For sixteen bit addresses, all addresses between 1 and 255 could be reserved for group addresses. An address of zero would still be the global address. This means that transducer specific addresses would begin at 256 and go up to 65,535. This works well with the idea that the eight most significant bits define a TBIM and the lower eight bits define a transducer but does not mandate that arrangement.

Another approach to group addresses would be to define them by how they are assigned. A special command would be defined that assigned a transducer to a group. The transducer would then flag this as a group address. A command that was received for a group address that was not appropriate would be ignored. This has the advantage of not arbitrarily limiting the number of addresses but it makes the address decoding more complex.

For some commands a group destination address is not valid. Examples of this would be a read command for a specific TEDS or change the gain of an amplifier. This means that the TBIM and transducer need to be able to distinguish between group and transducer specific addresses.

1.1.4.2 Source Address

This address is used to specify the device on the bus that is transmitting this particular frame.

Reading data from groups of transducers within the same TBIM should be possible. This would include things like reading a data word and its associated time tag in the same frame. This makes it simpler to keep the pair together. However, this raises the question of what to use for a source address in this case.

Perhaps a better way to handle groups in this field is to specify special commands that apply when a group is being addressed. This command could be addressed to a particular transducer and it would have one argument. The argument would be the group identifier. The reply would contain the requested information for the group. The source address for the reply would be the same as the destination address for the command. This prevents a system from trying to read data from a group that is spread across several TBIMs.

1.1.4.3 Command

This field contains the command to be executed. A frame that is intended to transmit a command from the TBC to a transducer may or may not contain a data field. The use of a data field in a command frame is a function of the command. See 1.3 for more details.

1.1.4.4 Sequence Number/Message ID

This field has a dual purpose. In some cases it is a sequence number for frames that must be received in a particular sequence. This is important when transmitting large blocks of data such as TEDS. In other cases this field would be used as a message ID. This is important when ??.

Sequence number/message id field needs more thought. Should it be one field or two?
1.1.4.5 Data Count

This field identifies the total number of data syllables that will be found in the Data Field.

1.1.4.6 Format Check Sequence

This area is still being worked. The first analysis allowed for burst errors but not random errors.
This is a required field. The standard CRC polynomial to generate the CRC for the Format Check Sequence field is as follows:

 X16+X15+X2+1.

It can detect following errors:

 - All burst errors of length <= 16

 - All burst errors affecting an odd number of bits

 - Burst errors of length 17 bits with high probability

 - Burst errors of length >17 bits with good probability (2x10-10)

The receiving device shall ignore any transmission with an incorrect CRC.

1.1.5 Data Field

The number of data syllables in this field shall be as specified in 1.1.4.6. All syllables must be the same length.

There are some questions that need to be answered with this field particularly in the area of peer-to-peer communications. The most likely area for peer-to-peer communications, at least from my knothole, is for streaming sensors to talk to streaming actuators. For these cases the receiver need a way to interpret the data field. If the data field contains a single sample of a single variable then this is relatively simple but if multiple words from the same or different sensors are in the packet it becomes a more serious task. For data sent to the TBC we have been ignoring this saying that it will be handled by a higher level in the protocol but with peer-to-peer communications it doesn't seem possible to pass it off that lightly. In addition we need to provide some method of defining the format of the data field to the TBIM that will need to transmit it. I do not believe that it should be "hard coded" into the TBIM. Even if it were built into the TBIM we would still have the same problem in reverse. How do we define it to the system?

A method that has been in use with telemetry systems is to define for each parameter in the data frame an initial position in the frame and an increment. The initial position in the data frame is just the syllable number of the first occurrence of the parameter in the frame. The increment is the number of syllables between any two appearances of the word. For example assume that we have video data in a frame with 10 bit syllables and one syllable per word. Further let us assume that there is a scan line number at the beginning of the frame and that it occupies two syllables. The initial position for the scan line number would be zero and the increment would also be zero since it only appears once in the frame. The initial position for the first word of the video data would be two since it starts after the scan line number word and the increment would be one. Using an increment of one means that it is in all other syllables in the data frame. For a second example lets assume a TBIM that wants to transmit a data set that consists of a CRC an initial sample time and then ten samples of pressure interleaved with tens samples of temperature in a data frame with eight bit syllables. In this example we see some of the limitations of the technique. The CRC and the initial sample time only occur once in the data frame so they must be the first two words in the data frame. So lets put the sixteen bits of CRC first followed by the initial sample time that is an 18-bit word. Following this we put the 32 bits of the first pressure word followed by the eight bits of the temperature. Now the initial position for the CRC would be zero and the increment would also be zero. The initial position for the time interval would be two and the increment would be zero. Then the initial position for the first pressure sample would be five since the CRC used positions zero and one and the time interval used positions two, three and four. The increment for the pressure would be five since the pressure requires four syllables and the temperature requires one. The initial position for the temperature would be nine and the increment would be the same as the increment for pressure.

1.1.6 Frame Check Sequence

We still need to determine if this field is required or not and what it is.
1.1.7 Default Capabilities of a TBIM

Unless we adopt the alternate approaches to the frame structure we will need to define the default characteristics for a TBIM.

The default settings for a TBIM shall be those required for a TBC to set up the device. They shall be as shown in Table 3 and Table 4. This results in an Address Format Field containing the bit pattern 0000 0000 0000 1000 (binary) for TBIM replies to the TBC. For commands from the TBC to the TBIM the bit pattern is 0000 0000 0010 0010.

Table 3 Default Address Format Field for TBIM Replies to commands

Address Format Field
Bit Pattern
Comments

Destination Address
00
At this stage the TBIM can only communicate with the TBC so the destination address is not required.

Source Address
10
This is an arbitrary choice so I picked two bytes. It is easy to change.

Command Size
00
The TBIM is not issuing commands to the TBC.

Sequence Number/Message ID
0
Initially this field should be set to zero to indicate that no Sequence Number or Message ID is required.

Data Count
0
The default shall be an eight-bit data size field.

Table 4 Default Address Format Field for TBC commands

Address Format Field
Bit Pattern
Comments

Destination Address
10
This is an arbitrary choice so I picked two bytes. It is easy to change.

Source Address
00
At this stage the only the TBC communicates with the TBIMs so the source address is not required.

Command Size
10
The TBC is issuing commands to the TBIM.

Sequence Number/Message ID
0
Initially this field should be set to zero to indicate that no Sequence Number or Message ID is required.

Data Count
0
The default shall be an eight-bit data size field.

All TBIMs will have a default mode with predefined values for the address format. They will also have a minimum set of capabilities that will most likely include some variations on the default settings. For example, the default settings might be: 1) 8-bit words, 2) 1-word source address, 3) 2-word destination address, 4) No sequence number word, 5) 1-word command field, 6) no frame checking. The minimum capability set might include the default settings plus the options of frame checking and sequence numbering.

Higher end TBIMs might include word size options and the other options mentioned above. The chosen TBC must be compatible with the desired functionality of the system.
1.1.8 Minimum Capabilities of a TBIM

I couldn't remember why this paragraph was in here so I deleted it.

1.2 Triggering

text

1.3 Control

text

1.4 Status

text

1.5 Interrupts

text

1.6 Hot Swap

text

1.7 Channel Identification

text

1.8 Channel Groupings

text

2. Data Formats

text

2.1 Control Words

text

3. TEDS

text

4. Physical Specifications

Text

